
Control System Synthesis
Through Inductive Learning

of Boolean Concepts
Michael Lemmon, Panos Antsaklis, Xiaojun Yang, and Costantino Lucisano

n control, learning is often used to identify a single controller I satisfying a particular performance measure. In certain cases,
however, it is desirable to identify the set of all controllers which
ensure that the controlled plant satisfies a control property such
as Lyapunov stability, robust stability, or robust performance. A
set of procedures identifying such sets of admissible solutions
can be devised using boolean concept learning algorithms. Re-
cent years have witnessed considerable interest in this type of
learning procedure in the field of computational learning. The
objective of this article is to provide some examples illustrating
how boolean concept learning can be used in control systems.
The first example examined in this article uses concept learning
to identify the set of stabilizing controllers for certain classes of
linear time-invariant plants. Another example illustrates the use
of concept learning in the identification of discrete event system
(DES) controllers.

Introduction
Modem robust control methods provide a systematic means

of optimizing controller performance in the face of bounded
process uncertainty. If the resulting performance of the robust
control system is unacceptable, then the only recourse is to go
back and reduce modeling uncertainty. In adaptive control, one
can tolerate larger uncertainties for limited classes of problem
uncertainty. In high autonomy systems, modeling uncertainty can
be reduced by having the system “learn” the necessary process
models [11. By incorporating past behavioral experience with a
priori process models, the learning algorithm reduces process
uncertainty and thereby increases the maximum performance
level attainable by the system.

Much of the prior work in learning control has focused on
developing algorithms which identify a single admissible con-
troller for the plant [1,2]. There are problems, however, where
one seeks to identify a set of controllers, rather than a single
controller [3]. In this case, the learning procedure searches for a
characterization of all controllers consistent with a boolean
(TRUEFALSE) valued functional providing a simple “accept-
able” or “unacceptable” assessment of a control system’s per-
formance. As an example, consider a boolean valued functional
that maps all Lyapunov stabilizing controllers onto TRUE (1) and

The authors are afiliated with the Department of Electrical Engi-
neering, University of Notre Dame, Notre Dame, Indiana, 46556.
This work was supported in part by grants from the National Science
Foundation (MSS92-16559) and the Electric Power Research Insti-
tute (RP8030-06).

all destabilizing controllers onto FALSE (0). This boolean func-
tional dichotomizes the set of controllers into two disjoint sets;
the set that leads to stable and the set that leads to unstable control
systems. The design problem associated with this functional
attempts to approximate the set of Lyapunov stabilizing control-
lers for a given plant. This set represents the concept class of
Lyapunov stability. Because the objective of the design problem
is to learn a concept (i.e. all controllers satisfying the specified
control property), these learning procedures are sometimes re-
ferred to as boolean concept learning algorithms.

Design problems requiring boolean concept learning are eas-
ily formulated. It may, for example, be desirable to identify all
controllers of a given linear or non-linear continuous-state sys-
tem that render the controlled plant Lyapunov stable [3,4,5]. A
similar problem might be to identify all controllers leading to
systems exhibiting robust stability or performance in some ap-
propriate sense. These types of problems are of interest because
they identify a large set of admissible controllers. Once identi-
fied, this set of admissible controllers can then be used to pick
out a single controller that satisfies additional control objectives.
This is not unlike what happens in the design of H“ controllers
for linear time invariant systems; all stabilizing controllers are
identified via the Youla parameterization and then a single con-
troller is selected which minimizes the -norm of a particular
transfer function. Another example is found in the synthesis of
supervisory controllers for discrete event systems (DES) [6]. In
this case, the learning algorithm needs to identify all of the
controllable behaviors (Le., the suprema1 controllable sublan-
guage) that the DES can realize. Once again, the learning proce-
dure identifies a set of legal behaviors, rather than a single legal
behavior.

There is a rich body of results [7,8] concerning the advantages
and limitations of boolean concept learning. Aside from robotic
exploration [9] and generalizations [101 of concept learning,
boolean concept learning has not been widely used in control.
The purpose of this article is to show how concept learning
provides a useful framework for solving traditional control prob-
lems. This article illustrates these ideas through two different
types of control problems. The first control problem is concerned
with identifying a set of stabilizing controllers. Its solution is
illustrated with an example involving the stabilization of an
autonomous spacecraft [5] . The second design problem exam-
ines logical DES controller synthesis as a concept learning
problem [111.

The remainder of this article is organized as follows. The next
section introduces the notion of a control concept. The third

June 1995 0272- 1708/95/$04.000 1995IEEE 25

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:38:09 EST from IEEE Xplore. Restrictions apply.

section discusses boolean concept learning and presents a spe-
cific algorithm for learning the concept of Lyapunov stability for
linear time invariant plants. The fourth section uses the learning
algorithm of section three to adaptively stabilize a spinning
spacecraft. Another control concept associated with the supervi-
sion of discrete event systems is then presented in the fifth
section. The sixth section summarizes the principal results and
contributions of this article.

Control Concepts
This section shows how boolean concepts arise in control. In

particular, use of control concepts is illustrated with the concept
of Lyapunov stability.

Let K denote a set of instances. A concept is a boolean
functional c : K -+ (0, 1) over this set of instances. The semantic
meaning of this function is that instances, k E K, for which c(k)
= 1 will be said to satisfy the concept c. A concept class, C, will
be a set of concepts. It will be convenient to decompose a concept
class into a denumerable number of subclasses, cfi, indexed by
the integer n. For example, C might consist of all boolean
formulae and cfi might consist of all boolean formulae of length
n.

A control concept arises when the concept is defined over a
control system's set, K, of controller gains. The boolean func-
tional, c, characterizing the control concept maps all gain vectors
onto 1 if the systems parametrized by these gains, k, all possess
the same control property. An example of such a property might
be Lyapunov stability, robust stability, or robust performance. A
specific example was presented in the preceding paragraph
where there is a boolean functional, c, whose value c(k) = 1 for
all k that stabilize (in the sense of Lyapunov) a given plant. In
this case the concept class C = (c) represents the concept of
Lyapunov stability for that particular type of control system.
Another example occurs if the boolean functional, c, takes on a
value of 1 for all k having a magnitude less than unity. This
concept class represents the concept of controllers with unity
bounded gain vectors.

