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n control, learning is often used to identify a single controller I satisfying a particular performance measure. In certain cases, 
however, it is desirable to identify the set of all controllers which 
ensure that the controlled plant satisfies a control property such 
as Lyapunov stability, robust stability, or robust performance. A 
set of procedures identifying such sets of admissible solutions 
can be devised using boolean concept learning algorithms. Re- 
cent years have witnessed considerable interest in this type of 
learning procedure in the field of computational learning. The 
objective of this article is to provide some examples illustrating 
how boolean concept learning can be used in control systems. 
The first example examined in this article uses concept learning 
to identify the set of stabilizing controllers for certain classes of 
linear time-invariant plants. Another example illustrates the use 
of concept learning in the identification of discrete event system 
(DES) controllers. 

Introduction 
Modem robust control methods provide a systematic means 

of optimizing controller performance in the face of bounded 
process uncertainty. If the resulting performance of the robust 
control system is unacceptable, then the only recourse is to go 
back and reduce modeling uncertainty. In adaptive control, one 
can tolerate larger uncertainties for limited classes of problem 
uncertainty. In high autonomy systems, modeling uncertainty can 
be reduced by having the system “learn” the necessary process 
models [ 11. By incorporating past behavioral experience with a 
priori process models, the learning algorithm reduces process 
uncertainty and thereby increases the maximum performance 
level attainable by the system. 

Much of the prior work in learning control has focused on 
developing algorithms which identify a single admissible con- 
troller for the plant [ 1,2]. There are problems, however, where 
one seeks to identify a set of controllers, rather than a single 
controller [3]. In this case, the learning procedure searches for a 
characterization of all controllers consistent with a boolean 
(TRUEFALSE) valued functional providing a simple “accept- 
able” or “unacceptable” assessment of a control system’s per- 
formance. As an example, consider a boolean valued functional 
that maps all Lyapunov stabilizing controllers onto TRUE (1) and 
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all destabilizing controllers onto FALSE (0). This boolean func- 
tional dichotomizes the set of controllers into two disjoint sets; 
the set that leads to stable and the set that leads to unstable control 
systems. The design problem associated with this functional 
attempts to approximate the set of Lyapunov stabilizing control- 
lers for a given plant. This set represents the concept class of 
Lyapunov stability. Because the objective of the design problem 
is to learn a concept (i.e. all controllers satisfying the specified 
control property), these learning procedures are sometimes re- 
ferred to as boolean concept learning algorithms. 

Design problems requiring boolean concept learning are eas- 
ily formulated. It may, for example, be desirable to identify all 
controllers of a given linear or non-linear continuous-state sys- 
tem that render the controlled plant Lyapunov stable [3,4,5]. A 
similar problem might be to identify all controllers leading to 
systems exhibiting robust stability or performance in some ap- 
propriate sense. These types of problems are of interest because 
they identify a large set of admissible controllers. Once identi- 
fied, this set of admissible controllers can then be used to pick 
out a single controller that satisfies additional control objectives. 
This is not unlike what happens in the design of H“ controllers 
for linear time invariant systems; all stabilizing controllers are 
identified via the Youla parameterization and then a single con- 
troller is selected which minimizes the -norm of a particular 
transfer function. Another example is found in the synthesis of 
supervisory controllers for discrete event systems (DES) [6]. In 
this case, the learning algorithm needs to identify all of the 
controllable behaviors (Le., the suprema1 controllable sublan- 
guage) that the DES can realize. Once again, the learning proce- 
dure identifies a set of legal behaviors, rather than a single legal 
behavior. 

There is a rich body of results [7,8] concerning the advantages 
and limitations of boolean concept learning. Aside from robotic 
exploration [9] and generalizations [ 101 of concept learning, 
boolean concept learning has not been widely used in control. 
The purpose of this article is to show how concept learning 
provides a useful framework for solving traditional control prob- 
lems. This article illustrates these ideas through two different 
types of control problems. The first control problem is concerned 
with identifying a set of stabilizing controllers. Its solution is 
illustrated with an example involving the stabilization of an 
autonomous spacecraft [ 5 ] .  The second design problem exam- 
ines logical DES controller synthesis as a concept learning 
problem [ 111. 

The remainder of this article is organized as follows. The next 
section introduces the notion of a control concept. The third 
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section discusses boolean concept learning and presents a spe- 
cific algorithm for learning the concept of Lyapunov stability for 
linear time invariant plants. The fourth section uses the learning 
algorithm of section three to adaptively stabilize a spinning 
spacecraft. Another control concept associated with the supervi- 
sion of discrete event systems is then presented in the fifth 
section. The sixth section summarizes the principal results and 
contributions of this article. 

Control Concepts 
This section shows how boolean concepts arise in control. In 

particular, use of control concepts is illustrated with the concept 
of Lyapunov stability. 

Let K denote a set of instances. A concept is a boolean 
functional c : K -+ ( 0, 1 ) over this set of instances. The semantic 
meaning of this function is that instances, k E K,  for which c(k) 
= 1 will be said to satisfy the concept c. A concept class, C, will 
be a set of concepts. It will be convenient to decompose a concept 
class into a denumerable number of subclasses, cfi, indexed by 
the integer n. For example, C might consist of all boolean 
formulae and cfi might consist of all boolean formulae of length 
n. 

