
Coupling Low Voltage Microgrids into

GE Energy Coupled Microgirid Project - University of Notre Dame - Oct. 21, 2011

Mid-Voltage Distribution Systems
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Each bus connected to a microgrid;
Representing typical rural distribution network;
Usually with severe voltage-rise problem;

Radial system structure with buses connected to primary substation:

Distribution System Control Architecture
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Project Objective and Approach
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Objective: 
Maximize real power exported by
coupled low-voltage microgrids. 

Issues:
- Voltage Rise Problem;

Transient Stability;
Legacy Controls.

- 
- 

 

Approach:
- Two-layer Voltage Control Architecture:

Decentralized Voltage Controler

Simulation Studies and Analysis.- 

Benefits:
- Minimize impact on DSO 

voltage regulation policies;
Maximize real power exported 
back to distribution network.

- Reactive Power Dispatch
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Talk Outline

Distribution System Model

Voltage Rise Problem

Proposed Controller Architecture

Optimization Problem

Task Status and Schedule
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Micro-
Source

Bus 1

Bus 2 Bus 3 Bus N.  .  .

.  .  .
Primary
Substation 2PP 2Q 3PP 3Q NPP NQ

1PP 1Q

Load
Micro-
Source Load

Micro-
Source Load

Define voltage magnitude and phase angle of ith bus as:
Distribution network is a passive system that only consumes power;

Bus 1 is reference bus with      and    .  

System Model

Ei , δi

2E 2δ E δ3 3 E δN N

Real and reactive power injected through ith bus:
Pi , Qi (i = 1,2,· · ·,N)

(i = 2,3,· · ·,N)

E = 1.0 pu1 δ = 0 rad1

Distribution Network

A microgrid can be represented as a microsource and a load;
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Schematic diagram of a five-bus example system:

System Model
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Corresponding SimPower Model:

Z = 0.5+1j Ω Z = 0.5+1j Ω Z = 0.5+1j Ω Z = 0.5+1j Ω480 V

P = 30 kW
Q = 10 kvar

P = 30 kW
Q = 10 kvar

P = 0~60 kW
Q = -20~20 kvar

P = 0~60 kW
Q = -20~20 kvar
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Example with farthest bus injecting real power:

Voltage Rise Problem Illustration
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Bus voltage magnitudes of the distribution network:
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Example with farthest bus 100 kW real power injection, and keep all bus 
voltages to be 1.0 pu:

Reactive Power Control Illustration
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Voltage Rise Problem

Z R jX= +

E

E E

S
P jQ= +

I∠φ

V
0 
∠ 0° E∠δ

IR

IX

δ
I∠φ

V
0 
∠0°

E∠δ

95%

105%

Distribution line impedance, Z=R+jX
Substation voltage V0∠ 0°
Line current,   I∠φ

Injected Power, SE = PE+ jQE
Terminal voltage, E∠δ

Phasor diagram shows 
injected power’s impact 
on current flows result 
in line voltages that 
exceed the 5% voltage 
regulation rule.

Without  reactive power support: QE = 0PE > 0
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Reactive Control of Voltage Rise Problem

Z R jX= +

E

E E

S
P jQ= +

I∠φ

V
0 
∠ 0° E∠δ

� Total Injected Power:
SE = PE + jQE = EI∠ ( δ － φ )

� We reduce voltage rise by forcing line
current to lead terminus voltage

� This strategy implies
= EI sin(δ φ) < 0.

� Voltage rise can be reduced by absorbing
reactive power at the terminal bus.

� Reactive control mechanisms:
static var compensator, voltage 
regulator, capacitor banks, 
and Q-E droop controls
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Ancillary Services

Defined by Federal Energy Regulatory Commission (FERC):
“... those necessary to support the transmission of electric power 
from seller to purchaser given the obligations of control areas and 
transmitting utilities within those control areas to maintain reliable 
operations of the interconnected transmission system.”

Six Ancillary Services:
Scheduling and Dispatch;
Load Following;
Operating Reserves.

