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Abstract
This paper shows that inductive inference proto-

coLs can learn invariant linear subspaces, used in the
stabilization of variable structure systems, after a fi-
nite number of failed oracle queries. It is further
shown that this convergence bound scales in a poly-
nomial manner with the system's state space dimen-
sion.

1 Introduction
This paper is concerned with the behaviour of dy-

namical systems represented by the following differ-
ential equations,

f+(X)

if s'x> 0
if SIx=0 X
if 8sx < 0

(1)

where x E R' is the state vector and s is an n-
dimensional vector characterizing a hyperplane in &"
called the switching surface. The mappings, f+
and fT, are smooth mappings from 3?" onto 3n. The
system in equation l is a variable structure system
(VSS) [7] because the structure of the system's vector
field changes discontinuously across a hyperplane de-
fined by s'x = 0. The problem addressed by this pa-
per concerns the determination of(n-l)-dimensional
subspaces of 3?" which are attracting invariant sets
with respect to the flow generated by equation 1.
The subspaces under consideration are linear

spaces of the form Hs = {x: S'x = O} This set
forms an (n -1)-dimensional hyperplane which is
characterized by the n-dimensional vector s. If Hs is
an attracting invariant set of the flow, then all state
trajectories must eventually be captured by this set.
Switching surfaces which are also attracting invariant
sets will be called sliding modes. A variable struc-
ture system of the form shown in equation 1 will be
said to have been stabilized with respect to Hs if Hs
is a sliding mode.

If the set of vector fields {f+, f-} are already
known, then the invariant sets can be computed di-
rectly. This paper, however, focuses on situations
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where the vector fields are unknown. In such situa-
tions, it is necessary that the invariant subspaces be
determined directly from the system's observed be-
haviour. In other words, this paper is concerned with
the identificatiLon of system invariants on the basis
of observed behaviour. For this reason, the problem
considered in this paper will be referred to as the
invariant subspace identification (ISID) problem.
The technique used in this paper for solving the

ISID problem is inductive inference [1]. This method
was motivated by the simple observation that the
problem of determining mvariant subspaces bears
some sirilarity to the problem of iteratively train-
ing linear classifiers. Since there exist well known
finite-timre algorithms [5] for training such classifiers,
it was conjectured such techniques might yield direct
aidaptive controllers with provable finite time conver-
gence.
The following sections substantiate that conjec-

ture. Section 2 states the algorithm and section 3
derives specific components of the algorithm. Sec-
tion 4 proves the paper's principal results concern-
ing finite time convergence. An example of the algo-
rithm's application is presented in section 5. Section
6 summarizes this paper's results and indicates fu-
ture directions.

2 Invariant Subspace Identification
Algoritm

Inductive inference is a machine learning protocol
in which a system learns by example [1]. The induc-
tive protocol developed in this paper consists of four
fundamental components.

Hypothesis: The hypothesis is characterized by
a symmetric matrix Q E fnxlf which ddines
an ellipsoidal cone, C(Q), defined as follows,
C(Q) = {fsE?": s'Qs< O} The matrix Q
has n - 1 positive eigevalues and 1 negative
eigenvalue ordered. Assume that the eigenval-
ues, A, are ordered so that As > Aii1. Let ei be
the eigenvector associated with eigenvalue Ai.
The normalized eigenvalue matrix is denoted
an R = diag(A,,..,A.n-.l)/fjA I and the posi-
tive eigenvector matrix E = (el,. . , en_1) E
3nxn-1
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The hypothesis is that the cone C(Q) contains
the normal vectors to all sliding modes and
that the negative eigenvalue of Q is a sliding
mode.

* Experiment: The algorithm's next major com-
ponent is an "experiment" for measuring the
system's current state.

* Oracle Query: The third component is an algo-
rithm caii2 the oracle. This component uses
the experimentally gathered data and makes a
declaration concerning the consistency of that
data with the hypothesis. The declaration is
made by a Boolean functional called the in-
variance oracle.