A control concept arises when the concept is defined over a 
control system's set, K, of controller gains. The boolean func- 
tional, c,  characterizing the control concept maps all gain vectors 
onto 1 if the systems parametrized by these gains, k, all possess 
the same control property. An example of such a property might 
be Lyapunov stability, robust stability, or robust performance. A 
specific example was presented in the preceding paragraph 
where there is a boolean functional, c, whose value c(k) = 1 for 
all k that stabilize (in the sense of Lyapunov) a given plant. In 
this case the concept class C = (c) represents the concept of 
Lyapunov stability for that particular type of control system. 
Another example occurs if the boolean functional, c, takes on a 
value of 1 for all k having a magnitude less than unity. This 
concept class represents the concept of controllers with unity 
bounded gain vectors. 

Another example of a control concept is the concept of 
P-stability. Consider the set of Lyapunov stable controllers for 
linear time invariant systems of the form 

whereA E 91nx", b E 91n, and k E 3'. The system to be controlled 
will be denoted by the ordered pair, (A, b), and the controlled 
system has a system matrix Ak = A + bkT. Lyapunov's lemma 
says that this system is exponentially stable if and only if there 
exists a positive definite symmetric matrix P such that 

A l p  + PA, C 0. (2) 

If we fix the matrix P, then the preceding inequality can be used 
to define the concept subclass, Cp, of P-stability for the system 
(A, b).  In particular, the boolean functional 

(3) 

model 

controlled process + 

Fig. 1.  Model-following control system. 

denotes the concept of P-stability. The concept subclass, Cp, 
consists of the single concept CP.  

The concept subclasses of P-stability can be used to charac- 
terize the concept class of Lyapunov stability, 6, for special 
types of linear systems. Assume that Ak lies in a matrix interval 
[Ai, A2]. Recall that a matrix A lies in the matrix interval if and 
only if the ijth element of A is bounded above and below by the 
ijth elements of A2 and Ai, respectively. From the preceding 
definition it is clear that the set of gains such that Ak E [Ai, A21 

forms a bounded set. Let sc K denote the set of bounded gains 
which stabilize the plant. It is known that a sequence of matrices, 
( P n )  (n  = 1, ..., m), can be computed [12,13] to provide a 
necessary and sufficient condition that every system in [Ai, A21 
is Lyapunov stable. This algorithm [13] provides a means of 
identifying stable matrix subintervals in [Ai , A2], so that every 
stable plant in [Ai, A21 will satisfy the Lyapunov inequality with 
at least one of these P-matrices. This result suggests that the 
concept class, 6, for controlled systems, Ak, in the specified 
matrix interval can be decomposed into a denumerable collection 
of concept subclasses, cfi, associated with the concept of P,-sta- 
bilizing controllers. 

These ideas can be graphically illustrated in the following 
example. Consider a model following system whose block dia- 
gram is shown in Fig. l. In this figure, the system is a linear time 
invariant (LTI) system. The reference plant is described by a 
stable minimum phase rational transfer function, P ( s ) .  Now 
consider a specific model reference and plant given by 
P ( s )  = 1 / ( s2  + 2s + 1) and P(s) = l/(s - 2) ,  respectively. Assume 
that the control system uses unity feedback with a precompensa- 
tor whose transfer function is parametrized as C(s I ki,k2) = k2/(s 
+ ki). Fig. 2 shows a contour plot of the controlled error system's 
-norm as a function of the controller parameters ki and k2. 

For the example system shown in Fig. 1, the concept class of 
Lyapunov stability, Cr;, consists of the boolean functional 

(4) 

The region identified by cs is easily determined by application 
of the Routh-Hunvitz procedure. The set of gains associated with 
the concept are shown in Fig. 2. It is also possible to graphically 
illustrate the concept subclass of P-stability. Consider the follow- 
ing P matrix, 

26 IEEE Control Systems 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 11,2010 at 09:38:09 EST from IEEE Xplore.  Restrictions apply. 



7 7!5 8 8.5 9 9!5 11) 10.5 11 

Controller Gain K2 

Fig. 2 .  Contour plot of an error system’s supremum norm. Thisfigure 
also shows the regions associated with the concept class ofLyapunov 
stability and the subclass of P-stability. 

P=(; 3. 
The subclass of P-stabilizing controllers, Cp, can be shown to 
consist of the single concept, 

cp (4 ,k2 ) = 

1 if 25kf -16kl -20klk2 +4k; +4k2 + 1 6 < 0 m d  k2 ’5 .6  
0 otherwise (6) 

This region is also illustrated in Fig. 2 and is seen to be a subset 
of the region associated with concept class 0. 

Concept Learning in Control 
The preceding section identified two control concepts for 

linear time-invariant control systems, Lyapunov stability, and 
P-stability. This section discusses methods for learning estimates 
of these control concepts. Concept learning methods are useful 
in certain control system synthesis problems. Recall that a stand- 
ard approach to the synthesis of modern robust control systems 
is to fiist characterize a set of stabilizing control systems and then 
to select one of these admissible stable control systems to mini- 
mize an assumed performance measure. In these design proce- 
dures, it may therefore be useful to estimate the set of stabilizing 
control systems prior to selecting the final controller design. This 
section shows how concept learning methods can provide on-line 
identification of the concept classes 0 and cp. 

Concept Learning: Preliminaries 
Let c be a concept class consisting of boolean functional c : 

K + [ 0, 1 }. Let s be a design set consisting of N ordered pairs 
(ki,c(kj)) representing input-output examples of concept c. Let S 
denote the collection of all possible design sets. For example, if 
the concept class is 0 (Lyapunov stability), then each example, 
(ki,Cs(ki)), in the design set represents a specific controller, ki, and 
the assessment, Cs(ki), of whether or not the controller stabilizes 
the system. In formulating the learning algorithm, it will be 

convenient to define another concept class, % consisting of 
boolean functionals h : K + { 0, 1 ) called hypotheses. The class, 
% will be called the hypothesis space and a boolean functional 
in Hwill be called an hypothesis. 