Another example of a control concept is the concept of
P-stability. Consider the set of Lyapunov stable controllers for
linear time invariant systems of the form

whereA E 91nx", b E 91n, and k E 3'. The system to be controlled
will be denoted by the ordered pair, (A, b), and the controlled
system has a system matrix Ak = A + bkT. Lyapunov's lemma
says that this system is exponentially stable if and only if there
exists a positive definite symmetric matrix P such that

A l p + PA, C 0. (2)

If we fix the matrix P, then the preceding inequality can be used
to define the concept subclass, Cp, of P-stability for the system
(A, b). In particular, the boolean functional

(3)

model

controlled process +

Fig. 1. Model-following control system.

denotes the concept of P-stability. The concept subclass, Cp,
consists of the single concept CP.

The concept subclasses of P-stability can be used to charac-
terize the concept class of Lyapunov stability, 6, for special
types of linear systems. Assume that Ak lies in a matrix interval
[Ai, A2]. Recall that a matrix A lies in the matrix interval if and
only if the ijth element of A is bounded above and below by the
ijth elements of A2 and Ai, respectively. From the preceding
definition it is clear that the set of gains such that Ak E [Ai, A21

forms a bounded set. Let sc K denote the set of bounded gains
which stabilize the plant. It is known that a sequence of matrices,
(P n) (n = 1, ..., m), can be computed [12,13] to provide a
necessary and sufficient condition that every system in [Ai, A21
is Lyapunov stable. This algorithm [13] provides a means of
identifying stable matrix subintervals in [Ai , A2], so that every
stable plant in [Ai, A21 will satisfy the Lyapunov inequality with
at least one of these P-matrices. This result suggests that the
concept class, 6, for controlled systems, Ak, in the specified
matrix interval can be decomposed into a denumerable collection
of concept subclasses, cfi, associated with the concept of P,-sta-
bilizing controllers.

These ideas can be graphically illustrated in the following
example. Consider a model following system whose block dia-
gram is shown in Fig. l. In this figure, the system is a linear time
invariant (LTI) system. The reference plant is described by a
stable minimum phase rational transfer function, P (s) . Now
consider a specific model reference and plant given by
P (s) = 1 / (s2 + 2s + 1) and P(s) = l/(s - 2) , respectively. Assume
that the control system uses unity feedback with a precompensa-
tor whose transfer function is parametrized as C(s I ki,k2) = k2/(s
+ ki). Fig. 2 shows a contour plot of the controlled error system's
-norm as a function of the controller parameters ki and k2.

For the example system shown in Fig. 1, the concept class of
Lyapunov stability, Cr;, consists of the boolean functional

(4)

The region identified by cs is easily determined by application
of the Routh-Hunvitz procedure. The set of gains associated with
the concept are shown in Fig. 2. It is also possible to graphically
illustrate the concept subclass of P-stability. Consider the follow-
ing P matrix,

26 IEEE Control Systems

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:38:09 EST from IEEE Xplore. Restrictions apply.

7 7!5 8 8.5 9 9!5 11) 10.5 11

Controller Gain K2

Fig. 2 . Contour plot of an error system’s supremum norm. Thisfigure
also shows the regions associated with the concept class ofLyapunov
stability and the subclass of P-stability.

P=(; 3.
The subclass of P-stabilizing controllers, Cp, can be shown to
consist of the single concept,

cp (4 ,k2) =

1 if 25kf -16kl -20klk2 +4k; +4k2 + 1 6 < 0 m d k2 ’5 .6
0 otherwise (6)

This region is also illustrated in Fig. 2 and is seen to be a subset
of the region associated with concept class 0.

Concept Learning in Control
The preceding section identified two control concepts for

linear time-invariant control systems, Lyapunov stability, and
P-stability. This section discusses methods for learning estimates
of these control concepts. Concept learning methods are useful
in certain control system synthesis problems. Recall that a stand-
ard approach to the synthesis of modern robust control systems
is to fiist characterize a set of stabilizing control systems and then
to select one of these admissible stable control systems to mini-
mize an assumed performance measure. In these design proce-
dures, it may therefore be useful to estimate the set of stabilizing
control systems prior to selecting the final controller design. This
section shows how concept learning methods can provide on-line
identification of the concept classes 0 and cp.

Concept Learning: Preliminaries
Let c be a concept class consisting of boolean functional c :

K + [0, 1 }. Let s be a design set consisting of N ordered pairs
(ki,c(kj)) representing input-output examples of concept c. Let S
denote the collection of all possible design sets. For example, if
the concept class is 0 (Lyapunov stability), then each example,
(ki,Cs(ki)), in the design set represents a specific controller, ki, and
the assessment, Cs(ki), of whether or not the controller stabilizes
the system. In formulating the learning algorithm, it will be

convenient to define another concept class, % consisting of
boolean functionals h : K + { 0, 1) called hypotheses. The class,
% will be called the hypothesis space and a boolean functional
in Hwill be called an hypothesis.

Learning algorithms can be viewed as empirical function
approximation procedures. This viewpoint of learning has been
discussed previously in [141. The function approximation prob-
lem associated with concept learning is easily stated. Let c
represent the target concept to be learned and let h represent an
approximating concept drawn from the concept class of hypothe-
ses, g The function approximation problem seeks to find an h
which minimizes an assumed performance measure. In tradi-
tional function approximation, these measures are operator
norms, but in concept learning it is convenient to use a prob-
abilistic measure. Let h c K denote a set of gains which the
hypothesis h maps onto 1 (TRUE). If an instance (controller), k,
is randomly selected from h in a uniform manner, then the error
of hypothesis h with respect to concept class C = [c] is the
probability that c(k) # 1. This error is denoted as follows:

er(h,C) = Probability [h(k) = 1 and c(k) # 1) . (7)

Associated with this error measure is the following function
approximation problem:

min er(h,C).
h& (8)

Learning problems arise when the function approximation
problem must be solved using a set consisting of a finite number
of input/output examples of the concept. Because of its reliance
on examples, this type of learning is sometimes called “empiri-
cal” function approximation. In particular, let the design set, s,
consist of N ordered pairs (ki, C(kj)) (i = 1, ..., N) where kj E K .
The learning problem attempts to minimize an empirical measure
of the hypothesis’error. Note that since our original error measure
was a probability over the set h, then a useful empirical error
measure is the relative frequency or ensemble average over the
design set. Provided the samples in the design set are chosen in
an independent and identically distributed manner, then the
strong law of large numbers ensures that the sample average
converges to the probability of the event. These remarks suggest
the following empirical measure of hypothesis error:

where (ki,C(ki)) E s. The learning problem is therefore concerned
with the following optimization problem:

min e‘r (h ,C , s) .
h s H (10)