Energy Imbalance;
Real-power-loss Replacement;
Voltage Control.

Coupled microgrids provide “voltage control” service, and become 
a player in the market.

Coupled microgrids can provide reactive power support, while 
exporting real power to the distribution network.
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Providing Other Ancillary Services

Microgrid Consortium Manager (MCM):
Predicting consortium’s overall capacity;
Using the prediction to bid in ancillary service market;
Distributing service bid among participating microgrids.

Maintaining set points with both P-freq & Q-E droop control;
Rearranging if a microgrid’s capacity or network topology changes.

Microgrid Interface Controller (MIC):

- 

- 
- 

- 
- 

�

�

Voltage
Regulator

microgrid microgrid microgrid

wirelesscomm. wirelesscomm.
wirelesscomm.

Voltage
Regulator capacitor 

banks
capacitor 
banks

MCM

MIC MIC MIC

CERTS
Controller

CERTS
Controller

CERTS
Controller

CERTS
Controller

CERTS
Controller

CERTS
Controller

CERTS
Controller

CERTS
Controller

CERTS
Controller



GE Energy Coupled Microgirid Project - University of Notre Dame - Oct. 21, 2011

Objective Function

Maximizing real power exportation by downstream buses;
Minimizing real power loss along the distribution line.

Cost function is accordingly defined as:

J(P, E )
N�

i=2
(Pcap,i � Pload ,i � Pi ) +

N�
i=1

Pi =
N�

i=2
(Pcap,i � Pload ,i ) + P1Σ Σ－ －Σ

J(P, E ) = P1 = E1

N�

j=1

Ej(GBUS ,1j cos(δ1 δj) + BBUS ,1j sin(δ1 � δj))Σ － －

The cost function worked on is actually:

－

Bus 1

Bus 2 Bus 3 Bus N.  .  .

.  .  .
Primary
Substation 2PP 2Q 3PP 3Q NPP NQ

1PP 1Q

2E 2δ E δ3 3 E δN N

Distribution Network

=
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Optimization Problem

E 1

N�

j=1

Ej (GBUS,1j cos(δ1－ δj ) + BBUS,1j sin(δ1 � δj ))

w.r.t. Ei , Pi (i = 2, 3, · · · , N)

Pgen,i ≤ Pgen,i ≤ Pgen,i

Qgen,i ≤ Qgen,i ≤ Qgen,i
(i = 2, 3, · · · , N)

(j = 1, 2, · · · , N －1)

Pi = Ei

N�

j=1

Ej (GBUS,ij cos(δi－ δj ) + BBUS,ij sin(δi－ δj ))

i = 1, 2, · · · , N)

Qi = Ei

N�
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Ej (GBUS,ij sin(δi－ δj � BBUS,ij cos(δi－ δj ))

Σ

Σ

Σ

Minimize

Subject to

－

(

) +

E i ≤ ≤ Ei (i = 2, 3, · · · , N)E i

Pln, j ≤ ≤
≤ ≤

Pln, j Pln, j

Qln, j Qln, j Qln, j

Expression of P1

Voltage Magnitude and Real
Power Injected at ith Bus;

Voltage Regulation Rule 
at ith Bus;

Real an Reactive Power Constraints 
Determined by Generation Capability;

Real and Reactive Power Flow
Constraints of jth Distribution Line;

Real and Reactive Power Balance 
Relationship at ith Bus.
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CERTS Microsource Controller

Power
InverterDG

local
controller

Distributed Dispatch Integrated into Inverter Control
Dispatcher generates P and E set points, as inputs to the 
CERTS inverter controller.