Learning algorithms can be viewed as empirical function 
approximation procedures. This viewpoint of learning has been 
discussed previously in [ 141. The function approximation prob- 
lem associated with concept learning is easily stated. Let c 
represent the target concept to be learned and let h represent an 
approximating concept drawn from the concept class of hypothe- 
ses, g The function approximation problem seeks to find an h 
which minimizes an assumed performance measure. In tradi- 
tional function approximation, these measures are operator 
norms, but in concept learning it is convenient to use a prob- 
abilistic measure. Let h c K denote a set of gains which the 
hypothesis h maps onto 1 (TRUE). If an instance (controller), k,  
is randomly selected from h in a uniform manner, then the error 
of hypothesis h with respect to concept class C = [ c ]  is the 
probability that c(k) # 1. This error is denoted as follows: 

er(h,C) = Probability [ h(k) = 1 and c(k) # 1) .  (7) 

Associated with this error measure is the following function 
approximation problem: 

min er(h,C). 
h& (8) 

Learning problems arise when the function approximation 
problem must be solved using a set consisting of a finite number 
of input/output examples of the concept. Because of its reliance 
on examples, this type of learning is sometimes called “empiri- 
cal” function approximation. In particular, let the design set, s, 
consist of N ordered pairs (ki, C(kj)) (i = 1, ..., N) where kj E K .  
The learning problem attempts to minimize an empirical measure 
of the hypothesis’error. Note that since our original error measure 
was a probability over the set h, then a useful empirical error 
measure is the relative frequency or ensemble average over the 
design set. Provided the samples in the design set are chosen in 
an independent and identically distributed manner, then the 
strong law of large numbers ensures that the sample average 
converges to the probability of the event. These remarks suggest 
the following empirical measure of hypothesis error: 

where (ki,C(ki)) E s. The learning problem is therefore concerned 
with the following optimization problem: 

min e‘r (h ,C , s ) .  
h s H  (10) 

A concept learning algorithm is a computational procedure 
which solves the preceding minimization problem. In the com- 
putational learning community, it is often more convenient to 
view this algorithm as a mapping L : S + Htaking the design set 
onto a specific hypothesis h in g The learning algorithm will be 
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select initial 

from design set 
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1 inconsistent I 

Use membership oracle to 
assess consistency of 
current hypothesis 

I consistent 

21 stopping rule ? I 

I END I 
Fig. 3. Boolean concept learning algorithm (stability). 

said to be consistent if h(ki) = c(kt) for all gains, ki, in the design 
set. Essentially a consistent algorithm produces an hypothesis 
whose empirical error is zero. There may, of course, be several 
consistent hypotheses for the given data set. An important issue 
in learning theory concems the error of fhe hypothesis on samples 
not in the design set. This issue is sometimes referred to as the 
generalization issue. Let h = L(s) be the hypothesis generated 
by 1ea;ming algorithm L using design set s. The learned hypothe- 
sis, h , will be said $0 generalize “well” over the concept class if 
the true error, er(h ,o, is kept small. In general, this issue is 
addressed by carefully selecting the concept class FL 

While the learning algorithm may be a mapping between S 
and X it is generally implemented by a computational procedure. 
Fig. 3 illustrates one such algorithm. The f i t  step in this 
procedure selects an initial hypothesis, h, and then selects a single 
instance, k,  from the design set s. The instance (in our case a 
controller gain vector) is then evaluated by an algorithm called 
the membership oracle. In particular, the membership oracle 
evaluates h(k) and c(k) and declares whether they are equal or 
not. In the event that they are not equal, then the hypothesis h is 
not consistent with the design set. The learning algorithm there- 
fore modifies the hypothesis to force consistency of h with the 
selected instance, k. The algorithm responsible for modifying the 
hypothesis is called the update procedure. A good learning algo- 
rithm eventually finds an hypothesis which is consistent with 
every instance in the data set. The stopping rule shown in Fig. 3 
is used to stop the learning procedure. It is therefore seen that the 
concept learning algorithm consists of four basic components, 
the initialization of the hypothesis, the membership oracle, the 
update procedure, and the stopping rule. 

The preceding generalization issue is concemed with the 
performance of the learning algorithm for a design set of fixed 
size. By the strong law of large numbers, the empirical error 
approaches the true error as the dze of the design set increases. 
Therefore, if we have a consistent algorithm, we need only 

increase the design set’s size to reduce the error of the hypothesis 
to an arbitrarily small level. In this framework, we then need to 
be concemed about the size of the design set. In particular, a 
leaming algorithm is said to be eficient if the size of the design 
set required to produce a specified hypothesis error grows in a 
polynomial manner with the specified error and the learning 
problem’s size. This notion of polynomial growth and learning 
efficiency has been formalized [ 151 under the name of probably 
almost correct (PAC) learning. In the PAC leaming framework, 
we assume that a design set, s, of size N has been selected in a 
random manner. Alearning algorithm,L, is said to be PAC if there 
exists positive E and 6 such that for all c E C and for all N > 
NO(E,6), 

Probability [ s  E SI er(L(s),C) < E }  > 1 - 6 ,  (11) 

where the probabilities are taken over all possible design sets. 
The function NO(E,~) represents the size of the design set required 
to achieve the (E$) accuracy specified in Equation (11). In 
particular, the algorithm is said to be efficient or strongly 
learnable if No is a polynomial function of 6 and E. Weaker 
notions of learnability have been introduced which only require 
that No be polynomial in 6 (for fixed E). It has been shown that 
any weak PAC learning algorithm can be modified into a strong 
learning algorithm [9]. 

