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Abstract--An tmportant problem in nonparametrtc modehng ts the selecHon of samples from an mdependent and 
Mentwally dtstrtbuted observatton (liD) process such that the resultmg sample ensemble forms a prototyptcal model 
of the observaHon process. Thts paper discusses a sampling techmque that is closely related to topologtcally ordered 
compettttve learning In the context of a ttghtly constrained notton of topologtcal ordering, the proposed samphng 
algortthm uses a randomized winner-take-all rule to modify sample ensembles m a way that generates a reverstble 
Markov chain The stattonary denstty for thts reversible chain ts exphcttly computed and used to charactertze the 
samphng procedure's steady-state staustwal behavtour Thts charactertzatwn shows that topologwally ordered com- 
pettttve samphng can generate steady-state sample ensembles that form equt-probable partttlons of the observation 
space More tmportantly, thts paper provMes a formal analyttcal framework that can be used as a model for the 
analysts of other competttwe learnmg paradtgms 
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1. INTRODUCTION 

In various applications, a system's status is monitored 
by randomized sampling of a sequence of observations 
on the process. Such samples are often called prototypes 
and the entire monitoring process can be referred to 
as prototypical sampling. The objective of the sampling 
process is to obtain an ensemble (collection) of samples 
that in some sense characterize the system's current 
state. More precisely, we can consider the sequence of 
observations as an independent and identically distrib- 
uted ( l iD)  stochastic process, )7(n), with underlying 
observation density, p(37). The objective is to collect 
and selectively update a finite collection of N prior ob- 
servations so that the resulting ensemble extremalizes 
an assumed performance or error criterion measuring 
how prototypical the ensemble is of the observation 
process. This paper presents a specific sampling pro- 
tocol in which the sample ensemble forms an equi- 
probable partition of the observation space. This par- 
tition will be prototypical in the sense of maximizing 
the average mutual information between the ensemble 
samples and the observation process. In analyzing the 
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proposed sampling protocol's performance, this paper 
provides a framework for the analysis of topologically 
ordered competitive learning algorithms. 

A common approach to prototype selection is to 
take the last N observations as prototypes (ensemble 
samples). This approach, which may be referred to as 
independent sampling, has been used by recent neural 
network models to solve classification and parameter 
estimation problems (Specht, 1990). The order statis- 
tics of the N sampled observation vectors will have beta 
distributions so that the network's steady state behav- 
iour can be readily characterized. Unfortunately, the 
ensemble's order statistics will exhibit significant sta- 
tistical fluctuations unless the number of prototypes is 
relatively large. This weakness of independent sampling 
has led some researchers to use competitive learning 
algorithms in forming prototypical ensembles (Bur- 
rascano, 1991 ). 

Competitive learning (CL) algorithms (Rumelhart  
& Zipser, 1986; Kohonen, 1982) are neural network 
training paradigms. In these algorithms, the observation 
replaces or updates those ensemble samples (i.e., neu- 
ron weight vectors) that are closest to the current ob- 
servation. The neurons can be thought of as competing 
for the right to be updated by the current observation. 
The criterion for winning this competition is the prox- 
imity of the neuron's weight vector to the observation 
with respect to an assumed vector norm. If the tth neu- 
ron has a weight vector ~, and the input is 37, then the 
update rule for the winning neuron will be given by 
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g,,(n+ l): f f ' , (n)+~[ff(n)- ,~,(n)]  (1) 

where the increment parameter rl is positive and less 
than or equal to unity. For simple competitive learning 
(Rumelhart & Zipser, 1986), )7 is usually a constant. 
For networks such as Kohonen's feature map, rt is a 
function of the input and all of the network's weight 
vectors. Note that if n = 1, then the winning neuron's 
weight vector is replaced by the observation. In this 
case, the network is sampling the observation process 
and for this reason the process can be called competitive 
sampling. 

Unfortunately, competitive learning algorithms have 
proven notoriously difficult to analyze. For simple 
competitive learning (Rumelhart  & Zipser, 1986), it 
can be shown that the procedure implements (on the 
average) a gradient descent on a functional that penal- 
izes poor clusterings of inputs and weight vectors. For 
simple competitive learning, this functional is usually 
nonconvex and hence it is difficult to determine whether 
or not the procedure converges in some appropriate 
sense. Convergence results for Kohonen's feature map, 
however, are more mature (Ritter & Schulten, 1986, 
1988). But these analyses are somewhat limited in their 
ability to provide quantitative characterizations of the 
Kohonen network in any but the simplest cases. In spite 
of these limitations, the existing analyses of the Ko- 
honen network are some of the most rigorous and com- 
plete analytical results existing for competitive learning. 
This paper conjectures that the reason for this com- 
pleteness is due in large measure to a key difference 
between Kohonen's network and simple competitive 
learning. This difference is the Kohonen network's in- 
troduction of a topological ordering over the neurons. 

Neurons are often thought of as being arranged on 
a two-dimensional sheet called the cortical space or 
cortex. The relationship between neurons in this cor- 
tical space establishes a fixed ordering of the neurons. 
Therefore, topological ordering refers to the physical 
relationship of one neuron to another in this cortical 
space. Simple competitive learning does not use this 
notion of ordering. For the Kohonen network, however, 
a topological ordering of the neurons is generated by 
assigning a vector ?, to the ith neuron. This vector, ?,, 
represents the tth neuron's position in cortical space. 
This location is assumed to be fixed. The competitive 
adjustment equation [eqn ( 1 )] is then modified to take 
this ordering into account by making the increment rl 
a function of F,. For the Kohonen network, the incre- 
ment takes the form )7( II ~ - ~,.[I ) ,  where O(x) decays 
monotonically to zero as II xll goes to infinity and l* is 
the neuron whose weight vector is closest to the applied 
input (i.e., I1~,* - .~11 -< I1~', - JTII f o r  all i). 

The introduction of a fixed topological ordering may 
be one reason why prior analyses were successful in 
characterizing the behaviour of simple Kohonen net- 
works. By introducing a topological ordering, the num- 

ber of configurations that the network can assume will 
be severely limited. If the ordering can be appropriately 
defined, then it is quite possible that the resulting 
learning procedure will generate a Markov chain with 
a single ergodic class, thereby allowing a quantitative 
evaluation of the learning procedure's steady-state be- 
haviour. 

Motivated by the preceding arguments, this paper 
proposes a competitive sampling algorithm that is 
closely related to the Kohonen algorithm in that a pre- 
cisely defined notion of topological ordering is used. 
While Kohonen's algorithm arose from heuristic con- 
jectures about the functional nature of biological neural 
assemblies, the algorithm proposed and analyzed in 
this paper arose from a conscious effort to develop a 
computational procedure that generated an easily 
characterized Markov chain. Consequently, the analyses 
of this paper will be significant in that they allow quan- 
titatwe evaluation of competitive sampling to an extent 
that is not possible with other algorithms. 