A concept learning algorithm is a computational procedure
which solves the preceding minimization problem. In the com-
putational learning community, it is often more convenient to
view this algorithm as a mapping L : S + Htaking the design set
onto a specific hypothesis h in g The learning algorithm will be

June 1995 27

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:38:09 EST from IEEE Xplore. Restrictions apply.

select initial

from design set

1 I
1 inconsistent I

Use membership oracle to
assess consistency of
current hypothesis

I consistent

21 stopping rule ? I

I END I
Fig. 3. Boolean concept learning algorithm (stability).

said to be consistent if h(ki) = c(kt) for all gains, ki, in the design
set. Essentially a consistent algorithm produces an hypothesis
whose empirical error is zero. There may, of course, be several
consistent hypotheses for the given data set. An important issue
in learning theory concems the error of fhe hypothesis on samples
not in the design set. This issue is sometimes referred to as the
generalization issue. Let h = L(s) be the hypothesis generated
by 1ea;ming algorithm L using design set s. The learned hypothe-
sis, h , will be said $0 generalize “well” over the concept class if
the true error, er(h ,o, is kept small. In general, this issue is
addressed by carefully selecting the concept class FL

While the learning algorithm may be a mapping between S
and X it is generally implemented by a computational procedure.
Fig. 3 illustrates one such algorithm. The f i t step in this
procedure selects an initial hypothesis, h, and then selects a single
instance, k, from the design set s. The instance (in our case a
controller gain vector) is then evaluated by an algorithm called
the membership oracle. In particular, the membership oracle
evaluates h(k) and c(k) and declares whether they are equal or
not. In the event that they are not equal, then the hypothesis h is
not consistent with the design set. The learning algorithm there-
fore modifies the hypothesis to force consistency of h with the
selected instance, k. The algorithm responsible for modifying the
hypothesis is called the update procedure. A good learning algo-
rithm eventually finds an hypothesis which is consistent with
every instance in the data set. The stopping rule shown in Fig. 3
is used to stop the learning procedure. It is therefore seen that the
concept learning algorithm consists of four basic components,
the initialization of the hypothesis, the membership oracle, the
update procedure, and the stopping rule.

The preceding generalization issue is concemed with the
performance of the learning algorithm for a design set of fixed
size. By the strong law of large numbers, the empirical error
approaches the true error as the dze of the design set increases.
Therefore, if we have a consistent algorithm, we need only

increase the design set’s size to reduce the error of the hypothesis
to an arbitrarily small level. In this framework, we then need to
be concemed about the size of the design set. In particular, a
leaming algorithm is said to be eficient if the size of the design
set required to produce a specified hypothesis error grows in a
polynomial manner with the specified error and the learning
problem’s size. This notion of polynomial growth and learning
efficiency has been formalized [151 under the name of probably
almost correct (PAC) learning. In the PAC leaming framework,
we assume that a design set, s, of size N has been selected in a
random manner. Alearning algorithm,L, is said to be PAC if there
exists positive E and 6 such that for all c E C and for all N >
NO(E,6),

Probability [s E SI er(L(s),C) < E } > 1 - 6 , (11)

where the probabilities are taken over all possible design sets.
The function NO(E,~) represents the size of the design set required
to achieve the (E$) accuracy specified in Equation (11). In
particular, the algorithm is said to be efficient or strongly
learnable if No is a polynomial function of 6 and E. Weaker
notions of learnability have been introduced which only require
that No be polynomial in 6 (for fixed E). It has been shown that
any weak PAC learning algorithm can be modified into a strong
learning algorithm [9].

Remark: Concept learning is generally studied under the
name of computational learning theory [7]. These algorithms
have also been called inductive inference procedures [161. Prior
research has identified certain classes of learnable boolean for-
mulae (concepts) and formal languages. It is known, for example,
that all conjunctive normal form expressions with k terms (k-CNF
formulae) are learnable by positive examples [15]. On the other
hand, boolean formulae in which each variable appears at most
once (p-formula) are not learnable [17]. In the case of formal
languages, it is known that regular languages are not learnable
from positive examples [18,191. When augmented with counter-
examples, however, such languages can then be shown to be
learnable [20].

Leaming P-Stable Concepts
This section formulates a learning algorithm for the concept

of Lyapunov stability in linear time invariant plants. In particular,
the objective is to formulate a concept learning algorithm to
approximate the concept class of Lyapunov stability for LTI
plants whose system matrix lie in a specified matrix interval. The
learning algorithm to be developed has the basic structure shown
in Fig. 3. The following items need to be specified in formulating
the learning procedure:

the concept class to be learned, C
a space of hypotheses, H
a set of design samples, s
a method for choosing an initial hypothesis
a membership oracle
an update algorithm
and a stopping rule.

The concept class, Q, was introduced in the preceding sec-
tion. In particular, it is assumed that the process to be stabilized
is a linear time-invariant system with state equation 1. The gain

28 IEEE Control Systems

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:38:09 EST from IEEE Xplore. Restrictions apply.

vector, k, parametrizes the controller. It will be assumed that the
system matrix Ak = A + bkT lies in a matrix interval [AI, A2]. As
noted in section two, it is possible to compute a sequence, [Pn}
(n = 1, ..., m), of positive definite matrices characterizing the
concept class of Lyapunov stability. The decomposition method
is based on a procedure discussed in [131 and individual P
matrices in the sequence are obtained by solving the linear
program suggested in [121. It is therefore possible to express the
concept class of Lyapunov stability for Ak as follows:

c, = uc, .
n

is a sufficient condition for detecting system instability. Inequal-
ity (15) can therefore be used to formulate a membership oracle
(this could altematively be called the instability-oracle) of the
form

1 if XTPx > 0 where X = Akx

0 otherwise (16)
m (k) =

The preceding membership oracle provides an empirical test
declaring when the system is Lyapunov unstable. In particular.
the oracle declares 1 (TRUE) when the system using controller
gain k is not P-stable.

If the matrix interval is small enough, then there may be a finite

algorithm more easily, let’s consider the case where there is only
a single P-matrix needed to characterize Cs.