Remark: Concept learning is generally studied under the 
name of computational learning theory [7]. These algorithms 
have also been called inductive inference procedures [ 161. Prior 
research has identified certain classes of learnable boolean for- 
mulae (concepts) and formal languages. It is known, for example, 
that all conjunctive normal form expressions with k terms (k-CNF 
formulae) are learnable by positive examples [15]. On the other 
hand, boolean formulae in which each variable appears at most 
once (p-formula) are not learnable [17]. In the case of formal 
languages, it is known that regular languages are not learnable 
from positive examples [ 18,191. When augmented with counter- 
examples, however, such languages can then be shown to be 
learnable [20]. 

Leaming P-Stable Concepts 
This section formulates a learning algorithm for the concept 

of Lyapunov stability in linear time invariant plants. In particular, 
the objective is to formulate a concept learning algorithm to 
approximate the concept class of Lyapunov stability for LTI 
plants whose system matrix lie in a specified matrix interval. The 
learning algorithm to be developed has the basic structure shown 
in Fig. 3. The following items need to be specified in formulating 
the learning procedure: 

the concept class to be learned, C 
a space of hypotheses, H 
a set of design samples, s 
a method for choosing an initial hypothesis 
a membership oracle 
an update algorithm 
and a stopping rule. 

The concept class, Q, was introduced in the preceding sec- 
tion. In particular, it is assumed that the process to be stabilized 
is a linear time-invariant system with state equation 1. The gain 
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vector, k, parametrizes the controller. It will be assumed that the 
system matrix Ak = A  + bkT lies in a matrix interval [AI, A2]. As 
noted in section two, it is possible to compute a sequence, [ Pn} 
(n = 1, ..., m), of positive definite matrices characterizing the 
concept class of Lyapunov stability. The decomposition method 
is based on a procedure discussed in [ 131 and individual P 
matrices in the sequence are obtained by solving the linear 
program suggested in [ 121. It is therefore possible to express the 
concept class of Lyapunov stability for Ak as follows: 

c, = uc, . 
n 

is a sufficient condition for detecting system instability. Inequal- 
ity (15) can therefore be used to formulate a membership oracle 
(this could altematively be called the instability-oracle) of the 
form 

1 if XTPx > 0 where X = Akx 

0 otherwise (16) 
m ( k )  = 

The preceding membership oracle provides an empirical test 
declaring when the system is Lyapunov unstable. In particular. 
the oracle declares 1 (TRUE) when the system using controller 
gain k is not P-stable. 

If the matrix interval is small enough, then there may be a finite 

algorithm more easily, let’s consider the case where there is only 
a single P-matrix needed to characterize Cs. 

The concept class of hypotheses, % will be chosen to consist 
of boolean functionals taking ellipsoidal subsets of the gain 
space, K, onto 1. An ellipsoidal set, E ,  is characterized by the 

Remark: Note that the preceding oracle assumed that p 

general. however, we will need to have a sequence, Pn (n = 1, ..,, 
N) of matrices to characterize all stable plants in the matrix 
interval [Ai, Az]. In this case, the membership oracle would need 
to be modified to the 

number Of terms in Equation (12)- To the provides a and sufficient test of system stability. In 

form: 
following equation: 

m(k)  = 

1 if there exists no n such that kTPnx < 0 for control gain k 

0 otherwise (17) 
E ( Q ,  1)  = {k E K : (k  -l)T Q ( k  -1) c 1 }, 

where 1 E K is the ellipsoidal set’s center and Q E 9Inm is a 
symmetric positive definite matrix characterizing the ellipsoid’s 
shape. An hypothesis, hte.r;(k), is then a boolean functional ofthe 
following form: 

The update algorithm for our learning procedure is formulated 
as follows. Note that when the membership oracle declares that 
k does not stabilize the system, then any gain k such that 

xT[PbkT +kbTP]x  > xT[PbkT +kbTP]x (18) 

will not stabilize the plant either. Since Inequality (1 8) is linear 
in k , this equation represents a halfspace of gains which will not 
include the stabilizing gains in % m i s  halfspace can be charac- 
terized by the following inequality: 

Denote the ith hypothesis generated by the algorithm as hi(k) 
and let E(Hi, ki) be its associated ellipsoidal Set. Recall that the 
set of stable gains for Ak is denoted by S a n d  forms a convex 
bounded subset of K. Let qdenote this bounded set of gains. The 
initial hypothesis, ho, will be chosen so that its associated ellip- 
soidal set properly contains s c T ( k -  k )  > 0, (19) 

Let s be a design set of finite size consisting of the controller 
gains which the algorithm is to learn from. In particular, if the 
learning procedure generates a sequence of hypothesis, hi, then 
the ith example of the design set will be the center, ki, of the 
ellipsoidal set associated with hypothesis hi 

The membership oracle, m : K + {0, 1) is a boolean func- 
tional mapping a given control gain, k, onto 1 if c(k)  # 1 and h(k) 
= 1.  On a semantic level, the membership oracle declares whether 
or not c(k) renders the controlled system P-stable. Recall that 
we’ve restricted our attention to systems whose Lyapunov sta- 
bility can be characterized by a single P matrix. As noted below 
this assumption is somewhat restrictive, but can be extended 
through the use of multiple P-matrices. In light of the preceding 
assumptions, we can evaluate c(k) in the following manner. 
Assume that the system’s current state x and state rate of change, 
x , can be measured. Since xTPx is a global Lyapunov functional 
for the system, we can conclude that the inequality 