The specific notion of topological ordering used in 
this paper will be defined in Section 2. The competitive 
sampling procedure is proposed in Section 3. This pro- 
cedure is analyzed in Section 4 under the assumption 
of a uniformly distributed observation process. The 
analys~s is extended to nonuniform observation pro- 
cesses in Section 5. These sections will show that the 
proposed competitive sampling procedure will generate 
a reversible Markov chain whose stationary density 
implies a steady-state ensemble forming an equl-prob- 
able partition of the observation space. The significance 
of these results and analyses will be summarized in 
Section 6. 

2. TOPOLOGICAL ORDERING 

This section precisely defines the notion of topological 
ordering used in this paper. In particular, a topological 
ordering for a sample ensemble is defined to be a map- 
ping from the sample ensemble onto a collection of sets 
that form a topology for the observation space. A spe- 
cific topological ordering is considered in which the 
topology is generated by a basis set consisting of disjoint 
simplices. A recursive algonthm is then presented for 
generating this basis set of simplices. 

Consider a discrete-time IID m-dimensional process, 
~(n) with underlying probability density function p(~). 
This process is called the observation process and the 
vector y(n)  E ~m is the observation at time n. Assume 
that the observation density, p(~),  has its support [set 
over which p ( f )  is nonzero] on a set ~ that is a convex 
polyhedron in ~m. 

Since the support set ~ is a convex polyhedron, there 
exists a fimte collection of vectors in ~m whose convex 
hull equals f~. This set of vectors will be called the set 
of boundary prototypes Consider a finite collection of 
observations from within f~. These vectors are called 
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interior prototypes. The entire collection of prototypes 
(boundary and interior) will be assumed to be in gen- 
eral position (no subset of m + 1 points lie in the same 
hyperplane). The resulting collection of N vectors, 96 
= { xl . . . . .  xN }, will be called an ft-ensemble or just 
an ensemble. An individual vector ~, ~ ~ "  will be called 
a prototype. As noted above, each prototype will either 
be a boundary or interior prototype. 

Assume that there exists a mapping from the fl-en- 
semble 96 onto a collection of M open subsets q" = 
{r l ,  "r2 . . . .  , rM} where r, C ~m for i = 1 . . . . .  M. 
This family of sets will be called a collection. If T in- 
cludes the null set and f~, is closed under set intersection, 
and includes to, r,, then this collection will be called 
the topology for set ~2 generated by ~2-ensemble 96. Note 
that the topology is a partially ordered set with respect 
to set inclusion. Therefore, if T is a topology for fl, it 
can be said that the ensemble 96 is topologically ordered. 
Further note that because ft is contained in the topology 
that the ordered pair (~2, T )  is a topological space. A 
topological ordering of 96 is, therefore, a specific map- 
ping from 96 onto a collection of sets that form a to- 
pology, T ,  for ft. This mapping will be denoted as the 
topological ordering, T ( 96 ). The range of q" (96) is a 
topology for f~. 

The topological ordering, T (96), can be generated 
in a variety of ways. In this paper, a specific class of 
mappings is studied in which simplices form a basis 
for T (96). In particular, consider the ensemble % = 
{-~1 . . . . .  -~N }. Associate K subsets of 96, J j(i)  for j = 
1 . . . . .  K, with the / th  prototype, ~,. Each subset, J j ( i ) ,  
consists of  exactly m prototypes. The convex hull of  
these vectors Co[~j ( / ) ]  will be called the j th  facet as- 
sociated with the ith prototype. The facet is a simplex 
in ~'~-~ [also called an (m - 1 )-simplex]. Note that 
the union of Yj(:) with the prototype vector x, yields 
another subset whose convex hull will be an m-simplex 
in ~m. T h e j t h  simplex associated with t h e / t h  obser- 
vation can therefore be written as S~(z) = Co[~¢~(i) tO 
{ ~?, } ]. We then define a collection of sets, T (96), that 
consists of the null set and all sets generated by unions 
and intersections of the simplices, Sj(i). This collection 
will be called the slmpliclal collection generated by the 
collection of simplices g = { S~(:) }. 

It will be convenient in the following discussion to 
define a variety of other sets generated by the simplices, 
Sj(i). The union of all K simplices assocmted with the 
/th prototype will be called the t th polygon cell, P, : 

K 

P, = U S j ( l ) .  ( 2 )  
3=1 

Note that the ith cell complex, P,, will generally not 
be convex. For various reasons to be seen below, it will 
be convenient to consider a convex set within P,. Note 
that the prototypes in each facet ~¢~(i) lie in a unique 
hyperplane. This hyperplane separates ~R m into two 

halfspaces. The prototype ~2, belongs to only one of 
these halfspaces (assuming all points are in general po- 
sition). Denote the halfspace containing Y, as H~(i). 
The tth prototype's neighborhood cell, C,, will be de- 
fined to be the intersection of all these halfspaces: 

f 
C, = ["] Hi(t). (3) 

J=l 

These sets define m-dimensional cells in ~m that can 
be interpreted as representing the neighborhood struc- 
ture of each prototype. The polygon cell represents the 
neighborhood directly in terms of the simplices. The 
neighborhood cell, C,, is simply a convex body within 
P,. The reason for introducing these sets is that they 
will be used by the competitive sampling algorithm to 
ensure that the updated ensemble's topological ordering 
is not violated. Figure 1 illustrates the relationships 
between C,, P,, and Sj(i) for a specific topologically 
ordered fl-ensemble. 

The following theorem provides a sufficient condi- 
tion for a simplicial collection to be a topology for ft. 

THEOREM 1. Let 96 be an ~2-ensemble and let T (96) 
be the s:mphctal collection generated by the simphces 
{Sj(i)}. I f  ft E T (96) and all simphces Sj( z) form a 
disJoint partitton with poss:ble repetitions of  ~, then 
T (  96 ) is a topological ordering for 

Proof. By the definition of simplicial collection, T (% )  
contains the null set. By assumption the interiors of all 
simplices are disjoint; therefore, all elements in T (% )  
can be represented as the interior of the union of various 
simplices Sj(l). The intersection of any two sets in 
T (96) will clearly be another union of simplices and 
so the collection is closed under set intersection. By 
assumption, fl ~ T (%) ;  therefore, the simplicial col- 
lection must be a topological ordering for %. • 

The topology T (96) generated by simplices Sj(i) will 
also be called a s:mplicial topology To construct a spe- 
cific simplicial topology for f~ requires that either the 
facets, J j ( i ) ,  or the simplices, Sj(i), be known. The 
following theorem defines a special class of simplicial 
topologies that can be recursively generated using a 

. a . .  
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F IGURE 1. Topo log ica l  order ing:  facets ,  s implex ,  po lygon  cell ,  
n e i g h b o r h o o d  cell .  
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multiresolution procedure. These topological orderings 
will therefore be called multlresolution stmpficial to- 
pologies 

THEOREM 2. Assume ft is an m-simplex and let ~ be 
an ~2-ensemble Let a slmphctal collection T be formed 
by the following procedure. 
I. Inmahze % B to be the set of all boundary prototypes 

and 9~1 be the set of  all mterior prototypes Inttiahze 
the collectton of simplices ~ to contain ~2. 