The concept class of hypotheses, % will be chosen to consist
of boolean functionals taking ellipsoidal subsets of the gain
space, K, onto 1. An ellipsoidal set, E , is characterized by the

Remark: Note that the preceding oracle assumed that p

general. however, we will need to have a sequence, Pn (n = 1, ..,,
N) of matrices to characterize all stable plants in the matrix
interval [Ai, Az]. In this case, the membership oracle would need
to be modified to the

number Of terms in Equation (12)- To the provides a and sufficient test of system stability. In

form:
following equation:

m(k) =

1 if there exists no n such that kTPnx < 0 for control gain k

0 otherwise (17)
E (Q , 1) = {k E K : (k -l)T Q (k -1) c 1 },

where 1 E K is the ellipsoidal set’s center and Q E 9Inm is a
symmetric positive definite matrix characterizing the ellipsoid’s
shape. An hypothesis, hte.r;(k), is then a boolean functional ofthe
following form:

The update algorithm for our learning procedure is formulated
as follows. Note that when the membership oracle declares that
k does not stabilize the system, then any gain k such that

xT[PbkT +kbTP]x > xT[PbkT +kbTP]x (18)

will not stabilize the plant either. Since Inequality (1 8) is linear
in k , this equation represents a halfspace of gains which will not
include the stabilizing gains in % m i s halfspace can be charac-
terized by the following inequality:

Denote the ith hypothesis generated by the algorithm as hi(k)
and let E(Hi, ki) be its associated ellipsoidal Set. Recall that the
set of stable gains for Ak is denoted by S a n d forms a convex
bounded subset of K. Let qdenote this bounded set of gains. The
initial hypothesis, ho, will be chosen so that its associated ellip-
soidal set properly contains s c T (k - k) > 0, (19)

Let s be a design set of finite size consisting of the controller
gains which the algorithm is to learn from. In particular, if the
learning procedure generates a sequence of hypothesis, hi, then
the ith example of the design set will be the center, ki, of the
ellipsoidal set associated with hypothesis hi

The membership oracle, m : K + {0, 1) is a boolean func-
tional mapping a given control gain, k, onto 1 if c(k) # 1 and h(k)
= 1. On a semantic level, the membership oracle declares whether
or not c(k) renders the controlled system P-stable. Recall that
we’ve restricted our attention to systems whose Lyapunov sta-
bility can be characterized by a single P matrix. As noted below
this assumption is somewhat restrictive, but can be extended
through the use of multiple P-matrices. In light of the preceding
assumptions, we can evaluate c(k) in the following manner.
Assume that the system’s current state x and state rate of change,
x , can be measured. Since xTPx is a global Lyapunov functional
for the system, we can conclude that the inequality

XTPx > 0,

where c E K is an appropriately defined real vector.
Inequality (19) now serves as the basis for the update algo-

rithm. Fig. 4 shows the concept set, s and the ith bounding
ellipsoid, E(Qi, kj). Since this ellipsoid is known to properly
contain s then the halfspace of infeasible gains identified by the
above inequality cuts through the center of E(Qi, ki). This cut is
shown in Fig. 4. The intersection of E(Qi, ki) and the comple-
mented halfspace forms a convex body which also contains s
This new convex body can be contained within another minimal
volume ellipsoid (called the Lowner-John ellipsoid), E(Qi+i,
ki+l). In particular, this updated ellipsoid is computed according
to the formula [21],

k . - k - L d
m + l 1+1 - i (21)

29 June 1995

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:38:09 EST from IEEE Xplore. Restrictions apply.

7 715 8 8.5 9 9!5 1Q 10.5 fi
Controller Gain K2

Fig. 4. Ellipsoidal update.

The updated ellipsoid, E(Qi+l, ki+l) is shown in Fig. 4. The
preceding equations constitute the update procedure used by the
learning procedure.

A stopping rule can be derived using results on the finite time
convergence of the ellipsoid method. As noted above, the ellip-
soid method generates a sequence of ellipsoids whose volumes
are monotone decreasing. It can be shown that the ratio of the
volumes of any two successive ellipsoidal updates is given by

where m is the number of control gains to be learned. Equation
(23) shows that the rate at which ellipsoid volumes decrease is
independent of the iteration index, i. Therefore, it can be shown
that the learning process must converge to a gain in Kafter no

vol E,,
more than 2m In - updates [21]. In other words, the pro-

VOlK
posed learning algorithm converges after a finite number of
updates. Upper bounds on this number of updates can be easily
derived [21] and provide the basis for the learning procedure’s
stopping rule.

Remark: Also note that the volume of concept set Kscales
as O(m-m). Inserting this bound into the preceding convergence
time shows that the learning algorithm’s sample complexity is
O(m2 In mL), where L is a measure of the desired accuracy and
m is the number of controls. Therefore not only does the learning
procedure converge in finite time, but this convergence time
scales in a polynomial manner with problem size. This observa-
tion therefore suggests that the concept of Lyapunov stability is
weakly learnable for systems whose stability can be charac-
terized by a single positive definite P matrix.

Remark: This procedure has some obvious limitations. The
first limitation is that it requires full state accessibility. For
input-output systems where the states are not accessible, this
approach will not be applicable.

Remark: The stability oracle requires that the plant state and
its time rate of change be measured. Obviously this is not always

possible. In certain cases, the state derivative can be replaced by
an appropriate finite difference. There are also some applications
where state derivatives can be measured directly. In systems, for
example. where state information is derived from accelerometer
measurements, the state derivatives are directly accessible.

Remark: The preceding discussion only pertains to interval
matrices for which a single P matrix provides a necessary and
sufficient condition for Lyapunov stability. Using results in [131
and [121 it may be possible to modify this algorithm to a proce-
dure which uses multiple P-matrices to characterize the concept
class, C,. This matter is currently under investigation.

Example: Attitude Stabilization of a Satellite
In this section, the boolean concept learning algorithm out-

lined in the preceding section is used to stabilize a spinning
spacecraft. The example is based on a recent incident with the
European space agency’s telecommunication satellite, Olympus
WI.

The Olympus spacecraft was a telecommunications satellite
built by British Aerospace for the European Space Agency
(ESA). The three-axis stabilized satellite orbited about 1,000
kilometers above the Earth’s surface. Because of this low orbit,
there were significant disturbance torques associated with aero-
dynamic drag on the solar panels. There were also additional
disturbance torques due to solar radiation pressure, gravity gra-
dient effects, and bending modes. The on-board control subsys-
tem included an analog sun sensor, three digital sun sensors, two
radio frequency sensors, and two digital infrared sensors. Body
rates were measured by three orthogonal gyros and a redundant
skewed gyro [22]. During normal on-station operations, optical
sensors were used to control the roll and pitch axes, while the
yaw axis was controlled via one component of the yaw gyro pack.
In all other cases, which imply the loss of Earth pointing mode,
the attitude measurement was provided by gyros. Normal attitude
control was achieved through the use of reaction wheels. There
were also thrusters which could be used in emergency maneuvers
and in off-loading of the reaction wheels.