DG source Terminal
Measurement
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Decentralized Inverter Controls (CERTS)
- 

Provide small-signal stability;
Mimic P-freq & Q-E droop control;

- Interface to any DG unit.
- 

- 



Microgrid Simulation Example

simPower Simulation of UWM Microgrid Testbed
- validated against UWM testbed
- 42.5 kW Generation  (storage, micorsource, genset) 
- 32 kW real load (8 kW can be automatically shed

GE Global Research Telecon - Notre Dame Microgrid Research - October 21, 2011
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Transient Stability
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• System State equations

δ̇i = mP (Pi − P 0
i )

Ėi = k(E0
i − Ei −mQQi)

Pi = Ei

n∑

j=1

EjYij cos(δi − δj + αij)

Qi = Ei

n∑

j=1

EjYij sin(δi − δj + αij)

• This system interconnects two net-
worked systems

– System of coupled nonlinear
oscillators (δ)

– Voltage control system (E)

• Stable interconnection occurs when
the oscillators are synchronized.

Q Calculation Low Pass
Filter

Q vs E 
Droop

Voltage
Control

P vs Freq
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Filter

Magnitude
 Calculation
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δ̇i = mP (Pi(δ, E)− P 0
i )

Ėi = k(E0
i − Ei −mQQi(δ, E))

P0

E δ

power setpoint

voltage setpoint

coupled oscillators

voltage controllers

CERTS Controller for Fast Inverters
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Example of Optimization Problem

P       = 60 kW req,1  E       = 1.0433 pureq,1 P       = 60 kW req,2 E       = 1.0426 pureq,2

Set points of microgrid determined by the optimization problem:

Primary 
Substation

B3 B4B1

Load
 
2

 

B5

 
Micro-
Source1

Micro-
Source2

B2

Load
 
1

Z = 0.5+1j Ω Z = 0.5+1j Ω Z = 0.5+1j Ω Z = 0.5+1j Ω480 V

P = 30 kW
Q = 10 kvar

P = 30 kW
Q = 10 kvar

P = 0~60 kW
Q = -20~20 kvar

P = 0~60 kW
Q = -20~20 kvar

P1 Q1 E2 E3 E4 E5

43.54 kW -55.35 kvar 0.9570 pu 0.9650 pu 1.0334 pu 1.0502 pu

P       = 60 kW req,1  E       = 1 pureq,1 P       = 60 kW req,2 E       = 1 pureq,2

For comparison, we can use set points as:

In this situation, even though more reactive power support is provided, 
voltages of two load buses exceed the upper and lower limits defined by
voltage regulation rule.
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Future Work

Verification of Compatibility with Legacy Equipments:
Algorithm must not contradict with current control mechanism;
Must consider both automatic controller and DSO controls;
Use simpower model to verify the compatibility.

- 
- 
- 
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Task 1 Summary
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Task 1.1 - Algorithm Development
Algorithm determine “exported real power” and “voltage levels”, microgrid controllers 
automatically supply reactive power to maintain voltage levels.
Zhao Wang currently developing algorithms for optimal power and voltage assignment.
Algorithm development to be completed by mid Nov. 2011,  technical report by Jan. 2012. 

Task 1.2 - Simulation Development
Prototype simPower models of distribution line and microgrid completed in mid-July 2011.
Current simulations include UWM controllers, and use capacitor banks for voltage control.
Zhao Wang currently integrating microgrid controller and optimization algorithm into MV 
distribution line simulation.
Integration to be completed by mid Nov. 2011,  technical report by Jan. 2012. 

-

-
-

-
-
-

-

Task 1.3 - Evaluation
Not started yet, and expected start date is Jan. 2012.
Goal is to integrate capacitor banks and microgrid controls into simulation, and study 
interaction of microgrid control with automatic capacitor bank controls.
Expected completion by end of Apr. 2012, findings to be presented in project final report 
by May 2012.

-
-

-



Task 1 Overview - Coupled Microgrid

GE Project Summary - University of Notre Dame  - Oct. 21, 2011

- Task 1.1 (algorithm development) about 4 months behind schedule
- Task 1.2 (simulation) to be done in parallel with task 1.1
- Interim Technical Report on Task 1.1/1.2 to be completed by January 2012
- Task 1.3 (evaluation) to start in November 2011 and complete in April 2012
- Final Report to be finished by May 2012.
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