2. Randomly select a single prototype, ~, from HI and 
determme which m-simplex m • contains Yc. Let that 
simplex be S, Remove £ from HI and put it in col- 
lection ~B 

3. Let S m- l denote the jth (m - 1 )-simplex formed t,J 
from m - 1 verttces of the selected m-simplex, St 
Let S m denote the m-slmplex formed by the m - l,J 
l-simplex S m-l and the prototype Y Replace S, m l,J 
collectton g wah s,ms for j = 1, . ,  m + 1 

4. Return to step 2 l f  ~(~ I is not emPO' 
5. Let 7" be the collectton formed by the null set and 

arbitrary umons of elements in g 
Then q is a stmphctal topology for ~2 

Proof By construction, 7", is clearly a simplicial col- 
lection. The construction procedure guarantees that the 
interiors of all simplices are disjoint since at each it- 
eration, a single element, S,, of  • is replaced by a dis- 
joint collection of smaller simplices whose union equals 
S,. Also ft must be in "/" since at each iteration the 
union of all elements in ~ must equal ~2. Therefore by 
the preceding theorem, ~t can be concluded that q" is 
a simplicial topology for ~2. • 

REMARK 1. At the j th  iteration of the algorithm, the 
set of simplices, denoted as Ss, can be used to construct 
a slmplicial topology for ft that is denoted as 7" s. Fur- 
thermore, the simplicial topology at ~ is properly in- 
cluded xn q's+l- Therefore, the sequence of simplicial 
topologies form a multiresolution approximation of ft. 
It is for this reason that topologies generated by Theo- 
rem 2 will be called multiresolution simplicial topol- 
ogies. 

REMARK 2. Note that because any convex polyhedron 
can be part,tinned into a set of simplices with a single 
point in the interior, then this result also applies to any 
support set ft that is a convex polyhedron. 

REMARK 3. The topology formed by a loop through 
the algorithm in Theorem 2 can be associated with the 
index of the interior prototype that was added to %B 
in step 2 of that algorithm. These indices form a se- 
quence that can be denoted as I ( T ) .  This sequence of 
indices represents the order in which interior prototypes 
were used to generate the simplicial topology q-. 

REMARK 4. A simplicial topology will be specified in 
one of two ways. The first way lists the simplices in c/-. 

The second way specifies the collection % and the index 
set I ( T ) .  

3. COMPETITIVE SAMPLING A L G O R I T H M  

The proposed competitive sampling (CS) algorithm wall 
now be formally stated using the constructions of the 
preceding section. In this algorithm each observatton 
will be tested to determine which prototype's neigh- 
borhood cell contains the observation. The observation 
can lie in several neighborhood cells. In the following 
procedure~ the parameter, Mlub, represents a least upper 
bound on the number of neighborhood cells that an 
observation can belong to. In the following algorithm, 
the index n refers to time. 
I. Let n = 1. Initialize a collection of N prototypes, 

9~, with boundary prototypes and interior proto- 
types so that the collection is an ~2-ensemble. 

2. Define a mapping from the ft-ensemble 9~ onto a 
set ofsimplices, g, that form the basis for a simplicial 
topology of ft. 

3. Get the observatmn, fi(n). 
4. For all interior prototypes, .f,, tag those prototypes 

whose neighborhood cells, C,, contain )7 [i.e., jT(n) 
E C, ]. Assume that there are M such prototypes. 

5. Deode with probabdlty M/Mlub to replace a pro- 
totype. 

6. If the decision is not to replace a prototype, then 
increment n and go to step 3. 

7. Else with probabdity 1 /M select one and only one 
of the M tagged prototypes and replace tt with the 
observation 9(n) .  Increment n and go to step 3. 

REMARK I. The procedure m Theorem 2 can be used 
to generate the collectaon of basis simplices, g. 

REMARK 2. The CS algorithm's use of the neighbor- 
hood cell, Ca, is reminiscent of a recent modification 
of the Kohonen algorithm (Cherkassky & Lori-Najafi, 
1991 ) in which the topological ordering is also simph- 
cial in nature. An important aspect of Cherkassky's 
work is that the ordering is not violated by the incre- 
mental update algorithm. As will be seen in the follow- 
ing section, the CS algorithm also has this property. 

REMARK 3. A key difference between the CS algorithm 
and other topologically ordered competitive learning 
paradigms is the use of a randomized replacement rule. 
This rule essentially ~dentifies a number of prototypes 
for possible replacement and then makes a probabilistic 
replacement decision. The motivation behind intro- 
ducing a randomized replacement rule is that similar 
rules yield reversible Markov chains. This fact will be 
used extensively in the following sections. 

4. UNIFORM OBSERVATION PROCESSES 

In this section the CS algorithm is analyzed under the 
assumption of uniformly distributed observations (ft 
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= [0, 1]m). The analysis starts by showing that the 
sequence of ft-ensembles formed by repeated iterations 
of the CS algorithm will always generate simplicial to- 
pologies of 9. The 9-ensemble at time n, ~ ( n ) ,  will 
be shown to be a reversible Markov process whose 
stationary density 7r(96) implies that all topologically 
ordered fi-ensembles are equally likely. For general 
simplicial topologies, these results are proven in Sub- 
section 4.1. 

Unfortunately, explicit evaluation of this stationary 
density will not generally be possible. For multireso- 
lution simplicial topologies, however, combinatorial 
arguments can be used to evaluate marginal densities 
for a vector stochastic process, V(n),  whose compo- 
nents are the volumes of the simplices in g. These re- 
suits for multiresolution simplicial topologies are pre- 
sented in Subsection 4.2. They show that the CS al- 
gorithm, when applied to fi-ensembles with a 
multiresolution simplicial topology, will generate sam- 
ple ensembles forming an equi-probable partition of 
the observation space, 9. 

