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Abstract 

Query-based inference is a machine learn- 
ing paradigm which has been used for learning 
Boolean functions from examples. This paper 
shows how such a protocol can be used for di- 
rect adaptive control of linear systems. The pro- 
posed procedure employs the central-cut ellipsoid 
method to  iteratively search for a set of control 
gains which are feasible solutions to  a system of 
linear inequalities. The value of using this ap- 
proach is that such inference protocols can be 
shown to  converge after a finite number of up- 
dates. This convergence time scales in a polyno- 
mial manner, O(n2 In 7&), with the number, n ,  of 
control gains to be determined. The convergence 
time is also bounded below by a function of the 
uncontrolled system’s eigenvalues. These results 
thereby suggest that inductive inference protocols 
may represent a feasible method for direct adap- 
tive control which can be practical for large scale 
linear systems. 

1 Introduction 

This paper confines its attention to  single-input 
multi-output control systems of the form 

x = A x + b u  (1) 

where A E ?I?”’”, x E ?Rn, b E %”, and U E %. 
The control law is assumed to be 

U = k’x (2) 
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and k E %”. The vector 

Systems 

x is called the state 
vector and U is called the control signal. 

The system of equations 1 and 2 will be said to 
be quadratically stabilizable if and only if there 
exists a positive definite symmetric matrix P such 
that the Lyapunov inequality 

A‘P + PA + kb’P + Pbk’ < 0 (3) 
holds. In this paper, two matrices P and Q stand 
in relation P > Q if and only if P - Q is positive 
definite. Traditionally, the problem of quadratic 
stabilization has focused on finding a P and k 
given A and b such that inequality 3 holds. Re- 
cent work [Bernussou 19891 [Geromel 19911 sug- 
gested using linear programming techniques to 
find the stabilizing P and k assuming that A and 
b lie in a known convex set. The advantage of this 
approach is that it allows the determination of ro- 
bust controls given known bounds on the system 
matrices. 

These robust control gains, however, often 
trade away system performance for stability. In 
many applications, such a tradeoff may not be 
acceptable and this requires that system uncer- 
tainty be reduced in order to improve system 
performance. One way this can be done is by 
adapting the control law on the basis of observed 
system performance. For linear systems, this so- 
called “adaptive” control has traditionally relied 
on tools from parameter estimation theory in or- 
der to identify plant models [Kosut 19921. The 
appropriate control gains are then computed from 
the identified plant. This approach to  adaptive 
control is often called “indirect” adaptation. In 
this paper, a direct adaptation technique is pre- 
sented. The proposed approach uses inductive 
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inference or so-called “query-based learning pro- 
tocols. It extends prior work in which induc- 
tive inference procedures were used to  identify 
“supervisable” events in hybrid control systems 
[Lemmon 1993b] . 

In that the proposed algorithm is a direct adap- 
tation method based on inductive inference pro- 
tocols, it represents a significant departure from 
conventional indirect methods. The justificiation 
for this departure is based on the following re- 
sults: 1) provable convergence after a finite num- 
ber of updates, 2) upper bounds on the conver- 
gence time which scale in a polynomial manner 
with the number of control gains to  be deter- 
mined, 3) lower bounds on the convergence time 
which can be directly related back to  the uncon- 
trolled system’s modes, 4) and experimental re- 
sults which demonstrate fast convergence for high 
order systems. These results imply that the pro- 
posed direct adaptation strategy converges in a 
finite time that scales in a polynomial manner 
with problem complexity. Thus, such adaptation 
methods may provide practical methods for the 
control of large scale dynamical systems. 

2 Stabi l izat ion of Linear  S y s t e m s  using 
Inductive Protocols 

This section derives the components for a 
query-based algorithm which stabilizes the linear 
system given by equations 1 and 2. 

The algorithm is based on the Lyapunov in- 
equality (eq. 3). By appropriately transforming 
the state variables, it can be assumed without 
loss of generality that P = I, where I, is an n 
by n identity matrix. As a consequence of this 
simplification, the Lyapunov inequality therefore 
reduces to  

A + E < O  (4) 

A = A’+A ( 5 )  
E = kb’+bk‘ (6) 

where 

The preceding inequality will hold if and only if 
for all x E 3” 

x’ (A + kb’+ bk‘) x < 0 (7) 

Note that this inequality is linear in the control 
gains k, so it can be rewritten as a system of linear 

inequalities. Using the fact that the uncontrolled 
system’s state velocity is xu = Ax, inequality 7 
can be rewritten as 

x’x, + (x‘k)(x’b) < 0 ( 8 )  

The preceding inequalities determine the set of 
control gains k which stabilize the uncontrolled 
system. A gain k which satsifies inequality 8 will 
be called a feasible gain and the set of all feasible 
gains will be denoted by the set Ii. 

