
ELSEVIER Theoretical Computer Science 138 (1995) 201-210

Theoretical
Computer Science

Inductively inferring valid logical models of
continuous-state dynamical systems

Michael Lemmon*, Panos J. Antsaklis

Department of Electrical Engineering, University qf’ Notre Dame, Notre Dame, IN 46556, USA

Abstract

Hybrid control systems consist of a discrete event (DES) controller supervising a continuous-
state (CSS) plant. A controller can be synthesized by obtaining a DES controller for an
equivalent DES representation (DES plant) of the CSS plant. An important issue concerns the
logical invariance (stability) of DES plant transitions to variations in the initial CSS plant state.
This paper provides a set of sufficient conditions for the existence of stable transitions in the
DES plant. For CSS plants which are affine in their control policies, these conditions form
a system of linear inequalities over the space of control vectors used by the CSS plant. Feasible
points to this inequality system are inductively determined using a method of centers algorithm
known as the ellipsoid method.

1. Introductioo

Hybrid control systems arise when a discrete event system (DES) is used to
supervise the behavior of a continuous-state system (CSS). Such systems arise in the
supervisory control of large-scale systems found in semiconductor manufacturing,
power distribution, flexible manufacturing, and chemical process control. One ap-
proach [l, 71 to the design of hybrid control systems extracts a logical model of the
continuous-state system’s behavior. This logical model is called the DES plant. An
important issue in this approach concerns the “stability” of the logical model repres-
ented by the DES plant. Ideally, the transitions in the DES plant should be unchanged
by infinitesimal perturbations in the CSS plant’s state. If, for example, the plant
supervisor is obtained using the Ramadge-Wonham framework [6], it is extremely
important that the DES plant be controllable. A system whose DES plant has
“unstable” event transitions will generally not be controllable. A technique is therefore
needed to identify “stable” transitions in DES plants.

This paper derives a set of sufficient conditions insuring the stability of transitions
in the DES plant with respect to variations in the initial CSS plant state. These

*Corresponding author

0304-3975/95/$09.50 0 1995-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(94)00148-O

202 M. Lemmon, P.J. Antsaklisl Theoretical Computer Science 138 (1995) 201-210

conditions are based on the Lyapunov stability theory and hence the notion of
logically stable transitions is clearly related to conventional notions of continuous-
state system stability. In particular, it is shown that for the class of systems studied by
this paper (Section 2), that the stability of DES plant transitions will be guaranteed
provided the control vectors driving the CSS plant satisfy a set of sufficient conditions
(Section 3). When the CSS plant is affine in its control policies these conditions
become a linear inequality system whose feasible points are the control vectors
insuring stable logical transitions in the DES plant. These feasible points can then be
found using conventional method of center algorithms (Section 4) such as the ellipsoid
method. Such method of center algorithms can be realized as inductive learning
procedures, thereby allowing the hybrid system to “learn” those control vectors
insuring stable transitions in the DES plant.

2. Hybrid control systems

A hybrid control system consists of four interconnected subsystems; the plant, the
controller, the actuator, and the generator. Fig. 1 illustrates the assumed interconnec-
tions. The plant is a continuous-state continuous-time dynamical system. The control-
ler is a discrete event system (DES). Because both plant and controller evolve over
distinctly different types of sets, an interface is required to connect the systems. This
interface is assumed to consist of two subsystems, the actuator and generator. The
actuator is responsible for transforming sequences of symbols issued by the DES
controller into a continuous-time control signal. Similarly, the generator is respon-
sible for transforming a continuous-time state trajectory into a sequence of plant
symbols. The hybrid control system examined by this paper was originally discussed

, ‘L---l:
~~.~~~~~~~~ ________............. ______________:

r InI T 1 3nl

1 DES Controller 1

Fig. 1. Hybrid control system.

M. Lemmon, P.J. Antsaklis/ Theoretical Computer Science 138 (199.5) 20-210 203

in [l]. In this modeling framework the interface generates a sequence of logical
symbols describing the plant’s symoblic behavior with regard to an underlying finite
topology of the plant’s state space.

The continuous-state system plant or CSS plant is represented by the ordered
p + I-tuple,

9tc=(x,@:’)..., cl+), (1)

where xc ‘W is the plant’s state space and where @f’ : X+ri; (for i = 1, . . . , p) is the ith
family (indexed by time, t) of transition operators generated by the differential
equation

~(t)=f(x(t),r;. (2)

It is assumed that Yi is a constant vector in ‘%” (i = 1, . . . , p) and thatf: ‘W x ‘W’+W’ is
a Lipschitz continuous function serving as the infinitesimal generator of the transition
operators @:I.