Finally, it is important to obtain experimental val- 
idation of these analytical predictions. Simulation re- 
suits supporting this section's analyses are presented in 
Subsection 4.3. 

4 . 1 .  G e n e r a l  S i m p l i c i a l  T o p o l o g i e s  

Repeated application of the CS algorithm will generate 
a sequence of ensembles. The ensemble at time n will 
be sometimes called a configuration of the ensemble 
and will be denoted as 96 (n). The stochastic process, 
% (n), is clearly a Markov chain. The configurations 
will therefore be adapted to the observation process 
through a single-step transition probability density, 
p[ 96 ( n + 1 ) 1 96 (n) ]. Because the CS algorithm replaces 
only one prototype at a time, the configurations at time 
n and n + 1 can be written as 

9~(n) = (9~, . . . . .  :?k-,, Xk, Xk+l . . . . .  :?N} (4) 

96(n+ 1) = {97, . . . . .  2k-,,fi(n),2k+, . . . . .  :~Jv} (5) 

where the kth prototype was chosen by the CS algo- 
rithm for replacement by the current observation )7(n). 

The transition probability density can be obtained 
as follows. Let the configuration at time n be 9~ (n). 
The probability that the kth prototype will be replaced 
equals the probability of an observation lying in the 
kth neighborhood cell Ck divided by M~ub. Because the 
observations are uniformly distributed, this implies that 
the conditional density will be constant over the neigh- 
borhood cell Ck. Therefore the transition density will 
be 

p[%(n + 1)lg~(n)l Ic~[~(n)] (6) 
MlubVOl 9 

where Ick is an indicator function over the kth neigh- 
borhood cell, vol fi is the volume of fi, and )7(n) is the 

kth element of configuration %(n  + 1 ) (i.e., the ob- 
servation vector at time n). In this paper, it will be 
assumed that 9 = [0, 1] m has unit volume so that 
vol 9 can be dropped from the preceding equation. 

The CS algorithm possesses certain properties that 
allow it to preserve the topological ordering of the en- 
semble. These properties are summarized in the fol- 
lowing lemma. 

LEMMA 1. Let 96(n) be an 9-ensemble and let 
T (96 (n)) be a simphcial topology for fl generated by 
96(n). I f  the CS algorithm replaces the ith prototype 
by ~(n), then 

1. The tth prototype's neighborhood cell at time n, 
C, ( n ), equals the ith prototype's neighborhood cell, 
C,( n + l ), at time n + 1. 

2. 7" [96(n + 1 )] is a simplicial topology for fl gener- 
ated by g£ ( n + 1), 

Proof Note that the set C, (n) is a convex set determined 
solely by the prototypes of the ith prototype's neigh- 
borhood cell, 5¢j(1). By definition, the neighborhood 
cells are independent of i. Therefore, the neighborhood 
cell at time n + 1 will be unchanged and so C, (n + 1 ) 
must equal C, (n). The first conclusion of the Lemma 
is therefore proven. 

Since this is a simplicial topology at time n, all sim- 
plices are mutually disjoint. Assume that a single ap- 
plication of the CS algorithm results in at least two 
different simplices with nontrivial intersections. Con- 
sider the intersecting simplices in pairs. One of these 
simplices (denote as S~ ) must have a vertex that is the 
updated prototype, 2,. The other simplex (denote as 
$2) may or may not have an updated vertex. If it does 
have an updated vertex, then both simplices clearly be- 
long to the same polygon cell. If it does not have an 
updated vertex, then $2 must intersect the ith polygon 
cell at time n, P, (n). The preceding paragraph's dis- 
cussion implies that P, (n - 1 ) = P, (n). Therefore, $2 
must intersect P, (n - 1 ). By assumption, however, these 
simplices were disjoint so that $2 must be inside P, (n 
- 1 ). It can therefore be concluded that both inter- 
secting simplices belong to the same polygon cell. 

Now assume that the simplices, St(i) and Sk(l), in- 
tersect. Because the simplices are convex sets, any point 
in the simplex Sl(i) is a convex combination of a?, and 
some point )?B~ on a face of the simplex { i.e., )?B~ 
Co[~j(i)]  for some ] = 1 . . . . .  K}. Because of the 
nonempty intersection we can therefore find two points, 
)~B~ and ~B2, such that 

t~ , (n)+(1-~z)~m= X.~,(n)+(1- X)~n2 (7) 

where 0 < u < 1 and 0 < X < 1. Rearranging terms 
yields 

1 - X  1 - #  _ 
92, ( n )  = XB2--'-----~Xnl (8) ~ - X  u -  

= 3"ta~n2 + (1 - 3q)xnl- (9) 
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From the constraints on u and ~, it is clear that the two 
simplices intersect iff 3'1 < 0 or 3'1 > 1. These values 
for 3' l coupled with eqn (9) imply that £, ( n + 1 ) does 
not lie in one of the halfspaces Hi(i)  associated with 
the neighborhood cell. This, of course, generates a con- 
tradiction because the CS algorithm requires that all 
,7, lie in the neighborhood cell. As a result of this con- 
tradiction, all simplices m the updated ensemble must 
be disjoint and the first conclusion of the Lemma is 
proven. • 

An ~mmediate consequence of Lemma 1 is that the 
forward and backward single-step transition probabil- 
ities must be equal. This result is stated and proved in 
the following lemma. 

LEMMA 2. I f  96 ( n ) is the Markov chain of ensembles 
that lS generated by the CS algortthm with respect to a 
un~brmly distributed observatton process, then 

p [ % ( n + l ) l ) 6 ( n ) ] = p [ 9 ~ ( n ) l % ( n +  1)]. (10) 

Proof The configurations 9~(n + 1) and 96(n) are 
identical except for a single prototype, say £,, in the 
ensemble's configuration. This vector, ~,, will be re- 
placed only if the observation vector f ( n )  lies in the 
ith neighborhood cell, C, (n) (note the cell's dependence 
on time n). The single-step forward transition density 
can therefore be written as p[96(n + 1)196(n)] = 
l c, i ~ ) [ y(n)  ] / Ml~b . The probability of the reverse tran- 
sition can therefore be written as p[ 96 ( n + 1 ) 1 96 (n) ] 
= IG(n+l)[f(n)]/Mlu b. By Lemma 1, C,(n) = C,(n + 
I ), so it can be concluded that the forward and back- 
ward transition densities are equal, by eqn (6).  • 

As will be shown a little further on, the process 96 (n) 
will be a reversible Markov chain. Reversible Markov 
chains possess a number of important properties that 
are now summarized. A stochastic process 96 (n) is said 
to be reversible (Kelly, 1 979) if [ 96 (nl) ,  96 (n2) . . . . .  
9(~(nm)] has the same density has [9~(k - nl), % ( k  - 
r/z) . . . . .  96(k - r/m)] for all nl, n2 . . . . .  n m and k. 
Basically thin means that if the direction of time is re- 
versed, then the process's behaviour is unchanged. An 
~mportant property of reversible processes is that they 
are stationary (Kelly, 1979). This can be easily seen 
by the fact that for k equals 0, both the forward and 
time-reversed processes %(n)  and 9 6 ( - n )  have the 
same density. For Markov chains, Kolmogorov's criteria 
(Kelly, 1979) provides a convenient method of deter- 
mining whether or not the chain is reversible. 