Equation 8 provides a set of inequalities which 
the uncontrolled system’s state and state veloc- 
ity have to  satisfy if the assumed gains stablize 
the system. These inequalities form the basis of a 
Boolean functional called the “stabilization” ora- 
cle. This Boolean functional has the form, 

0 if x’x, + (x’k)(x’b) < 0 
1 otherwise O,(x, x, k) = 

(9) 
The stabilization oracle is “queried” by the sys- 
tem to determine whether or not the current set 
of gains are consistent with the hypothesis that 
the controlled system is stable. Therefore the out- 
put of the oracle algorithm can be interpreted as 
a declaration on the validity of the stability hy- 
pothesis. 

The fact that the set of stabilizing control 
gains form a feasible point of a system of lin- 
ear inequalities can be used to  develop an al- 
gorithm which searches for the stabilizing gains. 
There are various numerical procedures for find- 
ing feasible points of such linear inequality sys- 
tems. One such procedure is the so-called ellip- 
soid method [Bland 19811 [Groetschel 19881. This 
method generates a sequence of ellipsoids which 
contain the convex body formed by a system of 
linear inequalities. Under appropriate assump- 
tions, the algorithm can be shown to converge 
after a finite number of iterations. This fact was 
used quite effectively in earlier work which de- 
veloped event identification algorithms for hybrid 
control systems [Lemmon 1993bI. A brief descrip- 
tion of the algorithm as it pertains to  query-based 
adaptation is provided below. 

Assume that the convex body, Ii, formed by 
the above system of linear inequalities (Eq. 8) is 
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contained within an n-dimensional ellipsoid, 

E(Q, k) = { X  E !Rn : (X - k)’Q-’(X - k)  5 l} 
(10) 

where Q > 0. Note that this assumption is valid 
if it is assumed that the set of “feasible” gains 
have a bounded magnitude, 

k’k <: k i a x  

Inequality 11 is therefore added to the inequalities 
in equation 8 so that the set, IC, of feasible gains 
clearly forms a bounded convex body contained 
with the ellipsoid E( k i E , x I n ,  0 ) .  

Let k be the current control gain to  be tested 
by the oracle and assume that x’b > 0. Let data, 
x and X ,  collected by the experiment for the un- 
controlled system (i.e., U = 0) be declared incon- 
sistent by the oracle. This implies that inequality 
8 does not hold, so that any control gain, 1, such 
that 

(12) 
X‘X x‘l > x’k + - x’b 

cannot possibly be a feasible gain. The above 
inequality can be simplified to  

x’l :> x’k (13) 

by recognizing that due to the failed query, k can- 
not possibly be in the feasible set, I<. 

We can now use the inequality of equation 13 
to  find a smaller ellipsoid containing I<. Let H 
be the set 

H = (1 E %“’ : x’l > x’k} (14) 

As noted above it can be assumed that the convex 
body of feasible gains, It-, is contained within an 
ellipsoid, E(Q, k), centered at  k.  In view of the 
preceding arguments it can now be inferred that 

K c Ii1 = ]Ic n E(Q, k) (15) 

Clearly I<l is also a bounded convex body. 
The central-cut el1ipso:id method [Bland 19811 
[Groetschel 19881 provides a numerical procedure 
for computing an ellipsoid of minimal volume con- 
taining IC’. 

If E(Qi, ki) is the ellipsoid bounding the set, 
IC, of feasible gains prior to the ith consecu- 
tive failed oracle query, then the minimal-volume 

ellipsoid generated by the ellipsoid algorithm is 
given by 

d = sgn(x’b)- Qix 
JG 

n2 2 
Qi+i = - n2 - 1 (Qi - -dd‘) n + l  (18) 

where x and X are the state and state velocities 
gathered by the experiment for the ( i+ 1)st failed 
oracle query. See [Groetschel 19881 for a detailed 
derivation of these equations. 

On the basis of the preceding remarks, the 
proposed adaptation algorithm can be formally 
stated. 

Initial Hypothesis: Let i = 0 and let 
Qi = k~,xI,  and k, = 0. This ma- 
trix and vector describe an initial ellipsoid, 
E(Q0, ko) which is known to contain all fea- 
sible control gains. 

Experiment: Measure the uncontrolled 
system’s (i.e. U = 0) state vector, x, and 
its time rate of change X = Ax. This forms 
the data collection to  be input to  the oracle. 

Oracle Query: Compute the oracle’s re- 
sponse using equation 9. 