XTPx > 0, 

where c E K is an appropriately defined real vector. 
Inequality (19) now serves as the basis for the update algo- 

rithm. Fig. 4 shows the concept set, s and the ith bounding 
ellipsoid, E(Qi,  kj). Since this ellipsoid is known to properly 
contain s then the halfspace of infeasible gains identified by the 
above inequality cuts through the center of E(Qi, ki). This cut is 
shown in Fig. 4. The intersection of E(Qi, ki) and the comple- 
mented halfspace forms a convex body which also contains s 
This new convex body can be contained within another minimal 
volume ellipsoid (called the Lowner-John ellipsoid), E(Qi+i, 
ki+l). In particular, this updated ellipsoid is computed according 
to the formula [21], 

k .  - k - L d  
m + l  1+1 - i (21) 
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Fig. 4. Ellipsoidal update. 

The updated ellipsoid, E(Qi+l, ki+l) is shown in Fig. 4. The 
preceding equations constitute the update procedure used by the 
learning procedure. 

A stopping rule can be derived using results on the finite time 
convergence of the ellipsoid method. As noted above, the ellip- 
soid method generates a sequence of ellipsoids whose volumes 
are monotone decreasing. It can be shown that the ratio of the 
volumes of any two successive ellipsoidal updates is given by 

where m is the number of control gains to be learned. Equation 
(23) shows that the rate at which ellipsoid volumes decrease is 
independent of the iteration index, i. Therefore, it can be shown 
that the learning process must converge to a gain in Kafter no 

vol E,, 
more than 2m In - updates [21]. In other words, the pro- 

VOlK 
posed learning algorithm converges after a finite number of 
updates. Upper bounds on this number of updates can be easily 
derived [21] and provide the basis for the learning procedure’s 
stopping rule. 

Remark: Also note that the volume of concept set Kscales 
as O(m-m). Inserting this bound into the preceding convergence 
time shows that the learning algorithm’s sample complexity is 
O(m2 In mL), where L is a measure of the desired accuracy and 
m is the number of controls. Therefore not only does the learning 
procedure converge in finite time, but this convergence time 
scales in a polynomial manner with problem size. This observa- 
tion therefore suggests that the concept of Lyapunov stability is 
weakly learnable for systems whose stability can be charac- 
terized by a single positive definite P matrix. 

Remark: This procedure has some obvious limitations. The 
first limitation is that it requires full state accessibility. For 
input-output systems where the states are not accessible, this 
approach will not be applicable. 

Remark: The stability oracle requires that the plant state and 
its time rate of change be measured. Obviously this is not always 

possible. In certain cases, the state derivative can be replaced by 
an appropriate finite difference. There are also some applications 
where state derivatives can be measured directly. In systems, for 
example. where state information is derived from accelerometer 
measurements, the state derivatives are directly accessible. 

Remark: The preceding discussion only pertains to interval 
matrices for which a single P matrix provides a necessary and 
sufficient condition for Lyapunov stability. Using results in [ 131 
and [ 121 it may be possible to modify this algorithm to a proce- 
dure which uses multiple P-matrices to characterize the concept 
class, C,. This matter is currently under investigation. 

Example: Attitude Stabilization of a Satellite 
In this section, the boolean concept learning algorithm out- 

lined in the preceding section is used to stabilize a spinning 
spacecraft. The example is based on a recent incident with the 
European space agency’s telecommunication satellite, Olympus 
WI. 

The Olympus spacecraft was a telecommunications satellite 
built by British Aerospace for the European Space Agency 
(ESA). The three-axis stabilized satellite orbited about 1,000 
kilometers above the Earth’s surface. Because of this low orbit, 
there were significant disturbance torques associated with aero- 
dynamic drag on the solar panels. There were also additional 
disturbance torques due to solar radiation pressure, gravity gra- 
dient effects, and bending modes. The on-board control subsys- 
tem included an analog sun sensor, three digital sun sensors, two 
radio frequency sensors, and two digital infrared sensors. Body 
rates were measured by three orthogonal gyros and a redundant 
skewed gyro [22]. During normal on-station operations, optical 
sensors were used to control the roll and pitch axes, while the 
yaw axis was controlled via one component of the yaw gyro pack. 
In all other cases, which imply the loss of Earth pointing mode, 
the attitude measurement was provided by gyros. Normal attitude 
control was achieved through the use of reaction wheels. There 
were also thrusters which could be used in emergency maneuvers 
and in off-loading of the reaction wheels. 

On Aug. 11,1993, during an abnormal Perseid meteor shower, 
Olympus lost Earth pointing attitude. The control mode switched 
automatically to a thruster-based emergency mode. This emer- 
gency maneuver, however, failed to reacquire sun pointing and 
introduced large body rates (spinning) as a side effect. The 
ground station disabled the emergency mode and the spacecraft 
was driven into a stable spinning state. Subsequent analysis of 
post-anomaly telemetry showed that there was insufficient pro- 
pellant left to reestablish normal station keeping. The Olympus 
mission was therefore terminated a year ahead of schedule. 

The Olympus scenario demonstrates the limited autonomy of 
existing spacecraft systems in dealing with catastrophic pertur- 
bations. The high body rates induced by the emergency maneuver 
spun up the spacecraft so that its original control system worked 
poorly. Had Olympus been able to autonomously relearn the 
“optimal” controller, then it may have been possible to reestab- 
lish nominal operation without depleting limited propellant re- 
serves. 