* pdate: The oracle's repsonse is a MAYBE or
PALSWdeclaration. If the answer is MAYBE
then nothing is done. If the answer is FALSE,
however, the current hypothesis is modified by
the update algorithm The update algorithm
used in this paper is a modification of the
central-cut ellipsoid method [61 which recom-
putes the symmetric matrix Q. In modifying
the hypothesis, the update procedure attempts
to generate a new hypothesis which is consis-
tent with prior experimental data. This basic
cycle of experiment, query, and update con-
tinues until an attracting invariant subspace is
found.

With the preceding outline and establishment of
notational conventions, the I1ID algorithm can now
be formally stated. Specific components of this algo-
rithm are derived in following section.

1. Initiaiwe Initialize an n by n symmetric ma-
trix, Q, which has n - 1 positive eigenvalues
and 1 negative eigenvalue such that if Hz is a
sliding mode, then 'Qs < 0.

2. Form Hypothesis: Compute the eigende-
composition of Q to obtain matnrces R and
E. Set the system's current switching face,
s, equal to the negative eigenvector, e,, of Q.

3. Experiment: Measure the system's state and
state velocity, x and x.

4. Query: Compute the invariance oracle's re-
sponse,

I(IXIs)= 1 otherwise, (2)

5. Update Hypothesis: If the oracle returns 1,
then recompute Q using the following equa-
tions,

c = sgn(e' x)E'*, (3)

b = RVc'ft1c
a = --b,n

(4)

(5)

1 = (n 1)2)1 (R- _ 2bb') 1(6)
x4 = Ea + en, (7)
Q = (I-eXa)9jEFE'(I-xae'), (8)

Set Q equal to Q.

6. If the oracle returns 0, then do nothing.

7. Loop: go to step 2.

3 Algorithm Components
The invariance oracle will be a Booean functional

which declares whether or not a given subspace, Hs,
is attracting and 4-invariant. This test is based on
testing a Lyapunov inequality. The following theo-
rem states the dessired inequality.

Theorem 1 Let 8 E Rn and let * be given by equa-
tion 1. Iffor all x 0 Hs,

(s'X) (s'*) < 0, (9)
then the subspace, Hs, is an attracting 4-invariant
set.

Proo* See theorem 8 in [7].
Equation 9 can be recast as a logical function mak-

ing a declaration about the consistency of the mea-
sured state and state velocity with the hypothesis
that Hs is a sliding mode. This motivates the fol-
lowing definition for an "invariance oracle.

Definition 1 The Boolean functional, I, : R?3-
{0, 1}, defined by equation 2 will be called an imvari-
ance oracle.

Let the set A1 denote the sets of attracting invari-
ant subspaces which are declarable by the oracle,
IA. Let the set of all attracting invariant subspaces
be denoted as A. Clearly, A1 C A so that the dec-
larations (0/1) made by the oraclecan be given-the
semantic interpretations of MAYBE/FALSE.
Note that the set of a determined by equation 9

forms a pair of halfspaces forming a convex cone in
Rn. Since A1 is the intersection of all these cones,
the following lemma can be immediately deduced.

Lemma 1 A1 iS a convex cone centered at the ori-
gin.

The significance of the preceding lemma is that it
suggests A1 may be well approximated by ellipsoidal
cones, C(Q). SiMce the preceding lemma implies that
A1 is a convex set, then if it is also bounded, there
exists a unique ellipsoid of minimal volume which
contains A1 [3].
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If the oracle declares the current experimental data
to be inconsistent with the hypothesis, then the fol-
lowing lemma provides a characterization of the sub-
spaces inconsistent with the hypothesis characterized
by Q.

Lemma 2 Let C(Q) be an ellipsoidal cone with neg-
ative cigenuvector, en. Let X be a data collection
for which the invariance oracle, Il, declares a fail-
ure, Il(X,e,1) = 1. If Al C C(Q), then A C
C(Q) n H(X, en) where

H(X, e,) = {s E R": s'i < sgn(e' x)e' i}*. (10)

The set H(X, e,,) will be called the inconsistent set
generated by X.