An example of such a CSS plant is given by the following set of p differential
equations

3’) =fo(X(i)) + f riifj(x(i)), (3)
j=l

where i=l,p. %ci) . IS the state vector for the ith differential equation, and rj,
(j= 1, m) are the components of the ith equation’s control vector, ri. In this case,
the collection of mappings fj: ‘%“~‘W for j = 0, . . . , m represents a set of m+ 1 control

policies. The control policies of the ith differential equation are linearly mixed by the
components of the control vector, i;. Such a nonlinear system is often referred to as
being “affine” in its control vectors. Under suitable assumptions it includes the class of
nonlinear systems which can be linearized through appropriate feedback.

The controller is a discrete event system called the supervisor. It receives as inputs
a sequence, T[n], of symbols drawn from a finite’alphabet _?? of plant symbols. The
supervisor outputs a sequence, r’[n], of symbols drawn from a finite alphabet J? of
control symbols. The controller’s dynamics are assumed to be modeled by a determin-
istic finite automaton (DFA).

The interface generator is that part of the interface which transforms the CSS plant’s
state trajectory, Z(t), into a sequence of plant symbols, T[n]. Let x” c !R” be the CSS
plant’s state space and let x” be a finite alphabet of q plant state symbols. Let $9 denote
a finite collection of q disjoint sets which partition the CSS plant’s state space. Denote
the ith element of 99 as bi, i= 1, q. W will be called the hybrid system’s generator
basis. Elements of 99 will be called generator sets. The generator’s output is assumed to
take the following form:

~Cnl=d~(~,Cnl)), (4)

204 M. Lemmon, P.J. Antsaklisj Theoretical Computer Science 138 (1995) 201-210

where c(: x-+r? is a mapping taking a state vector in the CSS plant’s state space onto
the plant symbol alphabet. In particular, this generator mapping is defined such that
CL(X)=Z~ which 2iEZ if and only if %~b~. r,[n], is a sequence of times (measured with
respect to the CSS plant’s clock) when the state space trajectory crosses into the open
set bi. In practice, it would be assumed that the elements of&J are given beforehand.
For example, if it is known that certain subsets of the CSS plant’s state space are
forbidden, then these sets should be contained in @. Another example is found in
model predictive control. In this case, the generator sets might contain setpoints about
which the CSS plant must be regulated. Assuming that B is given, then the CSS plant’s
desired behavior would be a formal specification on how the CSS plant should
transition between elements of $49. The problem considered in this paper concerns the
determination of an interface actuator which insures that such transitions occur in
a controllable (or rather stable) manner.

The interface actuator is that part of the interface which transforms a sequence of
DES supervisory control symbols, ?[n], into a trajectory of control vectors f(t) used to
drive the plant. It is assumed that the output of the actuator is given by the following
equation:

f(t)= f y(rCnl)r(t,z,Cnl,s,Cn+ll),
!I=0

(5)

where y : k--+R is a mapping which takes the control symbol at discrete time n, f[n],
onto a constant control vector in l?. Associated with this sequence of control symbols,
is a sequence of times (measured with respect to the CSS plant’s clock), r,[n], when the
nth control symbol was issued by the supervisor. For causality reasons, it will be
assumed that these times are related to the generator times ~,[n] as
z,[n] <rzl[n] <r,[n+ 11. The indicator function Z(t, tr[n], z,[n+ 11) is unity for all tin
the interval (~,[n],r,[n+ 11) and zero elsewhere. The control trajectory, f(t), is
therefore a piecewise constant function of time.

Note from Fig. 1 that the combination of plant and interface behave like a discrete
event system. The combined plant/interface system is referred to as the DES plant. The
inputs to the DES plant are the sequence of control events, (F[n], ~,[n]). The outputs of
the DES plant are the sequence of plant events, (Z[n],r,[n]). Note that the “events”
are ordered pairs consisting of a symbol and a time associated with that symbol. The
DES plant of a hybrid control system is the labeled digraph 9, =(2, A). The set of
vertices, 2, is the alphabet of plant symbols. The arcs, A, form a subset of 2 x 2. Each
arc is labeled by a control event, (7, T&R” x %, and a plant event, (2, z,)E_? x 9%

3. Transition stability

The DES plant can be seen as a “logical” interpretation of the CSS plant’s symbolic
behavior. If that interpretation accurately and reliably predicts the CSS plant’s

M. Lemmon, P.J. Antsaklisj Theoretical Compufer Science 138 f 199.51 201~210 205

behavior, then it is a valid interpretation or model of the CSS plant. As one approach
[7] to hybrid control system design involves synthesizing DES controllers for an
extracted DES plant, the “validity” of the DES plant is an issue which must be
addressed.

