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Abst rac t  

I t  is well known that learning procedures such as the 
L* algorithm will infer minimal deterministic finite 
automatons (DFA) in polynomial time through the 
use of membership and equivalence queries. This 
paper introduces a modification of the L*-algorithm 
that can be used for the inductively inferring optimal 
logical DES controllers in which prior knowledge of 
the plant is confined to a finite lookahead window of 
predicted behaviours. 

1. Introduction 

Discrete event system (DES) controller synthesis 
methods as proposed by Ramadge and Wonham [l] 
require that the state transition model of the desired 
legal behaviours be known. This requirement is not 
satisfied when the DES plant is only partially known. 
This paper proposes dealing with plant uncertainty 
by using inductive learning algorithms. In particu- 
lar,this paper uses a modification of the L*-algorithm 
[2] to infer the supremal controllable sublanguage of 
the unknown plant. There is already a great deal 
of prior work attempting to account for imperfectly 
known DES plants. The prior work most relevant to 
this paper’s technique is found in [3] and [4]. 

Inductive inference [5] is a machine learning proto- 
col which determines the minimal boolean functional 
consistent with a set of input-output pairs of that 
function. These input-output pairs are called “ex- 
amples”, so that inductive inference is sometimes re- 
ferred to  as learning by example. A query concerning 
whether or not a given input-output pair is a positive 
or negative example of the functional will be called 
a membership query. A query concerning whether an 
hypothesized language is equivalent to another lan- 

guage will be called an equivalence query. Algorithms 
answering the membership or equivalence queries will 
be called oracles. The inductive learning procedure 
will use a combination of equivalence and member- 
ship queries to construct a boolean functional that 
approximates the unknown boolean concept in an ap- 
propriately defined sense [6]. 

The class of learning methods being used in this paper 
are applicable to the inference of regular sets. There 
are a large number of positive and negative results 
concerning the inference of minimal DFA’s. I t  has 
been shown that inference of minimal DFA’s through 
membership oracles is NP-complete, [7]. The learn- 
ing problem, however, exhibits polyonomial complex- 
ity if membership and equivalence queries are used. 
The L*-algorithm [2] has been shown to have a com- 
putational complexity that is polynomial in the size 
of the minimal DFA and the number of equivalence 
queries. 

The objective of this paper is to show how member- 
ship and equivalence queries can be used for on-line 
synthesis of DES controllers. In particular, we are in- 
terested in seeing if it is possible to  inductively learn 
the supremal controllable sublanguage. Direct appli- 
cation of the L*-algorithm, however, is not possible 
due to uncontrollable events. Uncontrollable events 
introduce uncertainty into the algorithm’s member- 
ship queries. Since the original L* algorithm assumes 
complete membership oracles, this means that a mod- 
ified version of the L* algorithm will need to  be de- 
veloped. This paper introduces such a modification 
of the L* procedure. Preliminary proofs of the algo- 
rithm’s convergence will be found in [8]. This paper 
presents the algorithm and provides an example illus- 
trating its useage. 
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2. L* Algorithm 

Let C denote the finite event alphabet, C* denote 
all the finite event strings defined over C, and K de- 
note an unknown regular set defined on .E, K E C*. 
Assume there exists a set of examples,  E = {sa}, 
( i  = 1 ,2 , .  . .) which are known to be elements of I<. 

Inductive inference of regular sets is based on the sim- 
ple observation that if two strings SI and s 2  arrive at 
the same state, then for any suffix, e ,  the strings s l e  
and s2e will also arrive at the same state. This ob- 
servation is an aggregatzon prenciple that aggregates 
all strings in the example set arriving at the same 
state. It can also be used to differentiate between 
different states in the DFA. Using this principle, it 
makes sense to decompose all strings of the example 
set into a prefix-closed set of strings, S ,  and suffix 
closed set of strings , E.  Consider a boolean func- 
tional, T : C* ---+ {0,1} which maps a string s E C* 
onto 0 if it is in K and 1 otherwise. T is called a 
membership  oracle and can be represented by an ob- 
seroatzon fable.  Each row in the table is labeled with 
a string in S U SC and each column in the table is 
labeled with a string in E.  The table entry associated 
with the row labeled s and the column labeled e will 
be the value of the functional, T ( s e ) .  

