
FA8 - 1055

Inductive Inference of Logical DES Controllers
using the L” Algorithm

Xiaojun Yang, Michael Lemmon ’, and Panos Antsaklis
Department of Electrical Engineering

University of Notre Dame, Notre Dame, IN 46556
1emmonQmaddog.ee.nd.edu

Abst rac t

I t is well known that learning procedures such as the
L* algorithm will infer minimal deterministic finite
automatons (DFA) in polynomial time through the
use of membership and equivalence queries. This
paper introduces a modification of the L*-algorithm
that can be used for the inductively inferring optimal
logical DES controllers in which prior knowledge of
the plant is confined to a finite lookahead window of
predicted behaviours.

1. Introduction

Discrete event system (DES) controller synthesis
methods as proposed by Ramadge and Wonham [l]
require that the state transition model of the desired
legal behaviours be known. This requirement is not
satisfied when the DES plant is only partially known.
This paper proposes dealing with plant uncertainty
by using inductive learning algorithms. In particu-
lar,this paper uses a modification of the L*-algorithm
[2] to infer the supremal controllable sublanguage of
the unknown plant. There is already a great deal
of prior work attempting to account for imperfectly
known DES plants. The prior work most relevant to
this paper’s technique is found in [3] and [4].

Inductive inference [5] is a machine learning proto-
col which determines the minimal boolean functional
consistent with a set of input-output pairs of that
function. These input-output pairs are called “ex-
amples”, so that inductive inference is sometimes re-
ferred to as learning by example. A query concerning
whether or not a given input-output pair is a positive
or negative example of the functional will be called
a membership query. A query concerning whether an
hypothesized language is equivalent to another lan-

guage will be called an equivalence query. Algorithms
answering the membership or equivalence queries will
be called oracles. The inductive learning procedure
will use a combination of equivalence and member-
ship queries to construct a boolean functional that
approximates the unknown boolean concept in an ap-
propriately defined sense [6].

The class of learning methods being used in this paper
are applicable to the inference of regular sets. There
are a large number of positive and negative results
concerning the inference of minimal DFA’s. I t has
been shown that inference of minimal DFA’s through
membership oracles is NP-complete, [7]. The learn-
ing problem, however, exhibits polyonomial complex-
ity if membership and equivalence queries are used.
The L*-algorithm [2] has been shown to have a com-
putational complexity that is polynomial in the size
of the minimal DFA and the number of equivalence
queries.

The objective of this paper is to show how member-
ship and equivalence queries can be used for on-line
synthesis of DES controllers. In particular, we are in-
terested in seeing if it is possible to inductively learn
the supremal controllable sublanguage. Direct appli-
cation of the L*-algorithm, however, is not possible
due to uncontrollable events. Uncontrollable events
introduce uncertainty into the algorithm’s member-
ship queries. Since the original L* algorithm assumes
complete membership oracles, this means that a mod-
ified version of the L* algorithm will need to be de-
veloped. This paper introduces such a modification
of the L* procedure. Preliminary proofs of the algo-
rithm’s convergence will be found in [8]. This paper
presents the algorithm and provides an example illus-
trating its useage.

‘The partial financial financial support of the National Sci-
ence Foundation (MSS92-16559) and the Electric Power Re-
search Institute (RP8030-06) are gratefully acknowledged.

3163

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:16:12 EST from IEEE Xplore. Restrictions apply.

http://1emmonQmaddog.ee.nd.edu

2. L* Algorithm

Let C denote the finite event alphabet, C* denote
all the finite event strings defined over C, and K de-
note an unknown regular set defined on .E, K E C*.
Assume there exists a set of examples, E = {sa},
(i = 1 ,2 , . . .) which are known to be elements of I<.

Inductive inference of regular sets is based on the sim-
ple observation that if two strings SI and s 2 arrive at
the same state, then for any suffix, e , the strings s l e
and s2e will also arrive at the same state. This ob-
servation is an aggregatzon prenciple that aggregates
all strings in the example set arriving at the same
state. It can also be used to differentiate between
different states in the DFA. Using this principle, it
makes sense to decompose all strings of the example
set into a prefix-closed set of strings, S , and suffix
closed set of strings , E. Consider a boolean func-
tional, T : C* ---+ {0,1} which maps a string s E C*
onto 0 if it is in K and 1 otherwise. T is called a
membership oracle and can be represented by an ob-
seroatzon fable. Each row in the table is labeled with
a string in S U SC and each column in the table is
labeled with a string in E. The table entry associated
with the row labeled s and the column labeled e will
be the value of the functional, T (s e) .