DES plant validity can be viewed in terms of the invariance of plant and control
event sequences to small perturbations in the CSS plant’s state. An arc of the DES
plant represents a transition of the CSS plant’s state between two subsets of the CSS
plant’s state space. The labeling of that arc represents the symbolic behavior of that
transition. A valid DES plant would preserve that labeling under small perturbations
of the initial CSS plant state. This viewpoint is formalized in the following definition of
hybrid system transition or T-stability.

Definition 1. Let 9d =(??, A) be a DES plant for a hybrid control system. Let x”i and
Ij be two vertices in _? with associated generator sets bi and bj, respectively. Consider
the arc (li, Zj)EA labeled with control event, (F, 7,) and plant event, (1, r,). Let F=y(F)
be the CSS plant control vector associated with control symbol F through the interface
actuator mapping y.

The arc (~i,~j) is transition or T-stable if only if for all ioEbi, there exists
an open neighborhood, N,(%,), centered at X0 and a finite time 0 < T<cosuch that the
set

N,={X+ XT=@;(X), XeN,(X,,)} (6)

is an open subset of bj and such that the plant symbol, 1, issued during the transition is
identical for all transitions starting in N,(Xe) and ending in Nr.

If the CSS plant is affine in its control policies then the following proposition
provides a set of sufficient conditions for a single arc of the DES plant to be T-stable.
The following proposition makes use of the directional or Lie derivative of a func-
tional. Let V: %“+‘!I? be a continuously differentiable functional and let f: !R”-93”
be a smooth vector field over ‘3”. Let [VX Vj denote the gradient vector of V. The
Lie (directional) derivative of V, L, V: ‘3” -P%, with respect to vector field f is
given by L,V=[V, V]‘f: This is the inner product of the gradient of V with the
vector field5 With the preceding definitions the following proposition can now be
stated.

Proposition 1. Consider a DES plant, Yd =(6, A) of a hybrid system whose CSS plant is
afine in its control policies (Eq. (3)). Consider an arc (Ij,~k) of the DES plant with
control event label, (F, T). Let ~=(r,, . . . , I,,,)‘= y(F). This arc will be T-stable tfthere exists

a set of continuously differentiable positive dejnite functionals K: ‘W’+% (i = 1, . . . , q)
which are zero on a closed proper subset of btEW(i= I, q) such that for all .%x

206 M. Lemmon, P.J. Antsaklis/ Theoretical Computer Science 138 (1995) 201-210

and X$bk,

andfor all ZEbifir i= 1,q and i#k,

1 l\

\ rmI

(7)

Proof. Note that a sufficient condition for the transition to be T-stable is that all
trajectories starting in bj are attracted to bk and are repelled by any other elements of
.99’. This condition is satisfied provided bk contains a global attractor for the controlled
system and all other bi (i # k) are repellors. These conditions can easily be established
by constructing a Lyapunov functional [4] over the state space such that the system is
globally stable to bk. The LaSalle invariance principle [4] can be used for this purpose
and immediately yields the first conditions given in the proposition. To insure that all
other sets are repelling, it is sufficient to guarantee that the functional K for these
generator sets always force the state trajectory out of the set. The second condition of
the proposition guarantees this behavior. 0

How easily such conditions can be satisfied will depend on the generator sets in 23.
It can be shown, for example, that if the sets in B form a finite partition of the state
space, then the conditions in Proposition 1 will generally be impossible to satisfy
unless the boundaries of all generator sets lie on integral manifolds of the distribution
of control policies. If the generator basis B, does not form a complete partition of the
state space, then the conditions are much easier to satisfy.

The preceding proof relies on the generator sets forming global attractors and
repellors for the CSS plant. This condition is clearly not necessary for T-stability. For
many situations, this condition may only have to hold in a local sense. Even so,
however, the proposition is very valuable. Dynamical systems are always subjected to
unpredicted external disturbances which may force the plant state off the controlled
trajectory. When such disturbances occur, it is desirable that the transition remain
“stable”. One way to insure this is to require that the generator sets be global
attractors and repellors. Therefore, while the condition in Proposition 1 is restrictive,
it provides a test which is useful in the face of unmodeled CSS plant disturbances. In
addition to this (as will be seen below) the proposition provides a practical condition
for testing the T-stability of a DES plant.