One way in which Olympus might have relearned the optimal 
controller gains would be to use the concept learning procedure 
introduced above. This learning control scheme automatically 
determines the state feedback gains, k,  which would stabilize a 
linear system of the form given in Equation (1). In the context of 
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Fig. 5. Olympus simulation results. The right- and left-hand figures show the attitude angles for the conventional and learning controllers, 
respectively. In this case, the largest component of the spin disturbance is introduced along the roll axis (solid line). Note that the learning 
controller was capable of quickly removing this roll rate. 
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Fig. 6. Olympus simulation results. The right- and left-handfigures show the torque commands to the roll reaction wheel for  the conventional 
and learning controller; respectively. Note that the learning controller exhibited lower peak commands with shorter duration than the 
conventional controllel: 

the Olympus scenario, these equations represent the satellite's 
linearized attitude dynamics. The proposed learning algorithm 
would therefore use state measurements to identify a gain vector 
k which stabilized the plant. 

A concept learning procedure similar to that shown in Fig. 3 
was used on the simulated Olympus scenario. An important 
aspect of this work was that the simulation used was a full-scale 
simulation of the Olympus spacecraft originally developed by 
British Aerospace in the design and validation of the attitude 
control system. The results obtained with this simulation were 
therefore felt to yield very accurate representations of the Olym- 
pus spacecraft's behavior. The objective was to see if using the 
learning algorithm would have dramatically reduced the fuel 
consumption during Earth reacquisition. Recall that excessive 
fuel consumption in recovering from the emergency maneuver 
was the reason for the early termination of the Olympus mission. 
If the learning algorithm was therefore able to significantly 

reduce fuel usage, the mission may not have been terminated 
prematurely. 

Results from the simulated example are shown in Figs. 5,6 ,  
and 7. In this example, the spin disturbance begins at f = 100 
seconds. Figs. 5 and 6 show the attitude angles and reaction wheel 
commands, respectively, for the concept learning controller and 
a conventional fixed controller. Comparing the attitude angles of 
the two cases in Fig. 5,  it is apparent that the use of the learning 
algorithm dramatically reduced the attitude transients experi- 
enced by the craft in recovering from the spin disturbance. Fig. 
6 shows that the smaller attitude transients resulted in smaller 
torque commands to the reaction wheels. In fact, when the total 
torque commands to the roll reaction wheel were integrated, it 
was found that the control effort was cut in half by the application 
of the learning controller. 

More extensive simulation experiments examined the learn- 
ing controller's performance for a variety of spin disturbances. 
These results are shown in Fig. 7. In all cases the integrated torque 
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Fig. 7. Olympus simulation results. Figure plots the integrated 
torque command (.I) vs. initial pitch rate disturbance for  the 
conventional (solid) and learning (dashed) controllers. 

commands generated by the learning controller were less than 
that of the fixed conventional controller. For small spin rates, the 
two approaches are comparable since the original controller is 
nearly optimal. For large spin rates, the energy savings are 
reduced because of the reaction wheel’s limited ability to absorb 
excess angular momentum. The greatest energy savings occur 
for moderate spin rates. These savings were significant and at 
least on a preliminary basis it might be inferred that the use of a 
learning controller would have conserved sufficient fuel to pre- 
vent premature termination of the Olympus mission. 

While the preceding concept learning method can be used to 
stabilize a continuous-time system, it can be effectively argued 
that there are other equally valid approaches to address this 
problem. The value of the above formalisms concems the fact 
that we have really identified a set of controllers rather than a 
single one. So in reality it is the “stability concept” rather than 
just a stable controller that was identified. The importance of 
quickly identifying a set of stabilizing controllers is that after 
initial stabilization of the system, it is possible to select a con- 
troller from this set which is “optimal” with respect to the 
system’s new operating conditions. 

Fig. 8. DES supervisory control. 

Control Concepts and DES Supervision 
Discrete event systems (DES) are dynamical systems which 

evolve over a discrete set of symbols. In the context of control, 
DES are often used to model supervisory control systems. For 
example, consider a process control facility consisting of dozens 
of individual continuous-time control systems. Management of 
the entire plant requires the logical coordination of these various 
continuous-time controllers. This coordination problem can be 
modeled as a combination of a discrete event system (DES) plant 
which is being supervised by a DES controller. The DES plant 
generates a sequence of symbols representing significant events 
occurring within the plant. The controller responds to these 
logical events with a sequence of control directives. 

There are many ways of modeling DES plants and controllers. 
One way models the plant and controller as a finite state machine 
(FSM) [6]. In particular, the plant is represented by the following 
FSM: 

where C represents a finite set of events that can occur in the 
plant, Q represents a finite set of discrete (symbolic) states. The 
mapping 6 : C Q + Q is a transition function characterizing the 
evolution of the plant. There is a set of initial states qo. The formal 
language generated by the given plant, denoted as L(G), is well 
known to be a regular language. To discuss control of this plant 
it will be convenient to partition the plant’s event set C into 

G K 

Fig. 9. The left-hand jigure shows the directed graph for  sample DESplant. The right-handfigure shows the directed graph for  a specified 
behavior on this DESplant. 
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Fig. IO.  L(G, 2, E), thefirst lookahead window for the sample DES 
plant. 

I 
I I 

mutually disjoint sets of controllable, Cc, and uncontrollable 
events, Cut. Uncontrollable events are occurrences in the plant 
which the supervisor cannot disable. An example of an uncon- 
trollable event in a DES plant might be the failure of some 
machine in a manufacturing process. Essentially, the problem of 
supervisory control is to learn how to cope with uncontrollable 
events so that a specified behavior is realized. 