On Aug. 11,1993, during an abnormal Perseid meteor shower,
Olympus lost Earth pointing attitude. The control mode switched
automatically to a thruster-based emergency mode. This emer-
gency maneuver, however, failed to reacquire sun pointing and
introduced large body rates (spinning) as a side effect. The
ground station disabled the emergency mode and the spacecraft
was driven into a stable spinning state. Subsequent analysis of
post-anomaly telemetry showed that there was insufficient pro-
pellant left to reestablish normal station keeping. The Olympus
mission was therefore terminated a year ahead of schedule.

The Olympus scenario demonstrates the limited autonomy of
existing spacecraft systems in dealing with catastrophic pertur-
bations. The high body rates induced by the emergency maneuver
spun up the spacecraft so that its original control system worked
poorly. Had Olympus been able to autonomously relearn the
“optimal” controller, then it may have been possible to reestab-
lish nominal operation without depleting limited propellant re-
serves.

One way in which Olympus might have relearned the optimal
controller gains would be to use the concept learning procedure
introduced above. This learning control scheme automatically
determines the state feedback gains, k, which would stabilize a
linear system of the form given in Equation (1). In the context of

30 IEEE Control Systems

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:38:09 EST from IEEE Xplore. Restrictions apply.

0 08

006

0 08

006

O M

-0 02

-0 04 O M
I

0 50 1W 150 200 250 3M) 350 4W 450 5W 0 50 1M) 150 200 250 3w 350 4W 450 Mo
Time(sec) Tme(sec)

Fig. 5. Olympus simulation results. The right- and left-hand figures show the attitude angles for the conventional and learning controllers,
respectively. In this case, the largest component of the spin disturbance is introduced along the roll axis (solid line). Note that the learning
controller was capable of quickly removing this roll rate.

0 8 I

06 1

I -02 + -0 2

I -0 4

I
I

-0 4 -
I

06 -0 6
I

1 - - - - 081 -0 8

-IO 50 100 150 2tM 250 3w 350 400 450 500 ' O 50 100 150 250 3oo 350 4w 450 5oo
Time (sec) Time (SE)

Fig. 6. Olympus simulation results. The right- and left-handfigures show the torque commands to the roll reaction wheel for the conventional
and learning controller; respectively. Note that the learning controller exhibited lower peak commands with shorter duration than the
conventional controllel:

the Olympus scenario, these equations represent the satellite's
linearized attitude dynamics. The proposed learning algorithm
would therefore use state measurements to identify a gain vector
k which stabilized the plant.

A concept learning procedure similar to that shown in Fig. 3
was used on the simulated Olympus scenario. An important
aspect of this work was that the simulation used was a full-scale
simulation of the Olympus spacecraft originally developed by
British Aerospace in the design and validation of the attitude
control system. The results obtained with this simulation were
therefore felt to yield very accurate representations of the Olym-
pus spacecraft's behavior. The objective was to see if using the
learning algorithm would have dramatically reduced the fuel
consumption during Earth reacquisition. Recall that excessive
fuel consumption in recovering from the emergency maneuver
was the reason for the early termination of the Olympus mission.
If the learning algorithm was therefore able to significantly

reduce fuel usage, the mission may not have been terminated
prematurely.

Results from the simulated example are shown in Figs. 5,6 ,
and 7. In this example, the spin disturbance begins at f = 100
seconds. Figs. 5 and 6 show the attitude angles and reaction wheel
commands, respectively, for the concept learning controller and
a conventional fixed controller. Comparing the attitude angles of
the two cases in Fig. 5, it is apparent that the use of the learning
algorithm dramatically reduced the attitude transients experi-
enced by the craft in recovering from the spin disturbance. Fig.
6 shows that the smaller attitude transients resulted in smaller
torque commands to the reaction wheels. In fact, when the total
torque commands to the roll reaction wheel were integrated, it
was found that the control effort was cut in half by the application
of the learning controller.

More extensive simulation experiments examined the learn-
ing controller's performance for a variety of spin disturbances.
These results are shown in Fig. 7. In all cases the integrated torque

June 1995 31

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:38:09 EST from IEEE Xplore. Restrictions apply.

07

06

0.5

0 4

03

0 1 ’

0
05 1 1.5 2 2 5 3

pitch rate disturbance value (radisec)

Fig. 7. Olympus simulation results. Figure plots the integrated
torque command (.I) vs. initial pitch rate disturbance for the
conventional (solid) and learning (dashed) controllers.

commands generated by the learning controller were less than
that of the fixed conventional controller. For small spin rates, the
two approaches are comparable since the original controller is
nearly optimal. For large spin rates, the energy savings are
reduced because of the reaction wheel’s limited ability to absorb
excess angular momentum. The greatest energy savings occur
for moderate spin rates. These savings were significant and at
least on a preliminary basis it might be inferred that the use of a
learning controller would have conserved sufficient fuel to pre-
vent premature termination of the Olympus mission.

While the preceding concept learning method can be used to
stabilize a continuous-time system, it can be effectively argued
that there are other equally valid approaches to address this
problem. The value of the above formalisms concems the fact
that we have really identified a set of controllers rather than a
single one. So in reality it is the “stability concept” rather than
just a stable controller that was identified. The importance of
quickly identifying a set of stabilizing controllers is that after
initial stabilization of the system, it is possible to select a con-
troller from this set which is “optimal” with respect to the
system’s new operating conditions.

Fig. 8. DES supervisory control.

Control Concepts and DES Supervision
Discrete event systems (DES) are dynamical systems which

evolve over a discrete set of symbols. In the context of control,
DES are often used to model supervisory control systems. For
example, consider a process control facility consisting of dozens
of individual continuous-time control systems. Management of
the entire plant requires the logical coordination of these various
continuous-time controllers. This coordination problem can be
modeled as a combination of a discrete event system (DES) plant
which is being supervised by a DES controller. The DES plant
generates a sequence of symbols representing significant events
occurring within the plant. The controller responds to these
logical events with a sequence of control directives.