The preceding aggregation principle can be used to 
inductively build up an observation table. Let row(s) 
denote an operator mapping the string, s, labeling a 
row onto the entries of that row. By the aggregation 
principle, if there exist two strings s1 and s2 in S 
such that when row(s1) = row(s2) and there exists 
e E C such that row(s1e) # row(sZe), then these two 
strings cannot have arrived at  the same state. This 
fact is used to identify new states in the DFA. An 
observation table that satisfies the aggregation prin- 
ciple will be said to be consistent.  In particular, the 
observation table is said to be consistent if there exist 
strings s1 and s2 in S such that row(s1) = row(s2) 
and for all U E C, row(s1c) = row(s2c). The re- 
sulting table is said to be closed if for all t E SE, 
there exists an s E S such that row(s) = row(t). An 
observation table is complete if it is closed and con- 
sistent. It has been shown [Z] that a minimal DFA 
can be constructed from a complete observation ta- 
ble. The minimal DFA, M ( S ,  E ,  T) = {Q, QO, 6) is 
characterized by Q = {row(s) : s E S } ,  qo = row(€), 
and S(row(s), U )  = row(sa). 

Unfortnately, it is well known [7] that building up 
a complete observation table solely on the b a i s  of 
membership queries will be NP-complete. The L* al- 
gorithm therefore uses equivalence queries and mem- 
bership queries to yield a polynomial time algorithm 
[2]. An equavalence query hypothesizes that the con- 

structed acceptor generates the desired language, IC. 
The oracle then returns true (l), if the acceptor 
generates Ii' and false (0) otherwise. In the event 
that the equivalence query gets a negative response, 
then the oracle also returns a counter-example to the 
hypothesis. The new information contained in the 
counter-example is then added to the observation ta- 
ble through membership queries. 

The L* procedure constructs an observation table for 
the minimal acceptor in the following manner. 
Step 1: Form initial observation table. 

Let i = 0, S = E ,  and E = E .  Complete the table 
entries for ta.ble Ti by calls to the membership 
oracle. 

If is not consistent, then add entries to E to 
make it consistent 
If Ti is not closed, then add entries to S to close 
it. 

Construct the minimal DFA, Mi,  for the com- 
pleted observation table 
Make an equivalence query about the validity 
of Mi.  If the oracle returns a counter-example, 
t E C*, then add t and all its prefixes to  S.  Ex- 
tend the table to  (S U SC)E using membership 
queries. 

Let i = i + 1 and go back to step 2 until 
the equivalence query returns no other counter- 
examples. 

Step 2: Complete the observation table, E .  

Step 3: Equivalence Query 

Step 4: Loop 

3. Uncertain Membership Oracle 

The L* algorithm requires unambiguous answers to 
the membership query. This assumption is overly re- 
strictive since there may be insufficient information 
to answer all membership queries. An example of 
this situation is found in the inference of DES con- 
trollers with uncontrollable events. Assume that the 
plant language, L(G), and the control specification, 
I<, are described by regular languages and can be 
realized by finite automatons, G and M(IC), respec- 
tively. The event symbols, C, are assumed to  be par- 
titioned into controllable, E,, and uncontrollable, C, , 
event sets, both of which are known. The objective 
is to identify the suprema1 controllable sublanguage 
[I] by observing the controlled plant's behaviour. To 
use the L* procedure, however, we must be able to 
identify whether a given string, s, generated by the 
plant belongs to I<. In the event that s terminates 
in a controllable event, then the membership of s can 
be decided unambiguously. If, however, s terminates 
in an uncontrollable event, then the membership of s 
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can only be determined by examining the future be- 
haviour of the plant. This may be impossible to do 
and so the membership oracle returns one of three re- 
sponses, TRUE (l), FALSE (0), and AMBIGUOUS 
(*). Therefore in order to apply the L* procedure 
to on-line controller synthesis, we must modify the 
procedure to deal wit,h incomp1et.e or uncertain mem- 
bership oracles. 