The preceding aggregation principle can be used to
inductively build up an observation table. Let row(s)
denote an operator mapping the string, s, labeling a
row onto the entries of that row. By the aggregation
principle, if there exist two strings s1 and s2 in S
such that when row(s1) = row(s2) and there exists
e E C such that row(s1e) # row(sZe), then these two
strings cannot have arrived at the same state. This
fact is used to identify new states in the DFA. An
observation table that satisfies the aggregation prin-
ciple will be said to be consistent. In particular, the
observation table is said to be consistent if there exist
strings s1 and s2 in S such that row(s1) = row(s2)
and for all U E C, row(s1c) = row(s2c). The re-
sulting table is said to be closed if for all t E SE,
there exists an s E S such that row(s) = row(t). An
observation table is complete if it is closed and con-
sistent. It has been shown [Z] that a minimal DFA
can be constructed from a complete observation ta-
ble. The minimal DFA, M (S , E , T) = {Q, QO, 6) is
characterized by Q = {row(s) : s E S } , qo = row(€),
and S(row(s), U) = row(sa).

Unfortnately, it is well known [7] that building up
a complete observation table solely on the b a i s of
membership queries will be NP-complete. The L* al-
gorithm therefore uses equivalence queries and mem-
bership queries to yield a polynomial time algorithm
[2]. An equavalence query hypothesizes that the con-

structed acceptor generates the desired language, IC.
The oracle then returns true (l), if the acceptor
generates Ii' and false (0) otherwise. In the event
that the equivalence query gets a negative response,
then the oracle also returns a counter-example to the
hypothesis. The new information contained in the
counter-example is then added to the observation ta-
ble through membership queries.

The L* procedure constructs an observation table for
the minimal acceptor in the following manner.
Step 1: Form initial observation table.

Let i = 0, S = E , and E = E . Complete the table
entries for ta.ble Ti by calls to the membership
oracle.

If is not consistent, then add entries to E to
make it consistent
If Ti is not closed, then add entries to S to close
it.

Construct the minimal DFA, Mi, for the com-
pleted observation table
Make an equivalence query about the validity
of Mi. If the oracle returns a counter-example,
t E C*, then add t and all its prefixes to S. Ex-
tend the table to (S U SC)E using membership
queries.

Let i = i + 1 and go back to step 2 until
the equivalence query returns no other counter-
examples.

Step 2: Complete the observation table, E .

Step 3: Equivalence Query

Step 4: Loop

3. Uncertain Membership Oracle

The L* algorithm requires unambiguous answers to
the membership query. This assumption is overly re-
strictive since there may be insufficient information
to answer all membership queries. An example of
this situation is found in the inference of DES con-
trollers with uncontrollable events. Assume that the
plant language, L(G), and the control specification,
I<, are described by regular languages and can be
realized by finite automatons, G and M(IC), respec-
tively. The event symbols, C, are assumed to be par-
titioned into controllable, E,, and uncontrollable, C, ,
event sets, both of which are known. The objective
is to identify the suprema1 controllable sublanguage
[I] by observing the controlled plant's behaviour. To
use the L* procedure, however, we must be able to
identify whether a given string, s, generated by the
plant belongs to I<. In the event that s terminates
in a controllable event, then the membership of s can
be decided unambiguously. If, however, s terminates
in an uncontrollable event, then the membership of s

3164

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:16:12 EST from IEEE Xplore. Restrictions apply.

can only be determined by examining the future be-
haviour of the plant. This may be impossible to do
and so the membership oracle returns one of three re-
sponses, TRUE (l), FALSE (0), and AMBIGUOUS
(*). Therefore in order to apply the L* procedure
to on-line controller synthesis, we must modify the
procedure to deal wit,h incomp1et.e or uncertain mem-
bership oracles.

This section int,roduces a modification of the L* algo-
rit,hm which can be used for DES controller synthesis.
The resulting algorithm uses an uncertain member-
ship oracle based on a limited lookahead window [3].
Let L(G, N , s) denote all strings of length not longer
than N generated by the plant, G , after an observed
trace, s. Let L,(G, N , s) denote the set of uncontrol-
lable traces and let L,(G, N , s) denote controllable
traces in L(G,N,s) . As noted above, the controlla-
bility of some &rings in L(G, N , s) fl I< may not be
decidable. These undecidable strings will be referred
to as pending strzngs. It is therefore reasonable to
propose the following membership oracle,

0 if t E L,(G, N , s)C*

* otherwise
1 if t E L,(G, N , s) (1)

The basic operations in the L* algorithm involve
splitting the state associated with a specific row in the
observation table. If a table is inconsistent, then there
exist strings in E which can be used to split a row into
several distinct rows, i.e. different states. The chief
complication that uncertain membership oracles in-
troduce is that it is no longer clear whether or not a
given row should be split. In this situation, therefore,
it makes sense to only split rows when the available
data supports the splitting. In other words, when
there exist uncertain entries in the observation table,
row splitting and aggregation should only be based
on the deterministic entries in the observation table.
This simple principle provides a systematic method
for constructing an observation table which is consis-
tent with the available data and yet retains sufficient
flexibility to refine itself when new data (i.e. counter-
examples) become available. The following definition
introduces this notion of row aggregation.