Update Algorithm: If Os(x,x, ki) = 1 
(i.e. a failed oracle query) then update the 
control gain using equations 16, 17, and 18. 

Loop: Go to Experiment. 

Note that the inductive inference protocol de- 
scribed above requires little or no previous knowl- 
edge of the system dynamics to stabilize the 
system. The algorithm ‘learns’ from mistakes, 
modifying the hypotheses based only upon state 
and velocity measurements. Also, no attempt is 
made to identify the system dynamics because 
the knowledge is unnecessary for system stabiliza- 
tion. This is a marked departure from traditional 
adaptive control techniques. In addition, as will 
be proven in the following section, the system can 
be stabilized in a known and finite time. 
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3 Convergence and Complexity 

The algorithm outlined above represents a sig- 
nificant departure from conventional approaches 
to  adaptive linear control. The justification for 
this departure lies in finite time convergence re- 
sults for the central-cut ellipsoid method. In this 
section, these results are stated and some bounds 
are derived relating the convergence time to sys- 
tem parameters. 

Theorem 1 Let Ii' denote the set of "feasible" 
control gains and let v denote the volume of an 
n-dimensional ellipsoid contained within ii'. The 
proposed algorithm will determine a feasible con- 
trol gain after no more than 2nln(V/v)  failed 
oracle queries where V is the volume of an n- 
dimensional sphere o f  radius k,,,. 

Proof: The proof of the theorem follows from 
standard applications of the central cut ellipsoid 
method [Groetschel 19881. 

The preceding theorem shows that the pro- 
posed algorithm converges after a finite number 
of updates. This important convergence result 
has significant consequences which will be noted 
in the following section. The result, however, is 
only valuable if we can establish some results in- 
dicating the size of this bound and how it scales 
as a function of the system being controlled. The 
following theorem shows that the maximum num- 
ber of failed queries L derived in the preceding 
theorem will grow in a polynomial manner with 
the state space dimension. 

Theorem 2 Let I{ be the set of feasible gains 
and assume that I< encloses an ellipsoid with a 
covariance matrix Q whose eigenvalues are all 
less than 6 where 1 > 6 > 0. Under the assump- 
tions of the preceding theorem, a feasible gain will 
be found after no more than 2n2 In n + n2 In 6-1 + 
2n In V failed oracle queries. 

Proof: Because of the constraints on Q, the vol- 
ume of the minimal ellipse is no more than 6"/'Vn 
where V, is the volume of an n-dimensional el- 
lipsoid with unit radius. Note, however, that 
n-" < V, < 2-" which implies that the ellip- 
soid contained within Ii' will have a volume no 

larger than n-"bn/'. Using this for v in theorem 
1 yields the bound. QED. 

The preceding theorem provides an upper 
bound on the number of failed queries. As- 
sume that b represents the intrinsic precision with 
which the eigenvalues of the ellipsoid can be spec- 
ified. The preceding theorem therefore provides 
an upper bound on the failed queries as a func- 
tion of the system's intrinsic numerical precision. 
The result , however, also provides specific results 
concerning the growth of the bound as a func- 
tion of the system's state space dimension. This 
growth rate appears to  be bounded on the or- 
der of O(n21nn) % O(n2.5)  which suggests that 
the procedure's convergence time grows at  a mod- 
est rate with the system's complexity (i.e. state 
space dimension). It would also be valuable if this 
growth rate could be related back to  the uncon- 
trolled system. The following theorem establishes 
such a relationship. 

Theorem 3 Let A' be the set of feasible gains. 
Let Ai(A) be the i th eigenvalue for the matrix 
A = A'+ A.  Let 

where the summation i s  over all eigenvalues A i  of 
the symmetric matrix A + A'. Then the number 
of failed oracle queries, L ,  must satisfy 

Proof: Let pi and d, be the ith eigenvalue and 
eigenvector, resp_ectively, of the matrix E = kb'+ 
bk'. Note that A and E are symmetric matrices 
so that 

n 

A + E = Aiaiai + pldldi + pndndf, (21) 
i=l 

where ai are ortho_normal eigenvectors of A,  A; 
are eigenvalues of A, dl and d, are the eigenvec- 
tors of E with largest and smallest eigenvalues, 
p1 and p,,, respectively. Well known results from 
matrix pecturbation theory imply that the eigen- 
values of A + E can be rewritten as 
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where C , m l ,  = 1 and Cim, ;  = 1. For k to 
be a feasible gain, then .A + E must be negative 
definite which implies that all its eigenvalues are 
negative. Adding up all of the inequalities implies 
that 