This section int,roduces a modification of the L* algo- 
rit,hm which can be used for DES controller synthesis. 
The resulting algorithm uses an uncertain member- 
ship oracle based on a limited lookahead window [3]. 
Let L(G, N ,  s) denote all strings of length not longer 
than N generated by the plant, G ,  after an observed 
trace, s. Let L,(G, N ,  s) denote the set of uncontrol- 
lable traces and let L,(G, N ,  s) denote controllable 
traces in L(G,N,s ) .  As noted above, the controlla- 
bility of some &rings in L(G, N ,  s) fl I< may not be 
decidable. These undecidable strings will be referred 
to as pending strzngs. It is therefore reasonable to 
propose the following membership oracle, 

0 if t E L,(G, N ,  s)C* 

* otherwise 
1 if t E L,(G, N ,  s) (1)  

The basic operations in the L* algorithm involve 
splitting the state associated with a specific row in the 
observation table. If a table is inconsistent, then there 
exist strings in E which can be used to split a row into 
several distinct rows, i.e. different states. The chief 
complication that uncertain membership oracles in- 
troduce is that it is no longer clear whether or not a 
given row should be split. In this situation, therefore, 
it makes sense to only split rows when the available 
data supports the splitting. In other words, when 
there exist uncertain entries in the observation table, 
row splitting and aggregation should only be based 
on the deterministic entries in the observation table. 
This simple principle provides a systematic method 
for constructing an observation table which is consis- 
tent with the available data and yet retains sufficient 
flexibility to  refine itself when new data (i.e. counter- 
examples) become available. The following definition 
introduces this notion of row aggregation. 

Definition 1 Let S denote the set  of row labels, { s i } *  
Consider  the m t h  subsei, S,, of S such thai for 
any si and sj  in S, and for all e E E ,  the follow- 
ing conditions hold; T ( s i e )  # *, T ( s j e )  # *, and 
T ( s i e )  = T ( s j e ) .  The collectaon S, as called the m t h  
aggregated group of the observation table. 

If there is no other row label in S that can be added to 
the aggregated group S, , then the aggregated group 

is said to be maximal. According to the aggrega- 
tion principle, this implies that the aggregated group 
corresponds to a state of the finite automaton. It is 
now possible to define concepts of closure and consis- 
tency for aggregated groups in a similar way to what 
is found in the L* procedure. 

Definition 2 Let Si (i = 1,. . . , M )  denote the i t h  
maximally aggregated group for a given observation 
table. If for all s E SC - S ,  there exists s1 E S and 
i such fhat  SI E Si and s E Si, then the observafion 
table as said to  be closed. 

Conszder all pairs of strings s1 and s2 such fha t  for 
some i, s1 E Si and s2 E Si. If for all U E C there 
exists j such that S ~ U  E Sj and S ~ U  E S j ,  or S I U  4 Sj 
and s2u Sj for a l l j ,  then the observation table is 
said t o  be consistent. 