There are many ways of modeling DES plants and controllers.
One way models the plant and controller as a finite state machine
(FSM) [6]. In particular, the plant is represented by the following
FSM:

where C represents a finite set of events that can occur in the
plant, Q represents a finite set of discrete (symbolic) states. The
mapping 6 : C Q + Q is a transition function characterizing the
evolution of the plant. There is a set of initial states qo. The formal
language generated by the given plant, denoted as L(G), is well
known to be a regular language. To discuss control of this plant
it will be convenient to partition the plant’s event set C into

G K

Fig. 9. The left-hand jigure shows the directed graph for sample DESplant. The right-handfigure shows the directed graph for a specified
behavior on this DESplant.

32 IEEE Control Systems

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:38:09 EST from IEEE Xplore. Restrictions apply.

I I

Fig. IO. L(G, 2, E), thefirst lookahead window for the sample DES
plant.

I
I I

mutually disjoint sets of controllable, Cc, and uncontrollable
events, Cut. Uncontrollable events are occurrences in the plant
which the supervisor cannot disable. An example of an uncon-
trollable event in a DES plant might be the failure of some
machine in a manufacturing process. Essentially, the problem of
supervisory control is to learn how to cope with uncontrollable
events so that a specified behavior is realized.

The supervisor is also a FSM denoted by a 4-tuple, S = (C, X ,
6, xo). The interconnection of the plant and supervisor is shown
in Fig. 8. In this figure, the supervisor receives, as input, the event
traces rs E C* from the plant. These received symbols drive the
supervisor’s state transitions. The supervisor states are symbols
in the set .Y and the transition mapping is 5 : C X -+ X . The set
of initial supervisor states is given by xo. The supervisor gener-
ates controller directives by disabling controllable transitions in
the DES plant. In Fig. 8 this is shown by a mapping, 4 : X -+
P(C), from the supervisor’s state space onto a power set of plant
events. This mapping is called the enabling function. It uses the
supervisor’s current state to enable a subset of plant event tran-
sitions.

The lefthand side of Fig. 9 illustrates an example of a plant
FSM. The FSM is represented as a directed graph in which the
nodes are states, the arcs represent the transition function, 6, and
the arc labels denote plant events. In this example, the event set
is C = {ai, a2, p] and the uncontrollable event set, C, = { p]. The
regular language generated by this example can be shown to be

_ _ _ - _ _ _ _ _ _ - _ _ _ _ _ _ _ _
I I I

Get controller from the table

c
L* algorithm

Initialize : I I I

Fig. 11. On-line synthesis algorithm for DES controller:

June 19%

given by strings satisfying the fol lowing formula:

L(G) = (alp2 + a2)p*.
The objective of supervisory controller synthesis is to ensure

that the controlled plant realizes a specified behavior (language).
In particular, the specified behavior is assumed to be expressed
as a regular language, K. The righthand side of Fig. 9 shows the
FSM realizing the control specification K = alp2 +a2p* . This
specification can be also be represented as a quasi-formal set of
rules. The quasi-formal control specification is itemized below:

1. If a1 occurs first, then, at most, two p events are allowed
to be generated.
2. If a2 occurs first, then any finite p events are allowed to be
generated.
Discrete event system (DES) controller synthesis methods

proposed by Ramadge and Wonham [6] require that the state
transition model of the desired legal behaviors be known. It has
been pointed out [23,24] that this requirement is often unreason-
able. In many cases, global information about the plant DES is
not available, and in this case the DES plant needs to be identified
from observed plant behaviors. This formulation naturally sug-
gests that concept learning algorithms found in the computer
science community might be useful in learning DES supervisors
for partially specified DES plants.

Early work in on-line DES synthesis, however, suggested that
inductive inference of DES supervisors would not be practical.
The controllers obtained by the Ramadge-Wonham synthesis
were finite automatons which serve as acceptors (FSM) for
regular languages. The problem here, however, was that it had
already been shown that regular sets were not learnable by design
sets of positive examples [18,19]. Later work noted this fact in
connection with DES controller synthesis [25]. These observa-
tions about the intractability of the inference problem for DES
supervisors proved to be a considerable obstacle in the applica-
tion of inductive learning methods for DES synthesis.

Modified 15- Algorithm for DES Supervision
Inference of automatons from positive examples can be

viewed as a form of “passive” learning. Passive learning methods
passively observe examples of the regular set and base their
determination on those observations. This is precisely the type
of learning procedure which was used in our spacecraft stabili-
zation example. An alternative to “passive” observation is “ac-
tive” exploration. In this case, the learning algorithm proposes
specific input examples whose performance should be evaluated.
Angluin showed [20] that while passive inference was NP-com-
plete, a combination of passive and active learning was in fac:
polynomial in the size of the minimal FSM. The resulting L
algorithm proposed in [20] uses passive observation and actively
suggests counterexamples to assist the leaming process. Sub-
sequent work [9] extended this algorithm and used it in simple
robotic navigation problems constructed on a idealized grid
world.

Fig. 11 shows the fl$wchart for an on-line DES synthesis
procedure based on the L, algorithm. In this figure, the basic flow
and componeFts of the L procedure are given in the lefthand side
insert. The L procedure, shown in Fig. 11, methodically builds
up an observation table to represent the concept (regular set) to
be learned. The table is a two-dimensional array whose rows are

33

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:38:09 EST from IEEE Xplore. Restrictions apply.

labeled by strings s E S u SC and whose columns are labeled by
symbols t E E. In this discussion Cis the symbol alphabet making
up the strings in the regular set, K , which we are trying to learn.
C* is the set of all strings obtained by concatenating symbols in
C. S and E are prefix-closed and suffix-closed subsets of E*,
respectively. The table entry in the row labeled s and column
labeled r will be assigned a value of 1 if the string st is legal
(accepted by K). Otherwise the table entry is zero. The observa-
tion table therefore provides a very compact way of expressing
the sentences of the unknown language K . The Lc algorithm is
concerned with building up complete tables (see [20] for details)
since a minimal finite state machine (FSM) consistent with the
table entries can be readily written down from a completed table.
The algorithm uses two types of oracles in filling out the obser-
vation table. The f is t oracle is associated with passive learning
and is called the membership oracle. The second oracle accepts
the generated FSM as its input and outputs a counterexample
which is then added to the table through the use of the member-
ship oracle. It is then conjectured that the FSM generates K and
this conjecture is presented to the counterexample oracle. If the
conjecture is false, the oracle returns with a counterexample
string, which is added to the observation table through repeated
queries to the membership oracle. This process then repeats until
the completed finite state machine no longer generates any
counterexamples.