C J i ( A ) + p l + p n  < 0 (23) 
i 

The eigenvalues of E are functions of the gain 
vector k. It  can be easily shown that all eigenval- 
ues of E will be 

b’k + lbllkl if i = 1 { b’k - lbllkl if i = n 
pi = 0 if 1 < i < n (24) 

Inserting these values bizck into the original in- 
equality implies 

C X i  + 2b’k < 0 (25 )  
a 

Recall from our original constraints on k, that 
its magnitude is less than kmax. This constraint 
therefore requires that feasible k be enclosed 
within the ellipsoid, E ( k k a X I n ,  0). This ellipsoid 
has a volume k;,,Vn where V, is the volume of 
an n-dimensional sphere with unit radius. The in- 
equality implied above requires that feasible gains 
also be in the halfspace defined by 

b‘k < -LxAi(A) 
2 i  

. Once again we have is single cut of an ellip- 
soid. The cut, however, for /3 < 0, is somewhat 
deeper than the central cuts used by the original 
algorithm. 

The depth of the cut is parameterized in the 
following inequality by ,d 

where 

(28) 
1 CiXi p - ---- 
2 lhnaxllbl 

The cut yields a convex body which can be 
shown to be contained within a minimal vol- 
ume ellipsoid whose volume is [Groetschel 19881 
V, k;axe-( 1-no)2/2n . QED 

- 

Theorem 3 tells us that as the unstable eigen- 
values of the system become increasingly posi- 
tive with respect to the stable eigenvalues, the 
minimum number of updates required to stabi- 
lize the system will increase. This agrees with 
intuition which suggests that such systems will 
require larger gain vectors for stabilization. 

Initial experiments were performed where the 
dimension of an unstable system was varied from 
R = 2 to n = 20. Random initial conditions were 
provided and the algorithm was simulated to ver- 
ify that the system was indeed stabilized. The 
results are summarized in Figure 1. The results 
indicate that the algorithm remains effective for 
large dimension systems. 

2 4 6 8 10 12 14 16 18 20 
state space dimension 

Figure 1: Updates vs. dimension of state space 

4 Advantages and Limitations 

The theorems of the preceding section are sig- 
nificant for several reasons. First they show that 
the control gains can be located after a finite num- 
ber of failed queries. Therefore, the theorem as- 
serts that the system only need perceive itself as 
“unstable” a finite number of times before s y 5  
tem stability can be guaranteed. The second im- 
portant aspect of this result is that the theorem’s 
bound implies that the convergence time will have 
polynomial time complexity. This means that 
as the system becomes more and more complex 
(i.e. larger state spaces), the time required to 
learn the system control gains will grow a t  a mod- 
est rate. In other words, query-based adaptation 
represents a practical method for adaptation and 
identification of potentially high-dimensional sys- 
tems. Experimentation showed that the theoret- 
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ical bounds on the algorithm convergence can be 
extremely conservative. This is likely due to the 
way in which the algorithm updates the gain hy- 
pothesis. The ellipsoidal search technique is well- 
known to be an inefficient implementation of the 
“method of centers”. It is to be expected that 
more efficient interior point algorithms based on 
logarithmic barrier functions will provide more ef- 
ficient methods of searching for stabilizing solu- 
tions. 

It should be noted, however, that the cover- 
gence bounds are & with respect to system time, 
but rather with respect to failed oracle time. This 
is an important distinction for it is quite possible 
that there may be a long period of time between 
consecutive oracle declarations of failure. Con- 
sequently, convergence of the proposed algorithm 
can be extremely long in “system” time and may, 
in fact, never converge at all. At first glance: 
this observation may seem to cast doubt upon 
the value of theorem 1. Upon closer considera- 
tion, however, it  provides further insight into the 
method. Recall that the oracle will always declare 
failures if the Lyapunov inequality is not satisfied. 
In other words, if the system is exhibiting “unsta- 
ble” behaviour, the gains will be modified. For 
the times between failures, the system appears 
to be stable and there is, therefore, no reason to 
change the gains. From this viewpoint, it can be 
seen that the bound of theorem 1 is very meaning- 
ful since it is measured with respect to the only 
quantity of physical interest to the system; the 
number of times the system “stumbles”. 

Finally, it must be observed that the preced- 
ing algorithm assumes a perfect oracle that never 
makes an incorrect declaration. In practice, ora- 
cles will not be perfect as they will be affected 
by such things as measurement noise. Such 
oracles which are not deterministic are called 
stochastic oracles and theories exist on how to 
deal with the problems of stochastic oracles in 
other environments[Nemirovsky 19831. Methods 
of dealing with stochastic oracles may simply in- 
volve shallower cuts by the update algorithm, 
possibly defined by the noise variance. This is 
clearly an area for future research. 
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