Definition 1 Let S denote the set of row labels, { s i } *
Consider the m t h subsei, S,, of S such thai for
any si and sj in S, and for all e E E , the follow-
ing conditions hold; T (s i e) # *, T (s j e) # *, and
T (s i e) = T (s j e) . The collectaon S, as called the m t h
aggregated group of the observation table.

If there is no other row label in S that can be added to
the aggregated group S, , then the aggregated group

is said to be maximal. According to the aggrega-
tion principle, this implies that the aggregated group
corresponds to a state of the finite automaton. It is
now possible to define concepts of closure and consis-
tency for aggregated groups in a similar way to what
is found in the L* procedure.

Definition 2 Let Si (i = 1,. . . , M) denote the i t h
maximally aggregated group for a given observation
table. If for all s E SC - S , there exists s1 E S and
i such fhat SI E Si and s E Si, then the observafion
table as said to be closed.

Conszder all pairs of strings s1 and s2 such fha t for
some i, s1 E Si and s2 E Si. If for all U E C there
exists j such that S ~ U E Sj and S ~ U E S j , or S I U 4 Sj
and s2u Sj for a l l j , then the observation table is
said t o be consistent.

The preceding definitions determine a closed and con-
sistent observation table with regard to aggregated
groups of rows, rather than individual rows. I t is
a straightforward generalization of the definitions of
consistency and closure used in the L* procedure.
Essentially, this approach postpones the splitting of
aggregated states unit1 there is sufficient informa-
tion available to make a reliable splitting. Proce-
dures for completing the observation table are done
in the same way that the L* algorithm completes
its observation table. The acceptor, M (S , E , T) =
{ Q , q o , 5 } , is then derived from the maximally ag-
gregated groups in the table through the following
formulas, Q = {Si,i = 0, . . . , m } , QO = SO, and
b (s a , U) = {S j l ,S j z , . . . , S j k } where fo ra l l s€SinS ,
su E n,"=, sjl.
Note that in the event that there is no ambiguity in
the membership query, then the modified L* proce-
dure is identical to the original L* algorithm. Further
note that there may be cases when a single row be-
longs to several different maximal aggregated groups.
In this case, the resulting acceptor may exhibit non-
deterministic transitions.

Preliminary proofs for the convergence of the modi-
fied L* procedure will be found in [8]. The proof in-
volves carefully looking at three different types aggre-
gated groups and showing how the counter-example
returned by an equivalence query will always bring
new information into the observation table allowing
splitting of aggregated groups. If the size of the min-
imal DFA is known to be bounded, then this implies
that after a finite number of counter-examples the
modified L* procedure will have formed the mini-
mal number of aggregated states for the unknown
DFA. The controller that is then learned appears to
be a superlanguage I?, of the specification language.

31 65

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:16:12 EST from IEEE Xplore. Restrictions apply.

This superlanguage contains the supremal control-
lable sublanguage as well as a collection of non-system
behaviours. The intersection of i? with the original
plant behaviours can be shown to be the supremal
controllable sublanguage.

4. DES Controller Synbhesis: example

This section demonstrates the modified L* learn-
ing procedure on a manufacturing application drawn
from [l]. In this example, two machines are connected
by a buffer. The event set and uncontrollable event

ai means that machine i starts working, Pi means
that machine i finishes working. In this example, the
system states have the following interpretstion. 4
means machine i is idle and Wi means machine i is
working. The buffer B has one slot with two states,
E, empty and F, full. Initially the system is in state
(11 ,12) . The control specification is to keep the buffer
at 0 or I at ail times. Let }ai(t) denote the num-
ber of occurrences of a in string t (a E C,t E E").
The control specification can be expressed as K =
(. : 1 E E*, la2l(t) 5 IPlI(t) I lazI(t) + IlVt E i i) .
This means that a2 and stricify afternate and that
pt. occurs first.