Proof: If a perfect invariance oracle I, returns 1 for
X given the subspace represented by e,, then the
following inequality holds. (e' *) (e' x) > 0. Note
that for all z such that z'i > e' i, it can be inferred
by the comparison principle that >'x> e' x. Sini-
lar arguments apply if the inequalities are reversed.
Therefore any subspace, Hz, such that

(11)
cannot possibly be an attracting invariant set. Us-
ing the halfspace defined by the preceding inequality
yields equation 10. QED.

Theorem 2 Let C(Q) be an ellipsoidal cone with
negative cigenvector e,, such that Al C C(Q). Let X
be a data collection for which I,(X,ej = 1. There
exist ellipsoidal cones, C(9) and C(Q), such that
C() c H(X, en) n C(Q) C C(7j). Furthernore Q
is given by equations S through 8.

Proof: Let S be an n - 1-dimensional subspace of
8?" and let x E 8n. The linear variety of S gen-
erated by x is the set V(S,x) = {s+ x: s E S}
From the above definition it can be easily shown
that the intersection of C(Q) with V(sp(E),e,,)
is an ellipsoid of the following form E(R-',O) -
{w E 3Rn-' w'Rw < 11 . where spE is the
span of the eigenvectors of Q with positive eigen-
values (E is called the positive eigenvalue matrix),
R = diag(Ai,...,An_)/lAnl, and Ai are the eigen-
values of Q in decreasing order.
The intersection of the inconsistent set, H(X, e,),

and the linear variety, V(sp(E), e,,), can be shown
to form an n - 1-dimensional halfspace, H, given
by H = {w E Wn-I w'c < 0} , where c =
sgn(e`x)E'*. This is shown by noting that any
vector z in the linear variety can be written as
z =Ew + en. Inserting this into inequality 11 yields
the above halfspace.
The above remarks therefore suggest that the in-

tersection of C(Q), V(sp(E), e,), and H(X, es,) will
be an n - 1-dimensional convex body, K. It is well
known [3] that any bounded convex body can be

contained within a unique elipsoid of minimal Vol-
ume called the Loner-John ellipsoid. Computing
the Loner-John ellipsoid [3] [6] for K will yield the
ellipsoid E(UR ,a) where R and a are as given in
the theorem (see equatiom 3, 4, 5, and 6).
The n-1-dlimensional Lowner-John ellipsoid com-

puted in equatiom 3 through 6 can be extended into
an n-dimensional ellipsoidal cone in the following
way. Let s be any point in the cone generated by
the ellipsoid E(W1, a). There exists an a E 8? such
that as is in the linear variety, V(sp(E), e,j. The a
for which this is true must satisfy the orthogonality
condition,

0 = en (as -en)
= ae4s-1,

(12)
(13)

which implies that a = 1/e4s.
Since, s = Ew + et,, the ellipsoid equation for

E(R1 , a) is

1 > (w-a)'F(w-a)
> (s-x)'E'EE(s -X)

(14)
(15)

where xv = Ea + e,,. The vector s in this equation
must, of course, lie in the linear variety generated
by e,, V(sp(E), e,). From our preceding discussion,
any vector in the cone can be pulled back to the
variety by appropriate renormalization with a. This
then implies that if s is any vector in the cone, then

(&TenXA
)I
E'RE(4 -xa) < 1. (16)

Multiplying through by ls'e, 12, we obtain

a' [(I e,,xt)jEREE(I--xe')-eEe,] s < O.
(17)

This inequality determines an ellipsoidal cone and
the term within the square brackets is Q as computed
in equation 7 and 8.
Q is obtained by noting that if E(R', a) is

a Lowner-John ellipsoid for K, then E(1R'/(n -
1)2, a) is an ellipsoid contained within K [3]. The
preceding construction is then repeated with this
smaller ellipsoid. QED

4 Convergence and Complexity
Establishing the convergence results of this section

requires some way of measunng a ellipsoidal cone's
volume.