The supervisor is also a FSM denoted by a 4-tuple, S = (C, X ,  
6, xo). The interconnection of the plant and supervisor is shown 
in Fig. 8. In this figure, the supervisor receives, as input, the event 
traces rs E C* from the plant. These received symbols drive the 
supervisor’s state transitions. The supervisor states are symbols 
in the set .Y and the transition mapping is 5 : C X -+ X .  The set 
of initial supervisor states is given by xo. The supervisor gener- 
ates controller directives by disabling controllable transitions in 
the DES plant. In Fig. 8 this is shown by a mapping, 4 : X -+ 
P(C),  from the supervisor’s state space onto a power set of plant 
events. This mapping is called the enabling function. It uses the 
supervisor’s current state to enable a subset of plant event tran- 
sitions. 

The lefthand side of Fig. 9 illustrates an example of a plant 
FSM. The FSM is represented as a directed graph in which the 
nodes are states, the arcs represent the transition function, 6,  and 
the arc labels denote plant events. In this example, the event set 
is C = {ai, a2, p]  and the uncontrollable event set, C, = { p]. The 
regular language generated by this example can be shown to be 

_ _ _ - _ _ _ _ _ _ - _ _ _ _ _ _ _ _  
I I I 

Get controller from the table 

c 
L* algorithm 

Initialize : I  I I  

Fig. 11. On-line synthesis algorithm for DES controller: 

June 19% 

given by strings satisfying the fol lowing formula: 

L(G) = (alp2 + a2)p*. 
The objective of supervisory controller synthesis is to ensure 

that the controlled plant realizes a specified behavior (language). 
In particular, the specified behavior is assumed to be expressed 
as a regular language, K. The righthand side of Fig. 9 shows the 
FSM realizing the control specification K = alp2 +a2p* . This 
specification can be also be represented as a quasi-formal set of 
rules. The quasi-formal control specification is itemized below: 

1. If a1 occurs first, then, at most, two p events are allowed 
to be generated. 
2. If a2 occurs first, then any finite p events are allowed to be 
generated. 
Discrete event system (DES) controller synthesis methods 

proposed by Ramadge and Wonham [6] require that the state 
transition model of the desired legal behaviors be known. It has 
been pointed out [23,24] that this requirement is often unreason- 
able. In many cases, global information about the plant DES is 
not available, and in this case the DES plant needs to be identified 
from observed plant behaviors. This formulation naturally sug- 
gests that concept learning algorithms found in the computer 
science community might be useful in learning DES supervisors 
for partially specified DES plants. 

Early work in on-line DES synthesis, however, suggested that 
inductive inference of DES supervisors would not be practical. 
The controllers obtained by the Ramadge-Wonham synthesis 
were finite automatons which serve as acceptors (FSM) for 
regular languages. The problem here, however, was that it had 
already been shown that regular sets were not learnable by design 
sets of positive examples [18,19]. Later work noted this fact in 
connection with DES controller synthesis [25]. These observa- 
tions about the intractability of the inference problem for DES 
supervisors proved to be a considerable obstacle in the applica- 
tion of inductive learning methods for DES synthesis. 

Modified 15- Algorithm for DES Supervision 
Inference of automatons from positive examples can be 

viewed as a form of “passive” learning. Passive learning methods 
passively observe examples of the regular set and base their 
determination on those observations. This is precisely the type 
of learning procedure which was used in our spacecraft stabili- 
zation example. An alternative to “passive” observation is “ac- 
tive” exploration. In this case, the learning algorithm proposes 
specific input examples whose performance should be evaluated. 
Angluin showed [20] that while passive inference was NP-com- 
plete, a combination of passive and active learning was in fac: 
polynomial in the size of the minimal FSM. The resulting L 
algorithm proposed in [20] uses passive observation and actively 
suggests counterexamples to assist the leaming process. Sub- 
sequent work [9] extended this algorithm and used it in simple 
robotic navigation problems constructed on a idealized grid 
world. 

Fig. 11 shows the fl$wchart for an on-line DES synthesis 
procedure based on the L, algorithm. In this figure, the basic flow 
and componeFts of the L procedure are given in the lefthand side 
insert. The L procedure, shown in Fig. 11, methodically builds 
up an observation table to represent the concept (regular set) to 
be learned. The table is a two-dimensional array whose rows are 
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labeled by strings s E S u SC and whose columns are labeled by 
symbols t E E. In this discussion Cis the symbol alphabet making 
up the strings in the regular set, K ,  which we are trying to learn. 
C* is the set of all strings obtained by concatenating symbols in 
C. S and E are prefix-closed and suffix-closed subsets of E*, 
respectively. The table entry in the row labeled s and column 
labeled r will be assigned a value of 1 if the string st is legal 
(accepted by K).  Otherwise the table entry is zero. The observa- 
tion table therefore provides a very compact way of expressing 
the sentences of the unknown language K .  The Lc algorithm is 
concerned with building up complete tables (see [20] for details) 
since a minimal finite state machine (FSM) consistent with the 
table entries can be readily written down from a completed table. 
The algorithm uses two types of oracles in filling out the obser- 
vation table. The f is t  oracle is associated with passive learning 
and is called the membership oracle. The second oracle accepts 
the generated FSM as its input and outputs a counterexample 
which is then added to the table through the use of the member- 
ship oracle. It is then conjectured that the FSM generates K and 
this conjecture is presented to the counterexample oracle. If the 
conjecture is false, the oracle returns with a counterexample 
string, which is added to the observation table through repeated 
queries to the membership oracle. This process then repeats until 
the completed finite state machine no longer generates any 
counterexamples. 