THEOREM 3. Kolomogorov's cnterta. A Markov chain 
ts reverstble ~ ' i ts  transltton denslttes satisfy 

P ( ~ ) g 2 [ % ~ ) p ( % 3 [ ~ 2 )  . p ( ~ m - j l g ( o m ) p ( P g m [ ~ l )  

= p ( ~)lS j ] ~)(o m ) p ( gl~ m l ~ m j ) . 

P ( ~ 3 1 % 2 ) P ( % ' 2 1 % 1 )  (11) 

for any finite sequence of states 961,962, • %m 

Once the reversibility of the chain has been estab- 
lished then the prior discussion would imply that the 
chain is stationary. In fact, the stationary density must 
satisfy the so-called detailed balance conditions. 

THEOREM 4. ( Kelly, 1 9 7 9 ) The stationary density ~r( X ) 
of a reversible Markov chain satisfies the detailed bal- 
ance conditions 

r(gGl)p(~2lg~l) = 7r(9~2)p(9~ll~2) (12) 

where %l and %2 are any two states m the chain 
The following Lemma proves that the ~2-ensembles 

form a reversible Markov chain. 

LEMMA 3. I f 9 6  ( n )  I s  the Markov chain of configurations 
generated by the CS algorithm with respect to a uni- 
formly distributed observation process, then the process 
is reverszble 

Proof Let Z I be any fl-ensemble generated by the CS 
algorithm from an initial fl-ensemble, Z.  This means 
that there is a sequence of observatmns that (through 
the CS algorithm) generates a sequence of ensembles 
that begins in Z and terminates in Z I. Denote this 
sequence as Z,  %1, %2 . . . . .  96m, ZI .  From Lemma 
2 It is known that P(%,+l 1 96, ) = P(96,196,+,) so that 
the forward and backward strings of probability den- 
sitles are equal. This conclusion holds for any ensemble 
Z, that can be reached from the initial configuration 
Z.  Note that if Z,  and Zj are reachable from Z,  then 
they are reachable from each other and it can be con- 
cluded that p ( Z ,  [Zj) = p ( Z j l Z ,  ). We can now con- 
sider any sequence of configurations, Z l, Z2 . . . .  Zm, 
that are reachable from Z,  then the equality of the 
forward and backward transmon densities implies that 

p ( Z 2 I Z I ) p ( Z 3 I Z 2 )  . P ( Z r n l Z m  l)p(ZtlZm) 

-P(ZIIZ2)p(Z21Z3) P ( Z m  ,IZ.~)p(ZmIZI). (13) 

This equation satisfies Kolomogorov's criteria and 
therefore the Markov chain 96 (n) is reversible. • 

The reversibility of the chain 96 (n) implies that the 
process is stationary. Furthermore, because 96(n) is 
Markov, this implies that detailed balance is satisfied. 
These facts are summarized in the following theorem. 

THEOREM 5. I f  96 ( n ) Is the Markov chain generated 
by the CS algorithm over the set of topologically ordered 
ensembles with respect to a uniformly distributed ob- 
servation process, then the process's stationary denslty 
r( 96 )sattsfies the equality r( 96 ) = re( Z )for all ensem- 
bles 96 and Z reachable from 96 (0) by the CS algo- 
rithm. 

Proof By Lemma 3 the chain ~ ( n )  is reversible and 
by Theorem 4 it satisfies the detailed balance condi- 
Uons, r ( Z ) p ( % I Z )  = rr(9(~)p(ZI96), where Z and 
% are any ensembles reachable by the CS algorithm 
from an initial ensemble. From the proof of Lemma 
3, it is clear that these transition densities are equal 
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[i.e., p ( % I Z )  = p ( 7 1 % ) ] .  Therefore, the stationary 
density must satisfy rr(Z) = r ( % )  for any % and Z 
that are reachable from the initial ensemble % (0). • 

4.2. Multiresolution Simplicial Topologies 

Theorem 5 is significant for it asserts that all topolog- 
ically ordered ensembles that are reachable from % (0) 
are equally likely. This result is valid for any ensemble 
with a simplicial topology. The theorem, however, falls 
short of actually computing the stationary density [i.e., 
the constant value of ~r(% ) ]. Performing this compu- 
tation involves computing the number of ensembles 
that can be reached from % (0). For arbitrary simplicial 
topologies, this computation is nontrivial. 

For multiresolution simplicial topologies, however, 
the computation can be done by examining an asso- 
ciated stochastic process V(n) that is derived from the 
original Markov chain, % (n). This associated process 
consists of the volumes of all simplices Sj(i) in ~ gen- 
erated at the end of the recursive procedure in Theorem 
2. In this section, it is shown that if"/-(%) is a multi- 
resolution simplicial topology, then the process V(n )  
is a reversible Markov process whose stationary density 
implies a steady-state ensemble in which all simplices 
have equal volumes (on the average). The mean value 
of this steady-state volume can be explicitly computed 
through combinatorial arguments. The results show 
that the CS algorithm for fl-ensembles with multires- 
olution simplicial topologies will form equi-probable 
partitions of the observation space. 

Consider a collection of m-simplices, • = { 5", }, 
forming the basis of a multiresolution simplicial to- 
pology. Assume there are N of these simplices. Because 
the ensemble is topologically ordered, these simplices 
partition ft. Let v, be the volume of the lth simplex 

v, = vol S, = f dfi. (14) 
ESt 

The simplex 5", is determined by m + 1 prototypes, ~0, 
~?t, • • •, ~?z, in ~m. A well-known formula for the vol- 
ume of this simplex is 

') v, = vol S, = ~ det . (15) 
XI " ' "  )~m 

The collection of all these volumes at time n, V(n) = 
{ vl (n)  . . . . .  vN(n) }, forms the ensemble's volume or 
V-configuration at time n. The process V(n )  will be 
called the Vprocess. 