M. Lemmon, P.J. Antsaklis/ Theoretical Computer Science 138 (1995) 201-210 207

4. Inductively inferring T-stable interfaces

The sufficient conditions obtained in Proposition 1 pertain to a single transition
arc, (Zi,Zj) of the DES plant. These conditions form a system of linear inequality
constraints in the CSS plant’s control space, I?. Feasible points satisfying the inequal-
ity system are therefore constant control vectors %J? which guarantee that the single
arc is T-stable. By finding the feasible points for each arc in the DES plant, a set of
control vectors Yi (where i = 1, . . . , p) associated with the control symbols ?i is obtained.
The systematic application of this approach to every arc in a given DES plant can
then be used to determine an actuator mapping, y, which T-stabilizes the entire DES
plant.

Deciding the T-stability of the entire DES plant can only be done if there exists
a numerically efficient method for finding feasible points. One class of algorithms for
doing this is the class of method ofcenters [S] algorithms. Method of center algorithms
compute a sequence of convex bodies and their centers in such a way that the
computed centers converge to a feasible point. Depending on the analytic form of the
convex bodies and the centers, different types of algorithms are obtained. A parti-
cularly well-known example is the so-called ellipsoid method [Z]. In this algorithm,
the convex bodies are ellipsoidal sets containing the set of feasible vectors and the
centers are the geometric centers of these ellipsoids. In the following examples, we will
illustrate the use of the ellipsoid method as an inductive learning algorithm.

The ellipsoid method (as all method of center algorithms) is an iterative algorithm.
The initialization of the algorithm determines a convex set (ellipsoid) which is known
to contain the feasible set. The center of this bounding convex body is then computed
and is tested for feasibility using the given inequality constraints. If the center is not
feasible, then half of the ellipsoidal set can be discarded to form a smaller convex body
containing the set of feasible gains. The ellipsoid method computes the minimum
volume ellipsoid containing this smaller convex body. The updated ellipsoid has
a smaller volume than the preceding bounding ellipsoid so that the algorithm
iteratively computes a tighter and tighter upper bound on the set of feasible points. It
is well known that the ellipsoid method will converge after a finite number of “failed”
tests. This finite number of failures is bounded above in a way which grows on the
order of O(m In L) where L is the volume of the feasible set and m is the problem’s
dimensionality (in our case the number of available control policies). Consequently,
the ellipsoid algorithm converges in a finite time that scales in a polynomial manner
with problem complexity and the size of the feasible set.

Ellipsoid and method of center algorithms are usually implemented as off-line
procedures in which the entire inequality system is always available for testing a given
center’s feasibility. Recall that the inequalities in Proposition 1 check the sign of the
inner product of the control vector r with a vector of Lie derivatives. The inequality
must hold for all CSS plant states and therefore represents an infinite number of
inequality constraints. In many cases it is possible to measure or estimate these
directional (Lie) derivative vectors as the CSS plant state evolves over time. This

208 M. Lemmon, P.J. Antsaklis / Theoretical Computer Science 138 (1995) 201-210

T X, = velocity

position

Fig. 2. Generator sets (L, M, and R) for the double integrator example. The specified DES plant transitions
are shown by the arrows.

suggests that rather than implementing the ellipsoid method as an off-line procedure,
it can be implemented as an on-line procedure thereby yielding an adaptive or
inductive learning procedure for deciding the T-stability of the DES plant. Assume
that the CSS plant is attempting to transition the hybrid system between two distinct
generator sets. We can measure the CSS plant state and its Lie derivatives as the
hybrid system attempts to realize this DES plant arc. The measured data is then used
to evaluate the feasibility of the control vector f. If the control vector is declared
infeasible, then a new control vector is computed. Otherwise, the control vector is not
modified. After this test, the system is allowed to evolve further and another CSS plant
state (Lie derivative) is measured. The feasibility of the control is checked again and
updated if needed. This process of measuring, testing, and updating is then repeated
until a feasible control vector is found. Note that all of the convergence results for the
off-line ellipsoid method are applicable to the on-line method. It can therefore be
concluded that this on-line or inductive learning algorithm must converge after afinite
number of failed tests provided such the feasible set is not empty [3]. Since there is
a known upper bound on this convergence time, we can conclude that the T-stability
of a given arc is decidable after a finite number of updates.