Definition 2 Let C(Q) be an ellipsoidal cone and
let the cigenvalues ofQ be ordered as Aj > Ai1,. The
volume of cone C(Q) is defined to be volC(Q) =

The preceding definition is using the volume of the
n - 1-dimensional ellipsoid contained in the linear
variety V(sp(E), e,) as the "volume" of the cone.

m12

Z'k > sgn(e' X)e' X,I
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The following theorem shows that the ISD algo-
rithm must locate an attracting invariant subspace
after a finite number of failed queries to a perfect in-
variance oracle. A perfect oracle is an oracle which
never makes a mistake in its declaration.

Theorem 3 Initialize the ISID algorithm with an
ellipsoidal cone whose volume is unity and which is
known to contain A1. Let e denote -the volume of the
smallest ellipsoidal cone containing A1. If n is the,
state space dimension, then the ISID algorithm will
determine an attracting invariant subspace after no
more than 2(n - 1) Ii C- failed queries to a perfect
invariance oracle.

Proof: Consider the ellipsoidal cone C(Qj) after the
ith failed invariance test. Let E and L be the pos-
itive eigenvector and eigenvalue matrices of Qi, re-
spectively. The volume of this ellipsoid will be given
by volC(Qi) = r1 , where Ai(R) is the

jth positive eigenvalue of R and R = L/lAnI Con-
sider the ellipsoidal cone obtained using equations 3
through 8. The symmetric matrix characterizing this
cone is i = X'YX where

(E(I-Pfeaein)X = ( )

Y =
O -1 )-

(18)

(19)

where = UIxalI. Applying the orthogonal transfor-
mation,

p = ( E e ),
to X, yields

P'X' =
I

?)

(20)

(21),

where = I11x41 and /ea = x. Recall that x. is the
center of the updated ellipsoid in the linear variety-
V(sp(E), e,1). For convenience, let v = -Me.E.

Since the eigenvalues of Q are unchanged by
an orthogonal transformation, the eigenvalues of
P'X'YXP can be used to compute the volume of
Q. This transformed matrix has the form

(22)

(23)

Note that is an n-I by n-1 leading principal sub-
matrix of P'QP, the. eigenvalues of the two matrices
satisfy the interlacing property, Aj+1(0) 5 A\(A) <
Aj(7 ) for i =1,...., n-1 [2]

Since A4(O) is negative, it can be shown that
An(P'X'YXP) < 042(P'X)An(Y) , where u4(P'X')
is the smallest singular value of P'X' and An(Y) is

the negative eigenvalue ofY (2]. Note that this eigen-
value must be negative one (by construction of Y).

plqp =P'XPYXP
R Rar

=
vR vfR - 1 )

Also note that the singular value must satisfy the
following inequality for any x E W',

2(p'X) < xIPIX'XPx-n ~ xfx
(24)

In particular, if we let x-(O -( .01)', then the small-
est singular value must be less than unity. It can
therefore be concluded that IAn(R)I< 1.
With the preceding observations about the inter-

laced eigenvalues, it can be concluded that

n-I
volC(-Q)= ailn()

< ,n- 1 1

< )J1Aj(R)
< eI*ivolC(Q).

(25)

(26)

(27)

Inequality 26 is a consequence of the bound on the
absolute value of the negative eigenvalue as well as
the interlacing property. Inequality 27 is a cons-
quence of a well-known relationship on the quotient
of ellipsoid volumes obtained using the central-cut
ellpsoid method [3].