The preceding definitions determine a closed and con- 
sistent observation table with regard to aggregated 
groups of rows, rather than individual rows. I t  is 
a straightforward generalization of the definitions of 
consistency and closure used in the L* procedure. 
Essentially, this approach postpones the splitting of 
aggregated states unit1 there is sufficient informa- 
tion available to make a reliable splitting. Proce- 
dures for completing the observation table are done 
in the same way that the L* algorithm completes 
its observation table. The acceptor, M ( S ,  E ,  T )  = 
{ Q , q o , 5 } ,  is then derived from the maximally ag- 
gregated groups in the table through the following 
formulas, Q = {Si,i = 0, .  . . , m } ,  QO = SO, and 
b ( s a , U ) =  {S j l ,S j z  , . . . ,  S j k }  where fo ra l l s€SinS ,  
su E n,"=, sjl. 
Note that in the event that there is no ambiguity in 
the membership query, then the modified L* proce- 
dure is identical to the original L* algorithm. Further 
note that there may be cases when a single row be- 
longs to several different maximal aggregated groups. 
In this case, the resulting acceptor may exhibit non- 
deterministic transitions. 

Preliminary proofs for the convergence of the modi- 
fied L* procedure will be found in [8]. The proof in- 
volves carefully looking at three different types aggre- 
gated groups and showing how the counter-example 
returned by an equivalence query will always bring 
new information into the observation table allowing 
splitting of aggregated groups. If the size of the min- 
imal DFA is known to be bounded, then this implies 
that after a finite number of counter-examples the 
modified L* procedure will have formed the mini- 
mal number of aggregated states for the unknown 
DFA. The controller that is then learned appears to  
be a superlanguage I?, of the specification language. 
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This superlanguage contains the supremal control- 
lable sublanguage as well as a collection of non-system 
behaviours. The intersection of i? with the original 
plant behaviours can be shown to be the supremal 
controllable sublanguage. 

4. DES Controller Synbhesis: example 

This section demonstrates the modified L* learn- 
ing procedure on a manufacturing application drawn 
from [l]. In this example, two machines are connected 
by a buffer. The event set and uncontrollable event 

ai means that machine i starts working, Pi means 
that machine i finishes working. In this example, the 
system states have the following interpretstion. 4 
means machine i is idle and Wi means machine i is 
working. The buffer B has one slot with two states, 
E, empty and F, full. Initially the system is in state 
(11 ,12 ) .  The control specification is to keep the buffer 
at 0 or I at ail times. Let }ai(t) denote the num- 
ber of occurrences of a in string t (a E C,t E E"). 
The control specification can be expressed as K = 
(. : 1 E E*, la2l(t) 5 IPlI(t) I lazI(t) + IlVt E i i) .  
This means that a2 and stricify afternate and that 
pt. occurs first. 

We assume a lookahead of length 3. In 
the initial step, the curre is 8 = E .  Inside 
prediction window, L(G,3,&), the events E ,  ai, and 
ai& are controllable, whereas cy2IY n L(G, 3, E) iand 
ala2C* n L(G, 3, E) are uncontroIIabb. All other 
traces in the window arre pending. The initial ob- 
servation table, TO, is shown beiow, 

sets are E = (a i ,a2 ,P1,P2) ,  xu = (A,&). Event 

The acceptor, MO, is shown in figure 1. Since the 
controllable strings in the initial lookatread window 
can be generated by MO and all of the uncontrol- 
lable strings are not accepted by MO, there is no 
counter-example in the lookahead window and we use 
MO tw the controller. Assume that a1 is the ob- 
served event trace under controller MO. The 3 step 
ahead prediction window L(G, 3, & I )  has iilegai string 
a~&aiPi. Since is uncontrollable, this mean% 
that trace al&al is an uncontrollable trace which 
shouldn't be accepted by the controller. This trace, 
however, is accepted by MO and so it is used as a 
counter-example. The traces a1 and alp1 are there- 
fore added to S and a1 is added to E. The resulting 
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completed table is 

-1 Q1 * 

Since there are no more counter-examples in the 
iookahead window, M I  can be used as the new con- 
troller. In this case, the observed trace becomes 
ai&. In the new lookahead window, L(G, 3, cy&), 
there are two strings which are controllable but not 
accepted by MI. These strings are QI&QZPZ and 
a&a2 and they are therefore treated as counter- 
examples. The observation table, Tz, resulting from 
adding these two counter-examples is, 