The V-configuration at time n and n + 1 will be 
denoted as V ( n ) and V ( n + 1), respectively. V ( n + 
1 ) will be generated from V ( n )  by a single application 
of the CS algorithm. Because the CS algorithm only 
updates a single prototype £, at a time, then only those 
L simplices associated with the kth polygon cell, Pk, 
will have their volumes changed. Let these modified 

simplices be denoted as Sk,, Sk2 . . . . .  SkL. If the V- 
configuration at time n is V(n )  = { l )  1 . . . . .  V N }  , then 
the V-configuration at time n + 1 after the ith prototype 
has been updated will be 

V(n + 1) = {vl . . . . .  Vk,-l, Vk,, Vkl+l . . . . .  VkL-I, 

VkL, VkL+~ . . . . .  VN} (16) 

where ~kj is the updated volume of simplex Skj, the j th  
simplex of polygon cell Pk. 

For arbitrary simplicial topologies, the process V(n) 
is not necessarily Markovian. Consider two different 
configurations, % and Z.  These two configurations 
need not have the same neighborhood cells and because 
the volume of the neighborhood cell determine the 
transition densities, it is no longer apparent that knowl- 
edge of V(n) is sufficient to determine the probability 
of the transition to V(n + 1 ). Consequently, the process 
V(n) will not generally be a Markov process. 

Note, however, that the reason why V(n )  is not 
Markov is that the specification of the simplex volumes 
does not uniquely determine the volume of the neigh- 
borhood cell, C,. It does, however, specify the volume 
of the polygon cell, P,. If P, is always convex, then it 
equals C, and the simplex volumes at time n would 
uniquely determine the probability of transitioning to 
a different V-configuration. It could therefore be con- 
cluded that for ensembles in which most polygon cells 
are convex, then the process V(n )  would be approxi- 
mately Markov. 

Although V(n) is not Markov for arbitrary simplicial 
topologies, it can be shown to be Markov for multires- 
olution simplicial topologies. The following lemmas and 
theorem form the basis for this conclusion. 

LEMMA 4. Let S be an m-simplex in ~m and let Sj 
denote the jth m-simplex formed by a facet o f  S and a 
vecgtor Xc within S I f  the volumes, vj, o f  the simplices 
Sj and the vertices of  S are known, then Xc is uniquely 
determmed. 

Proof. Equation ( 15 ) yields an expression for the vol- 
ume of simplex Sj 

,) vj = vol Sj = ~.. det (17) 
~c ~l " "  ~m 

where ~, for l = 1 to m are vertices of S forming a facet 
[i.e., (m - 1 )-simplex] of S. Because the vertices of S 
are known, then the determinant can be rewritten in 
terms of the components of the unknown vector ~ = 
{ 11£~ }'. Let X denote the matrix of vertices in eqn 
(17), then vj can be written as 

1 ~ )k+%lXkA vj = ~.~ (-1 (18) 

where I Xktl is the determinant of the k/th cofactor of 
X and ~t is the lth component of vector ~. By appro- 
priate permutation of the rows of X, the absolute value 
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in eqn (18) can be removed. Therefore, eqn (18) ( j  = 
1 . . . . .  m + 1 ) forms an m + 1 system of simultaneous 
linear equations. Note that there can be no vector 
such that all simplices would have zero volume vj. The 
system therefore has full rank and the vector ~ can be 
uniquely determined once the simplex volumes and 
vertices are known. • 

LEMMA 5. Let % be an ~2-ensemble and let T (%) be 
a multiresolution stmphcial topology for ft generated 
by ~ .  Let V be a vector whose components are the vol- 
umes of  the stmplices formmg the basts for '7" (%). I f  
the boundary prototypes offl are known and tf  the index 
set, I ( T ) ,  for the stmplicial topology is known, then 
each V specifies a untque configuratton % 

Proof By assumption q ' ( ~ )  is generated using the 
procedure in Theorem 2. Because T is multiresolution, 
there exists an increasing sequence of topologies ( { "l', } 
such that "T, C ¢/',+ ~ ). Because the boundary prototypes 
are known and the volumes of the simplices are known, 
the volumes of all simplices in each "T, can be deter- 
mined. Now consider ¢/'1. The simplicies forming this 
topology are the m + 1 m-simplices obtained by taking 
a facet of To with an interior prototype. Because the 
volumes of these simplices are known and because the 
vertices of To are boundary prototypes (also known), 
the preceding lemma implies that the interior prototype 
is uniquely determined. Similarly, if the interior pro- 
totype is known, then the volumes of the simphces 
forming T l are uniquely determined. The procedure 
is now extended through induction to conclude that 
there is a one-to-one correspondence between interior 
prototypes of ~ and the volumes in V. • 

The following lemma uses the fact that there is a 
one-to-one correspondence between volume vectors 
and prototype ensembles to prove that the volume pro- 
cess is Markov and reversible. 

THEOREM 6. Let % (n) be the Markov chain of  ensem- 
bles generated by the CS algorithm with respect to a 
uniformly distributed observation process and let 
~" [ % ( n ) ] be a multiresolution simplictal topology for 

generated by ~ ( n ). Then the associated V-process, 
V ( n ), is a reversible Markov chain 

Proof If, at time n, the volume vector is V(n),  then 
Lemmas 4 and 5 show that the information needed to 
determine ~ ( n )  from the volumes consists of the 
boundary prototypes of ~ and the index set of the sim- 
plicial topology, I ( T ) .  The boundary prototypes are 
unchanged by the CS algorithm. By Lemma 1 the CS 
algorithm preserves topological ordering, so that the 
index set I ( T )  is independent of n. Therefore, for any 
two volume vectors, V1 and V2, there exists a uniquely 
associated ensemble %1 and ~2 that depends only on 
the current volumes. Both of these ensembles, however, 
are specific instances of the process % (n) that is already 

known to be Markov and reversible. Therefore, V(n) 
must also be a reversible Markov process. • 

The following theorem shows that because the vol- 
ume process is Markov and reversible with a uniformly 
distributed observation process, then the process must 
have a stationary density that implies all steady-state 
admissible volume vectors are equally likely. 

THEOREM 7. Let % ( n ) be the Markov cham of  ensem- 
bles generated by the CS algorithm with respect to a 
uniformly dlstrtbuted observation process and let 
T [ % (n) ] be a multiresolution stmpliclal topology for 
f~ generated by % ( n ). Then the assoctated V-process, 
V( n), has a stattonary denstty m which re(V) = 7r(I4") 

for any two V-configurations. 