We assume a lookahead of length 3. In
the initial step, the curre is 8 = E . Inside
prediction window, L(G,3,&), the events E , ai, and
ai& are controllable, whereas cy2IY n L(G, 3, E) iand
ala2C* n L(G, 3, E) are uncontroIIabb. All other
traces in the window arre pending. The initial ob-
servation table, TO, is shown beiow,

sets are E = (a i ,a2 ,P1,P2) , xu = (A,&). Event

The acceptor, MO, is shown in figure 1. Since the
controllable strings in the initial lookatread window
can be generated by MO and all of the uncontrol-
lable strings are not accepted by MO, there is no
counter-example in the lookahead window and we use
MO tw the controller. Assume that a1 is the ob-
served event trace under controller MO. The 3 step
ahead prediction window L(G, 3, & I) has iilegai string
a~&aiPi. Since is uncontrollable, this mean%
that trace al&al is an uncontrollable trace which
shouldn't be accepted by the controller. This trace,
however, is accepted by MO and so it is used as a
counter-example. The traces a1 and alp1 are there-
fore added to S and a1 is added to E. The resulting

SI66

completed table is

-1 Q1 *

Since there are no more counter-examples in the
iookahead window, M I can be used as the new con-
troller. In this case, the observed trace becomes
ai&. In the new lookahead window, L(G, 3, cy&),
there are two strings which are controllable but not
accepted by MI. These strings are QI&QZPZ and
a&a2 and they are therefore treated as counter-
examples. The observation table, Tz, resulting from
adding these two counter-examples is,

F=FFFl Q1 1 * 0

Figure 1 shows the associated acceptor, M2. Assume
that this acceptor generates the illegal system be-
haviour alP1a2P2a~. Since a l P l a 2 P 2 is controllable,
this string is added into table T2 to obtain table T3,

Use Ma as a controller and assume that the observed
trace is a&qal. Analysis of the lookahead window
leads to the observation table Tdr

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:16:12 EST from IEEE Xplore. Restrictions apply.

T4 E a1 a2
E 1 1 0

1 * 0
WPl 1 0 1
alPla2 1 1 *
fflPlQ2P2 1 * 0
P1 U Pz
al(a1 U P 2) * * *
alPl(P1 U P 2) * * *
W%a2(C-P2) * * *

-alPla2P2(C-a2) * * *

a1

* * *

Note that L(M4) n L(G) equals the suprema1 con-
trollable sublanguage obtained in [l], so this acceptor
is the optimal controller to be learned. The struc-
ture of this controller is different from that in [l].
In spite of this difference however, the behaviour of
both closed loop logical systems is identical. The dif-
ferences arise because the controller learned by our
modified L* procedure also accepts a variety of non-
system behaviours which cannot be generated by the
plant. The additional non-system behaviours in M4
arise from the fact that the counter-examples are all
chosen from system behaviours (legal and illegal).
Without a source of counter-examples representing
non-system behaviours, the learning algorithm will
be unable to remove these extra behaviours from 4.

5. Summary

This paper presented a method for the on-line syn-
thesis of DES controllers based on Angluin’s L’ algo-
rithm. The method does not require full knowledge
of the plant generator. Our knowledge is only re-
stricted to a finite window of lookahead behaviours.
In addition to this, the algorithm does not require a
formal description of the control specifications. The
algorithm can use quasi-formal specifications. This is
appropriate for cases in which supervisory specifica-
tions arise from human operator guidelines.

References
[l] P. Ramadge and W.M. Wonham, “Supervisory
control of a class of discrete event procesae8)’, SZAM
J O U ~ Q ~ of Control and Optimization, Vol. 25, No. 1,
pp. 206-230, Jan. 1987.
[2] D. Angluin, “Learning regular sets from queries
and counter-examples” , Inl. J . Information and
Computation, Vol. 75, No. 1, pp. 87-106, 1987.
[3] Sheng-Luen Chung, Stdphane Lafortune, “Lim-
ited lookahead policies in supervisory control of dis-
crete event systems”, IEEE !Bans. on Automatic
Control, Vol. 37, No. 12, pp. 1921-1935, Dec. 1992.
[4] S. Young, Vijay Garg, “transition uncertainty
in discrete event systems”, Proceedings 6th IEEE In-

B?

%*SI

Figure 1: Completed Acceptors

t enat ional Symposium on Intelligent Control, pp.
245-250, Arlington, VA. Aug. 1991.
[5] D. Aegiuin, C.H. Smith, “Inductive Infer-
ence: Theory and Methods.” Competing SurweSIs,
15(3):237-269, September 1983.
[6] L. Valiant, “A Theory of the Learnable”,
Comm. o f t h e ACM, Vol27:1134-1142,1984.

“On the complexity of mini mum
sets”, Int. J. Information and

Control, Vol. 39, pp.S37-350, 1978.
[8] X. Yang, M. Lemmon, and P. Antadclis, “induc-
tive inference of logical DES controllers using the L’
aigorithm” , Technical Report ISIS95-OOx, University
of Notre Dame, Notre Dame, IN, May 1995.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:16:12 EST from IEEE Xplore. Restrictions apply.