F=FFFl Q1 1 * 0  

Figure 1 shows the associated acceptor, M2. Assume 
that this acceptor generates the illegal system be- 
haviour alP1a2P2a~. Since a l P l a 2 P 2  is controllable, 
this string is added into table T2 to obtain table T3, 

Use Ma as a controller and assume that the observed 
trace is a&qal.  Analysis of the lookahead window 
leads to the observation table Tdr  
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T4 E a1 a2 
E 1 1 0  

1 * 0  
WPl 1 0  1 
alPla2 1 1 *  
fflPlQ2P2 1 * 0  
P1 U Pz 
al(a1 U P 2 )  * * *  
alPl(P1 U P 2 )  * * *  
W%a2(C-P2)  * * * 

-alPla2P2(C-a2) * * * 

a1 

* * *  

Note that L(M4)  n L(G) equals the suprema1 con- 
trollable sublanguage obtained in [l], so this acceptor 
is the optimal controller to be learned. The struc- 
ture of this controller is different from that in [l]. 
In spite of this difference however, the behaviour of 
both closed loop logical systems is identical. The dif- 
ferences arise because the controller learned by our 
modified L* procedure also accepts a variety of non- 
system behaviours which cannot be generated by the 
plant. The additional non-system behaviours in M4 
arise from the fact that the counter-examples are all 
chosen from system behaviours (legal and illegal). 
Without a source of counter-examples representing 
non-system behaviours, the learning algorithm will 
be unable to remove these extra behaviours from 4. 

5. Summary 

This paper presented a method for the on-line syn- 
thesis of DES controllers based on Angluin’s L’ algo- 
rithm. The method does not require full knowledge 
of the plant generator. Our knowledge is only re- 
stricted to a finite window of lookahead behaviours. 
In addition to this, the algorithm does not require a 
formal description of the control specifications. The 
algorithm can use quasi-formal specifications. This is 
appropriate for cases in which supervisory specifica- 
tions arise from human operator guidelines. 

References 
[l] P. Ramadge and W.M. Wonham, “Supervisory 
control of a class of discrete event procesae8)’, SZAM 
J O U ~ Q ~  of Control and Optimization, Vol. 25, No. 1, 
pp. 206-230, Jan. 1987. 
[2] D. Angluin, “Learning regular sets from queries 
and counter-examples” , Inl. J .  Information and 
Computation, Vol. 75, No. 1, pp. 87-106, 1987. 
[3] Sheng-Luen Chung, Stdphane Lafortune, “Lim- 
ited lookahead policies in supervisory control of dis- 
crete event systems”, IEEE !Bans. on Automatic 
Control, Vol. 37, No. 12, pp. 1921-1935, Dec. 1992. 
[4] S. Young, Vijay Garg, “transition uncertainty 
in discrete event systems”, Proceedings 6th IEEE In- 

B? 

%*SI  

Figure 1: Completed Acceptors 

t enat ional  Symposium on Intelligent Control, pp. 
245-250, Arlington, VA. Aug. 1991. 
[5] D. Aegiuin, C.H. Smith, “Inductive Infer- 
ence: Theory and Methods.” Competing SurweSIs, 
15( 3):237-269, September 1983. 
[6] L. Valiant, “A Theory of the Learnable”, 
Comm. o f t h e  ACM, Vol27:1134-1142,1984. 

“On the complexity of mini mum 
sets”, Int.  J. Information and 

Control, Vol. 39, pp.S37-350, 1978. 
[8] X. Yang, M. Lemmon, and P. Antadclis, “induc- 
tive inference of logical DES controllers using the L’ 
aigorithm” , Technical Report ISIS95-OOx, University 
of Notre Dame, Notre Dame, IN, May 1995. 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:16:12 EST from IEEE Xplore.  Restrictions apply. 