Since the initial ellipsoidal cone's volume is unity,
the ellipsoidal cone's volume after the Lth failed
query must be bounded as follows, volC(QL) <
exp(-L/(2n - 2)) . However, C(QL) cannot be-
smaller than c by assumption, therefore the -number
of failed queries, L, must satisfy c < exp(-L/(2n -
2)) . Rearranging this inequality to extract L shows
that the number offailed invariance queries can be no
larger than the bound stated by the theorem. QED
The following corollary for the preceding theorem

establishes the polynomial oracle.time complexity of
the SID algorithm.
Corollary 1 Assume that A1 is a set -which is con-
tained within an ellipsoidal cone characterized by
a matrix, Q, whose normalized positive cigenvalues
satisfy the inequality - < 'y for 1 > - > 0 and
i = 1, n. L,n-l1. Under'the assumptions of theorem
3, the ISID algorithm will determine an attracting in-
variant-subspace after no more than 2(n - 1)2 ln(n -
1) + (n- 1)2 1n-y1 MAYBE declarations by the in-
varance oracle.
Proof: Because of the constraints on Q, the volume
of the srallest bounding ellipsoid will be no greater
than 1n'l)/2(n - 1)-n+'. The asosumed comon-
straints on Ai yield the first term. The second term
comes from the fact that the volume ofan n-d sphere
with unit radius can be no smaller than n-n. In-
serting this into the bound of theorem 3 yields the
asserted result. QED

5 Example: AUV Stabilization
The following simulation results illustrate how the

ISID algorithm can quickly stabilize an AUV's dive
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plane dynamics. The simplified equations of motion
for vehicle (pitch) angle of attack, 6, in the dive plane
as a function of velocity, v, may be written as

a = KG+ K2611+ Ksjvj+ us, (28)
= -v+K4IO1v +uv, (29)

where K1, K2, K3, and K4 are hydrodynamic force
coefficients. u, and us represent control forces ap
plied in the velocity and angle of attack channels,
respectively. These equations clearly show how non-
linearities enter the dynamics through the hydrody-
namic cross coupling between 6 and v. Uncertainty
arises from the simple fact that the hydrodynamic
coefficients may be poorly known.

In the following simnulations, a hierarchical vari-
able structure controller with boundary layer was de-
signed. The control hierarchy was designed so that
the system nulls angle of attack prior to nulling com-
manded velocity errors.

Figure 1 shows the AUV's performance with the
hierarchical sliding mode controller after a system
failure causes the initially chosen switching surfaces
to no longer be invariant sets. As can be seen, the
sliding controller is actually unstable with the system
exhibiting large oscillations in 6.

00
CI

g- I
_ s0 10015 2002503 350400450500

time
PI ~~~~~C
C..................................

0
0 50 100 150 200 250 300 3 450 50

time

Figure 1: Simulated AUV dive with hierarchical slid-
ing control in which sliding mode constraints are vi-
olated. Angle of attack, 9, time history and velocity,
v, time history.

Figures 2 shows the system's behaviour after two
"learning" sessions with the ISID algorithm. A learn-
ing session involves starting the vehicle at the initial
condition and then commanding it over to the de-
sired state. In this case, it is clear that learning is
complete. There are no readjustments of the sliding
surface and the system wastes little effort in bringing
the system to its commanded state.
Perhaps the most remarkable thing about this ex-

ample is the apparent speed with which the sliding
surface is learned. In these simulations, only 4 failed
invariance tests were required before finding a sliding
mode. This low number of failed tests was observed
in other simulation runs where the system's initial
conditions were randomly varied.

a

*

o -
14- o .....

r i a

0
e N

'a
a 50.1 150.3 250.5

time

350.7 450.9
350.7 45.9

50.1 150.3 250.5 350.7 450.9
time

Figure 2: Simulated AUV dive where ISID algorithm
is used to relearn hierarchical sliding mode controller
(After 2 learning sessions). Angle of attack, 6, time
history and velocity, v, time history.

6 Sulmmary
This paper has derived an inductive inference pro-

tocol for the on-line identification of sliding modes
for a variable structure system. In that the sliding
modes stabilize the system, the proposed inductive
inference protocol is therefore a direct adaptive con-
trol algorithm. The principal result of this paper
proves that the proposed protocol will find an at-
tracting invariant set after a finite number of failed
queries to a perfect invariance oracle. Under realis-
tic assumptions, this finite time convergence bound is
shown to scale as O((n- 1)2 ln(n-- 1)) ms O((n- 1)2 5)
where n is the state space dimension.
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