The L* learning algorithm cannot be directly applied to the
inference of DES supervisors. This is because uncontrollable
events make it difficult to define a practical membership oracle.
In [111, however, some preliminary results suggested a member-
ship oracle could be obtained by using a finite lookahead window
of behaviors. The work in [111 also suggested ad hoc methods
for implementing the counterexample oracle. Empirical results
applying the proposed algorithm to supervisory control prob-
lems used in [6] indicate that the procedure can efficiently find
the optimal DES controller. The three algorithmic components
(lookahead window, membership oracle, an! counterexample
oracle) which were used in [113 to extend L learning are dis-
cussed briefly below.

Lookahead Window: Rather than assuming that the plant
automaton G is known, it was assumed that plant knowl-
edge could be confined to a limited lookahead window of
behaviors. This type of plant knowledge was used in [23].
The language in the lookahead window is denoted as L(G,
N, s). In particular, L(G, N, s), denotes all strings of length
no longer than N generated by the plant, G, after an observed
trace s. Fig. 10 illustrates the first lookahead window, L(G,
2, E), for the plant DES (Fig. 9) as a reachability tree.

Membership Oracle: The control specification K is a
prefix closed regular set. Rather than knowing its finite state
machine, M(K) , we've assumed that there exists a boolean
function which declares whether or not a given string is a

a 2

P 4 3 -

Fig. 12. Completed observation tables and their finite state machines.

34 IEEE Control Systems

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:38:09 EST from IEEE Xplore. Restrictions apply.

legal system behavior. This mapping is the membership
oracle. No specific assumptions have been made about its
implementation. In the case given above, this specification
is simply given as a set of quasi-formal rules. In fact, all of
our implementations of the learning procedure consistently
used quasi-formal descriptions of the legal behaviors to
implement the membership oracle.
Counterexample Oracle: Once the L’ algorithm has con-
structed a completed observation table, the procedure gen-
erates counterexamples to modify the observation table.
The counterexample oracle is an algorithm which searches
the FSM supervisor and plant for illegal and uncontrollable
behaviors. There are three ways in which a counterexample
can be generated. First, we can search the conjectured
supervisor’s behaviors to find illegal strings accepted by the
supervisor. Second, we can search the current prediction
window for uncontrollable strings which can be accepted
by the controller. Finally, we search the prediction window
for controllable strings that are not accepted by the super-
visor.

The flowchart of the on-line synthesis procedure is shown in
Fig. 11. Note that since we obtain examples on-line and use tha:
information to improve the membership oracle, 9 original L
algorithm cannot be used. In the algorithm, the L procedure is
used to generate an FSM which is as “optimal” as possible (with
respect to the current specification) given the current behaviors
that have been observed. Once an FSM controller has been
generated it is then used on the plant process to generate new
behaviors, and these new behaviors are then included into the
observation table. The resulting observation table is then com-
pleted using membership queries and an associated supervisor is
extracted. For the DES plant and control specification shown in
Fig. 9, the proposed procedure yielded a sequence of completed
observation tables and associated FSM supervisors. This se-
quence is shown in Fig. 12. See [I l l for details about the
generation of this figure. The learning procedure generated a
sequence of supervisors which, in this example, terminated in a
controller realizing the suprema1 controllable sublanguage for
the example.

Summary
A standard approach in the design of robust control systems

is to first identify a set of admissible controllers and then to select
one that minimizes an appropriate performance measure; such is
the case in Hmcontrol design. Boolean concept learning provides
a valuable method for implementing the first part of this approach
to design. As shown in this paper, concept learning algorithms
can be devised which use on-line observations to identify sets of
admissible controllers. Two examples were used to illustrate
these results. The first example used concept learning to identify
a set of Lyapunov stabilizing controllers for a specified class of
plants. The second example used concept learning to synthesize
a set of legal behaviors for a discrete event system. Drawing on
terminology from the computational learning theory community,
these sets of admissible controllers were referred to as control
concepts. The examples used in this paper illustrate the fact that
for certain systems, important control concepts such as Lyapunov
stability and controllability (in DES plants) are learnable con-
cepts. The main advantage of this approach is its versatility. It
appears to apply to linear, non-linear, and discrete event systems.

In addition to this, since a number of control concepts can be
learned in polynomial time, these algorithmic approaches repre-
sent very efficient means of learning complex controllers.

References
[l] P.J. Antsaklis and K.M. Passino, eds., An Introduction to Intelligent and
Autonomous Control, Kluwer Academic Publishers, Boston, 1993.

[2] D.A. White and D.A. Sofge, eds., Handbook of Intelligent Control Neural,
Fuzzy, and Adaptive Approaches, Van Nostrand, 1992.

[3] R. Kosut, M.K. Lau, and S.P. Boyd, “Set-Membership Identification of
Systems With Parametric and Non-Parametric Uncertainty,” IEEE Transac-
tions on Automatic Control, vol. 37, pp. 929-941, 1992.

[4] M.D. Lemmon and C.J. Bett, “Direct Adaptive Stabilization of Linear
Systems Using Query-Based Protocols,” Proc. of the 32nd Conference on
Decision and Control, San Antonio, Texas, Dec. 3086-309 1.

[5] C. Lucisano and M.D. Lemmon, “Query-Based Attitude Control of a Low
Altitude Communications Satellite,” Technical Report, ISIS-94-01 1, Dept.
of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana,
Sept. 1994, (also to appear in the Proceedings of the American Control
Conference, Seattle Washington, 1995).

[6] P. Ramadge and W.M. Wonham, “Supervisory Control of a Class of
Discrete Event Processes,” SIAM Journal of Control and Optimization, vol.
25, no. 1, pp. 206-230, Jan. 1987.

[7] L.G. Valiant and M.K. Warmuth, eds., Proceedings of the 4th Annual
Workshop on Computational Learning Theory, Santa Cruz, CA, Morgan
Kaufmann publishers, 1991.

[8] M. Anthony and N. Biggs, Computational Learning Theory, Cambridge
University Press, Cambridge, 1992.

[9] R. Schapire, The Design and Analysis of Eficient Learning Algorithms,
MIT Press, 1992, Cambridge, MA.

[lo] K.L. Buescher and P.R. Kumar, Learning by Canonical Smooth Estima-
tion, Simultaneous Estimation, technical report, Dept. of Electrical Computer
Engineering, University of Illinois, Urbana, IL, 1994.

[I l l X. Yang, M.D. Lemmon, and P.J. Antsaklis, Inductive Inference of
Logical DES Controllers Using the L* Algorithm, technical report, ISIS-94-
010, Dept. of Electrical Eng., University of Notre Dame, Notre Dame, IN,
Sept. 1994, (also to appear in the Proceedings of the American Control
Conference, Seattle, WA, 1995).