Proof Because V(n) is reversible and Markov, it has a 
stationary density ¢r(V) that satisfies detailed balance. 
This stationary distribution will be centered on the set 
of volume configurations that are reachable from an 
initial configuration. However, because there is a one- 
to-one correspondence between the V-process and the 
%-process, and because the %-process is ergodic, it is 
known that all possible V-configurations are reachable 
from any imtial V-configuration. Because the obser- 
vation process is uniformly distributed, the forward and 
backward transition probabilities are equal and there- 
fore the stationary density ~-(V) is constant over the 
whole set of possible V-configurations. • 

The following theorem computes the marginal den- 
s~ties for the volume process's stationary density. The 
s~gnificance of this result is that it provides a quanti- 
tative evaluation of the sample ensemble's statistical 
behavlour under the assumption of uniformly distrib- 
uted observations. 

THEOREM 8. Let % (n) be the Markov chain of  ensem- 
bles generated by the CS algorithm wtth respect to a 
umformly distrtbuted observatton process and let 
T [ % (n) ] be a multiresolutton slmphctal topology for 

generated by % ( n ) The associated V-process's tth 
marginal densu); 7r~ ) will be 

× dvl . . .dv , - tdv ,+l . . .dVN (19) 

= ( N -  1)(1 - v , )  N 2. (20) 

Proof In this proof, the continuum ft is being replaced 
by a discrete approximation. Assume that we have par- 
titioned [0, 1] M into M volume elements where M is 
large (M >> N). Each component of the V-configuration 
is a volume holding some number of volume elements 
such that the total number of volume elements summed 
over the entire V-configuration is clearly M. The num- 
ber of admissible V-configurations will therefore be the 
number of ways M nondistinct objects can be divided 
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amongst N bins. This is a simple combinatorial prob- 
lem (Liu, 1968) whose solution is 

(N + M -  1)! 
C ( N -  1, M ) -  ( N -  I)!M! " (21) 

Now assume that a given simplex, S,, has K volume 
elements. The number of V-configurations where S, 
has K volume elements equals the number of ways M 
- K nondistinct objects are divided amongst N - 1 
distinct bins. This combinatorial problem has the so- 
lution 

C ( N - 2 ,  M - K )  = ( N + M - K - 2 ) !  (22) 
( N -  2)!(M - K)! " 

Equations (21) and (22) are combined to give the 
probability that a given simplex, S,, has volume K / M  

C ( N -  2, M - K) 
Pr(K/M) = (23) 

C(N - 1, M) 

It is now necessary to take the limit as M gets large. 
Applying Stirling's formula to eqn (23) yields 

Pr( K / M) 

( { [ N + M - 1 ) - ( K + I ) I ] M , } )  (24) 
= ( N -  1) ( N + M -  1)[(M- K)! 

_ ~ / 1  - MK~ll ( 1 Kt~M'-K'[ f i x '  \ 

/ 
where K1 = K + 1 and MI = N + M - 1. For large M 
>> N, it is assumed that K,/M~ ~ K /M.  Therefore, 
eqn (25) is simplified to 

Pr(K/M) ~ ( N - 1 ) ( 1 - K )  u-2. (26) 

Replacing K / M  by x, the probability density of ob- 
taining an V-configuration whose ith component has 
volume x is 

7r~)(x) = ( N -  1)(1 - x) N-2. (27) 

This completes the proof. • 

COROLLARY 1. Under the assumptions of Theorem 8, 
the first and second moments of the marginal density 
lr~ ) are 1/N and 2 / (N  2 + N), respecttvely. 

Proof This result follows from a direct calculation of 
the moments. • 

4.3.  Simulat ion Results  

This subsection presents simulation results validating 
the quantitative conclusions of the preceding subsec- 
tion. A two-dimensional observation space was assumed 
with a uniform observation density. The CS algorithm 
was simulated for an ensemble with a multiresolution 
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FIGURE 2. Simplex volume (mean) versus ensemble size. 

simplicial topology generated by a random collection 
of observation vectors. The number of simplices (size 
of ensemble) was varied between 50 and 200. The sim- 
plex volumes and fluctuations (standard deviation) 
were estimated by computing sample averages over 
25,000 iterations of the CS algorithm. The results are 
shown in Figures 2 and 3. Figure 2 shows the predicted 
simplex volume (Corollary 1 ) plotted against ensemble 
size (solid line). The circles in the figure denote the 
average volume over all simplices in the ensemble. The 
error bars indicate the standard deviation in the esti- 
mated mean volumes over the entire ensemble. As can 
be clearly seen, the figure shows close agreement be- 
tween the predicted and observed simplex volumes. 
Figure 3 shows the predicted fluctuations (standard de- 
viations) in simplex volumes (Corollary 1 ) plotted 
against ensemble size. The circles indicate the average 
fluctuations and the error bars denote the standard de- 
viation in the estimated fluctuations over the entire en- 
semble. Once again, the simulation results appear to 
corroborate the preceding predictions. 

5. NONUNIFORM OBSERVATION 
PROCESSES 

This section indicates how the results of Section 4 can 
be extended to general observation processes on [0, 

$ 

o O  
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FIGURE 3. Simplex volume (fluctuation) versus ensemble size. 
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1]m This extension indicates that the CS algorithm 
will generate a steady-state sample ensemble, 9~, whose 
slmphces form an equiprobable partition of ~2. 

Consider an m-dimensional IID observation process, 
2(n) ,  with continuously differentiable probability den- 
slty, p(fi), whose support set is [0, 1] m. Assume that 
there exists a set of prototypes, X;, that are ordered by 
a multiresolution simplicial topology, q" (%) .  Let S, be 
the ith simplex generating this topology. Assume that 
there exists a continuously differentiable and invertible 
coordinate transformation, w: [0, 1] ~ --~ [0, 1] m, de- 
noted as ~' = w(f)  such that 

p(f) - det Jw = 0 (28) 

where J~ is the Jacobian matrix whose (1, j ) th com- 
ponent equals Ow,/O)). 

With the above definitions, the probability of an ob- 
servation being in simplex S, will be given by 

Pr(fE S,) = fs, p(f)df; (29) 

= f~ p[w ' (~) ] [det  J~(~?')ld)?' 
( S t )  

(30) 

This follows from a simple replacement of variables in 
the original integral (Spivak, 1965 ). In light of the as- 
sumption on the coordinate transformation it is ap- 
parent that this equation reduces to 

fs, p ( f )d f  = f~(s,)d)~.. (31) 

The set w(S, ) is the w-image of the simple S,. Equation 
(31 ) says that the probability of observation 2 being 
contained within simplex S, will equal the volume of 
set w(S, ). 