The L* learning algorithm cannot be directly applied to the 
inference of DES supervisors. This is because uncontrollable 
events make it difficult to define a practical membership oracle. 
In [ 111, however, some preliminary results suggested a member- 
ship oracle could be obtained by using a finite lookahead window 
of behaviors. The work in [ 111 also suggested ad hoc methods 
for implementing the counterexample oracle. Empirical results 
applying the proposed algorithm to supervisory control prob- 
lems used in [6] indicate that the procedure can efficiently find 
the optimal DES controller. The three algorithmic components 
(lookahead window, membership oracle, an! counterexample 
oracle) which were used in [ 113 to extend L learning are dis- 
cussed briefly below. 

Lookahead Window: Rather than assuming that the plant 
automaton G is known, it was assumed that plant knowl- 
edge could be confined to a limited lookahead window of 
behaviors. This type of plant knowledge was used in [23]. 
The language in the lookahead window is denoted as L(G, 
N,  s). In particular, L(G, N, s), denotes all strings of length 
no longer than N generated by the plant, G, after an observed 
trace s. Fig. 10 illustrates the first lookahead window, L(G, 
2, E), for the plant DES (Fig. 9) as a reachability tree. 

Membership Oracle: The control specification K is a 
prefix closed regular set. Rather than knowing its finite state 
machine, M(K) ,  we've assumed that there exists a boolean 
function which declares whether or not a given string is a 

a 2  

P 4 3  - 

Fig. 12. Completed observation tables and their finite state machines. 
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legal system behavior. This mapping is the membership 
oracle. No specific assumptions have been made about its 
implementation. In the case given above, this specification 
is simply given as a set of quasi-formal rules. In fact, all of 
our implementations of the learning procedure consistently 
used quasi-formal descriptions of the legal behaviors to 
implement the membership oracle. 
Counterexample Oracle: Once the L’ algorithm has con- 
structed a completed observation table, the procedure gen- 
erates counterexamples to modify the observation table. 
The counterexample oracle is an algorithm which searches 
the FSM supervisor and plant for illegal and uncontrollable 
behaviors. There are three ways in which a counterexample 
can be generated. First, we can search the conjectured 
supervisor’s behaviors to find illegal strings accepted by the 
supervisor. Second, we can search the current prediction 
window for uncontrollable strings which can be accepted 
by the controller. Finally, we search the prediction window 
for controllable strings that are not accepted by the super- 
visor. 

The flowchart of the on-line synthesis procedure is shown in 
Fig. 11. Note that since we obtain examples on-line and use tha: 
information to improve the membership oracle, 9 original L 
algorithm cannot be used. In the algorithm, the L procedure is 
used to generate an FSM which is as “optimal” as possible (with 
respect to the current specification) given the current behaviors 
that have been observed. Once an FSM controller has been 
generated it is then used on the plant process to generate new 
behaviors, and these new behaviors are then included into the 
observation table. The resulting observation table is then com- 
pleted using membership queries and an associated supervisor is 
extracted. For the DES plant and control specification shown in 
Fig. 9, the proposed procedure yielded a sequence of completed 
observation tables and associated FSM supervisors. This se- 
quence is shown in Fig. 12. See [ I l l  for details about the 
generation of this figure. The learning procedure generated a 
sequence of supervisors which, in this example, terminated in a 
controller realizing the suprema1 controllable sublanguage for 
the example. 

Summary 
A standard approach in the design of robust control systems 

is to first identify a set of admissible controllers and then to select 
one that minimizes an appropriate performance measure; such is 
the case in Hmcontrol design. Boolean concept learning provides 
a valuable method for implementing the first part of this approach 
to design. As shown in this paper, concept learning algorithms 
can be devised which use on-line observations to identify sets of 
admissible controllers. Two examples were used to illustrate 
these results. The first example used concept learning to identify 
a set of Lyapunov stabilizing controllers for a specified class of 
plants. The second example used concept learning to synthesize 
a set of legal behaviors for a discrete event system. Drawing on 
terminology from the computational learning theory community, 
these sets of admissible controllers were referred to as control 
concepts. The examples used in this paper illustrate the fact that 
for certain systems, important control concepts such as Lyapunov 
stability and controllability (in DES plants) are learnable con- 
cepts. The main advantage of this approach is its versatility. It 
appears to apply to linear, non-linear, and discrete event systems. 

In addition to this, since a number of control concepts can be 
learned in polynomial time, these algorithmic approaches repre- 
sent very efficient means of learning complex controllers. 
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How to Kill a Professional Institute: Advice to Members 

Don’t participate beyond paying your dues. Let “them” 
handle things. Then complain that members have no voice 
in management. 
Decline all offices and committee appointments-you’re 
too busy. Then offer vociferous advice on how “they” 
should do things. 
If appointed to a committee, don’t work-it’s a courtesy 
appointment. Then complain because the Institute has stag- 
nated. 
If you do attend committee meetings, don’t initiate new 
ideas. Then you can play “devil’s advocate” to those sub- 
mitted by others. 
Don’t rush to pay your dues-they’re too high anyway. 
Then complain about poor financial management. 

Don’t encourage others to become members. That’s selling. 
Then complain that membership is not growing. 
Don’t read the mail from headquarters-it’s not important. 
Then complain that you’re not kept informed. 
Don’t volunteer yours talents-that’s ego fulfillment. Then 
complain that you’re never asked, never appreciated. 
And if by chance the Institute grows in spite of your 
contributions, grasp every opportunity to tell the new gen- 
eration of members how tough it was; how hard you worked 
in the old days to bring the Institute to its present level of 
success. 
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