[I21 S. Boyd, Q. Yang. “Structured and Simultaneous Lyapunov Functions
for System Stability Problems,’’ Int. J . Control, 1989, vol. 49, no. 6, pp.
22 15.2240.

[131 K. Wang, A.N. Michel, and D. Liu, “Necessary and Sufficient Conditions
for the Stability of Interval Matrices,” Proceedings 32nd IEEE Conference
on Decision and Control, pp. 2014-2019, San Antonio, TX, December 1993.

[14] T. Poggio and E Girosi, “Networks for Approximation and Learning,”
Proceedings of the IEEE, vol. 78, pp. 1481-1497, Sept. 1990.

[151 L. Valiant, “A Theory of the Learnable,” Comm. of the ACM, vol. 27,
pp. 1134-1142, 1984.

[161 D. Angluin andC.H. Smith, “Inductive Inference: Theory and Methods,”
Computing Surveys, vol. 15, pp. 237-269, Sept. 1983.

[I71 M. Kearns, M. Li, L. Pitt, and L.G. Valiant, “On the Learnability of
Boolean Formulae,’’ in Proceedings of the 19th Annual ACM Symposium on
the Theory of Computing, pp. 285-295, May 1987.

[18] D. Angluin, “On the Complexity of Minimum Inference of Regular
Sets,” Int. J. Information and Control, vol. 39, pp. 337-350, 1978.

June 1995 35

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:38:09 EST from IEEE Xplore. Restrictions apply.

[19] E. Mark Gold, “Complexity of Automaton Identification from Given
Data,” Int. J. Information and Control, vol. 37, pp. 302-320, 1978.

[20] D. Angluin, “Learning Regular Sets from Queries and Counterexam-
ples,”Int. J. Information and Computation, vol. 75, no. 1, pp. 87-106, 1987.

1211 M. Groetschel, L. Lovasz, and A. Schrijver, Geometric Algorithms and
Combinatorial Optimization, Springer-Verlag, Berlin, 1988.

[22] P. Wadey, P. Miles, and R. Lowes, “Some Aspects of the Attitude and
Orbit Control Subsystem of the Olympus Spacecraft,” Proc. First ESA
Internat. Con$ on Spacecraft Guidance, Navigation and Control Systems,
ESTEC, Noordwijk, The Netherlands, pp. 545-549, June 1991.

1231 Sheng-Luen Chung and Stephane Lafortune, “Limited Lookahead Poli-
cies in Supervisory Control of Discrete Event Systems,’’ IEEE Trans. on
Automatic Control, vol. 37, no. 12, pp. 1921-1935, December 1992.

[24] S. Young and V. Garg, “Transition Uncertainty in Discrete Event
Systems,” Proceedings 6th IEEE Intemational Symposium on Intelligent
Control, pp. 245-250, Arlington, VA, August 1991.

1251 J.N. Tsitsiklis, “On the Control of Discrete-Event Dynamical Systems,”
Mathematics of Control, Signals, andSystems, vol. 2, no. 1, pp. 95-107,1989.

Michael Lemmon received the B.S. degree in electrical
engineering from Stanford University in 1979. He re-
ceived the M.S. and Ph.D. degrees in electrical engi-
neering from Carnegie Mellon University in 1987 and
1990, respectively. Between 1979 and 1986, he was a
control systems and signal processing engineer at a
number of aerospace fms , including TRW, Lockheed,
and General Electric. Since 1990, be has been an assis-
tant professor of electrical engineering at the University

of Notre Dame, Notre Dame, IN. His main interests lie in the relatlonship
between machine intelligence and control systems. He has done research in

. .- .

neural network learning, hybrid control systems, adaptive control systems,
discrete event systems, and non-convex optimization. Lemmon served as an
associate editor of the IEEE Transactions on Neural Networks between 1990
and 1991.

A biography and photo of Panos Antsaklis accompany the first article in this
special issue.

engineer at Xian Machinery Manufacture Company in
Electric Power. She obtained the Ph.D. degree from the
Institute of Automation, Chinese Academy of Sciences,
in July 1992. She is currently a postdoctoral associate

Xiaojun Yang received the B.S. degree in mechanical
and electrical engineering from Northwestem Textile
Institute, Xian, China, in 1984, and the M.S. degree in
electrical engineering from Hunan University, Hunan,
China, in 1986. From 1986 to 1989, she worked as an

in the University of Notre Dame’s department of electrical engineering. Her
research interests are in the areas of complex systems modeling and control,
intelligent control systems, and supervisory control of discrete event systems.

Costantino Lucisano was bom in Afnco Nuovo, Italy,
on Aug. 5,1965. He received his Laurea in Information
Science from the Universita’ degli Studi di Milano,
Milan, Italy, in 1992. His thesis dissertation was in the
area of neural networks for controlling non-linear dis-
tributed systems. During 1992, he was a research assis-
tant at the Italian Cancer Research Center. Between
1993 nd 1994 he was a visiting scholar and is currently
in the doctoral program at the University of Notre

Dame’s department of electrical engineenng. His current research interests
include intelligent control systems, learning, hybnd systems, automata, neu-
ral networks, and fuzzy logic.

Sampled Data
How to Kill a Professional Institute: Advice to Members

Don’t participate beyond paying your dues. Let “them”
handle things. Then complain that members have no voice
in management.
Decline all offices and committee appointments-you’re
too busy. Then offer vociferous advice on how “they”
should do things.
If appointed to a committee, don’t work-it’s a courtesy
appointment. Then complain because the Institute has stag-
nated.
If you do attend committee meetings, don’t initiate new
ideas. Then you can play “devil’s advocate” to those sub-
mitted by others.
Don’t rush to pay your dues-they’re too high anyway.
Then complain about poor financial management.

Don’t encourage others to become members. That’s selling.
Then complain that membership is not growing.
Don’t read the mail from headquarters-it’s not important.
Then complain that you’re not kept informed.
Don’t volunteer yours talents-that’s ego fulfillment. Then
complain that you’re never asked, never appreciated.
And if by chance the Institute grows in spite of your
contributions, grasp every opportunity to tell the new gen-
eration of members how tough it was; how hard you worked
in the old days to bring the Institute to its present level of
success.

- From the Editor 5 email

36 IEEE Control Systems

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:38:09 EST from IEEE Xplore. Restrictions apply.