Now consider the transformed observation process 
)~(n) = w(y(n)). By construction, the vector ,~(n) must 
be uniformly distributed. The w-transformed proto- 
types will generate another process ~l~(n). If it can be 
assumed that the w-images of the simphces are also 
approximately simplices (this should be approximately 
true if the size of the ensemble is large), then the trans- 
formed configuration process ~ ( n )  is identical to 
Markov chain studied in Subsections 4.1 and 4.2. The 
statistics for this process were computed in Subsection 
4.2. In particular, these results indicate that even for 
nonuniform observation processes that the steady-state 
sample ensemble can again form an equi-probable par- 
tttion of the observation space. 

Another way of looking at the sample ensemble is 
that it can be used to obtain a nonparametric estimate 
of the observation density, p( f ) .  Let v, = E{ fs, dr} 
be the expected volume of the tth simplex. Taking the 
expected value of eqn ( 31 ) with respect to all S, yields 
the following equation 

1 
- -  = p ( f * ) v ,  (32) 
N 

where f*  is some vector in S,. Rearranging terms yields 
p( f*  ) = 1/(Nv, ), which can be used to define the fol- 
lowing estimate for the observation density, 

1 
fi(f) (33) Nv~ 

where f ~ S,. Equation (33) is a volumetric probability 
density estimate. 

An important question concerns the sense in which 
the volumetric density estimate is optimal (i.e., pro- 
totypical). This question can be answered in the fol- 
lowing manner. Let f denote the observation process. 
Let t(n) denote the label of the simplex that contains 
the observation f (n )  at time n. The sequence of simplex 
labels, ~, therefore forms another stochastic process. 
Assuming N simphces, the average mutual information 
between the simplex process ~ and the observation pro- 
cess f will be gwen as 

[" p(t, f)  l(i. i;) = ~ 1)(l. ()log ~ dr;' (34) 
l 1 

N 

= Z p(f)P(tlf)log P(~ l f )d f  (35) 

where q~ is the probability of the tth simplex, p ( f )  is 
the observation density, p( t ,  fi) is the joint density of 
the tth simplex and the observation Y, and P(l If)  is 
the conditional probability of simplex l given obser- 
vation Y. From our prior results, it is clear that q, = 1 / 
N and P( i I Y) = / ,  ( f ) .  The function L ( f )  is an indicator 
function for the ith simplex (1.e., it is unity if ~ is in 
S, and is zero otherwise). Using the fact that each sim- 
plex has a probability mass (volume) of 1/N, we can 
therefore rewrite the average mutual information as 

l(z: y) = ~ p(f) l , (f) log NI,(i;)df 36) 
I 1 

N ] T 

= ~ ~ log A 37 ) 
t I 

- log N .  38)  

From the divergence inequality, however, it is known 
that I( i; fi) _< log N. Therefore, the steady-state partition 
learned by the competitive sampling algorithm is op- 
timal with regard to maximizing the average mutual 
informatmn between the simplex process and the ob- 
servation process. 

6.  S U M M A R Y  

This paper has proposed an algorithm for competitwe 
sampling of an IID process. The proposed algorithm 
uses a carefully defined notion of topological ordering 
and uses a randomized winner-take-all rule for updating 
prototypes. In that the sample ensemble has a topo- 
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logical ordering, the scheme is closely related to other 
topologically ordered competitive learning schemes. 
The principal contributions of this paper are a precise 
definition of the notion of topologically ordered en- 
sembles and a rigorous analysis of the sampling pro- 
cedure that yields quantitative predictions about the 
sampling process under the assumption of uniform ob- 
servation densities. This paper also outlined a method 
for extending the analysis to nonuniform observation 
densities. In that a rigorous analysis of a competitive 
learning scheme was possible for topologically ordered 
competitive sampling, this work serves as a model for 
the design and analysis of other competitive learning 
schemes. 

The significance of the preceding results can be as- 
sessed in terms of the significance of the future work 
suggested by these results. These future directions in- 
clude a more rigorous examination of the sense in which 
competitive sampling produces prototypical ensembles, 
the relation between competitive and independent 
sampling in terms of space and sample complexity, and 
the comparison of the learning abilities of various to- 
pological orderings. Each of these directions is sum- 
marized below. 

Competitive sampling is only valuable if it provides 
a collection of samples which are prototypical of the 
observation process. Intuitively, we expect a prototyp- 
ical ensemble to form a model of the observation pro- 
cess that is optimal with regard to some well-defined 
performance measure. Prior results in Section 5 showed 
that the resulting ensemble is optimal in the sense of 
maximizing the average mutual information between 
the observation process and the set of activated sim- 
plices. Competitive sampling can therefore produce 
ensembles that preserve as much information as pos- 
sible about the observation process given a fixed number 
of topologically ordered ensembles. There is, however, 
a classic tradeoff between this information (i.e., rate) 
and the distance between prototypes and observations 
(i.e., distortion). Although competitive sampling max- 
imizes information rate, it does not minimize distor- 
tion. An interesting avenue for future research would 
involve competitive sampling procedures in which av- 
erage distortion could be bounded while guaranteeing 
maximization of mutual information rate. The analysis 
and formalisms of this paper provide a starting point 
for that research. 

The relationship between competitive sampling and 
independent sampling is an area for future inquiry that 
has not been fully addressed by this paper. As men- 
tioned in the Introduction, independent sampling will 
generally require a large number of prototypes in order 
to control statistical fluctuations. According to prior 
results, competitive sampling produces an optimal en- 
semble for a fixed number of prototypes. This optimal 
ensemble, however, is only obtained after sorting 
through enough observations so that a consistent esti- 

mate of the simplex volumes, v,, can be obtained. It 
can be easily argued, using the VC-inequality (Vapnik 
& Chervonenkis, 1971 ), that the sample complexity 
required to obtain a consistent estimate of v, may be 
extremely large. In other words, it is quite possible that 
competitive sampling is buying reduced space com- 
plexity (i.e., the size of the ensemble) at the expense 
of increased sample complexity. How to control this 
tradeoffbetween independent and competitive sampling 
is an important area for future research. The analyses 
presented in this paper provide a set of quantitative 
results that should allow this tradeoff. 

Finally, it should be noted that the success of this 
analysis relied heavily on the notion of topological or- 
dering. The use of a topologically ordered ensemble 
was originally motivated by the realization that the 
constraints imposed by the ordering can be used to 
insure that the system has a single ergodic class. The 
results of this paper for arbitrary and multiresolution 
simplicial topologies demonstrate that the choice ofto- 
pologacal ordering is crucial in the design of competitive 
learning algorithms whose behaviour can be analytically 
characterized. The particular ordering (multiresolution 
simplicial topology) used in this paper is just one to- 
pology and there is no reason not to expect other equally 
useful topologies to exist. The analysis and methods 
employed by this paper therefore provide a model for 
the design and evaluation of other topological-ordered 
competitive learning procedures. 
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