The following example illustrates how the learning algorithm would be used to
decide whether or not a given DES plant specification can be realized. In this example,
we are given a continuous-state plant (double integrator) with a finite number of
linearly mixed control policies. The system equations are

(9)

where the state vector is X=(xi,xJ’. It is assumed that the generator basis B consists
of sets bi={Z: I/X-XJ)‘<l} for i=l,2,3 and where X1=(0,0)‘, XZ=(lO,O)‘, and
X3 =(- 10,O)‘. DES plant symbols are therefore generated when the CSS plant state
enters one of three disjoint hyperspheres in the state space (see Fig. 2).

M. Lemmon, P.J. Antsaklisl Theoretical Computer Science 138 (1995) 201-210 209

initial training period

Fig. 3. CSS plant state trajectories for the double integrator example.

The objective is to use the inductive learning algorithm to determine the actuator
mapping y which T-stabilizes a specified DES plant. The DES plant specification in
this example is that the CSS plant state have the following transition. br -+& bz+&,
and &+br. All other transitions within the DES plant are forbidden. The specified
DES plant is shown in Fig. 2.

To implement the inductive learning algorithm, the CSS plant is first started in bi
and the control vector Y associated with the b i+bz transition is applied. At regular
time intervals, the plant states are measured, the associated Lie derivatives of the
system are computed, and the inequality constraints tested to see whether or not r is
feasible. In this simulation example, the inequality system was generated with respect
to a quadratic Lyapunov functional, E= llX-Xi11’ (i= 1,2,3). If the test decleares r to
be infeasible, then 7 is updated using the central cut ellipsoid method. The testing of
7 continues in this way until the system enters another generator set. Upon entering
another generator set (b, for instance), the control vector associated with the specified
transition from this set is issued and then inductively tested (and updated). This
process then continues until none of the control vectors associated with the specified
DES plant transitions are updated anymore.

Fig. 3 shows the system’s state history as the on-line inference procedure is used.
The figure shows the two states of the system evolving over time. Also marked on the
plot are the sequence of plant symbols (L,M, R) issued by the hybrid system’s
generator. The figure shows that after an initial transient period, in which the on-line
algorithm is searching for the T-stabilizing control vectors of the specified DES plant,
the state trajectories settle down to a stable limit cycle whose logical behavior is that
of the specified DES plant.

5. Summary

This paper has presented a method for inductively learning interfaces of hybrid
control systems which insure that a given DES plant has “stable” transitions. In this

210 M. Lemmon, P.J. Antsaklis / Theoretical Computer Science 138 (1995) 201-210

paper, transition stability was interpreted as the invariance of the transition labelings
with respect to perturbations of the initial CSS plant state. This notion of transition or
T-stability was shown to be closely tied to conventional notions of continuous-state
system Lyapunov stability and it was this relationship which provided the basis for
inductively deciding and determining T-stabilizing control vectors for the hybrid
system.

Acknowledgment

The partial financial support of the National Science Foundation (IRI91-09298 and
MSS92- 16559) is gratefully acknowledged.

References

[I] P.J. Antsaklis, J.A. Stiver and M.D. Lemmon, Hybrid system modeling and autonomous control
systems, in: R.L. Grossman, A. Nerode, A. Ravn and H. Rischel, eds., Hybrid Systems, Lecture Notes in
Computer Science, Vol. 736, (Springer, Berlin 1993) 366-392.

[2] R.G. Bland, D. Goldfarb and M.J. Todd, The ellipsoid method: a survey, Oper. Res. 29 (1981)
1039-1091.

[3] M. Groetshel, L. Lovasz and A. Schrijver, Geometric Algorithms and Combinatorial Optimization
(Springer, Berlin, 1988).

[4] J.P. LaSalle and S. Lefschetz, Stability by Lyapunou’s Direct Method (Academic Press, New York, 1961).
[S] A.S. Nemirovsky and D.B. Yudin, Problem Complexity and Method Efficiency in Optimization (Wiley,

New York, 1983).
[6] P. Ramadge and W.M. Wonham, The control of discrete event systems, Proc. IEEE 77 (1) (1989) 81-89.
[7] J.A. Stiver and P.J. Antsaklis, DES supervisor design for hybrid control systems. Proc. 31st Ann.

AlIerton Cor$ on Communication Control and Computing. Univ. of Illinois at Urbana-Champaign
(1993).

