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Safe implementations of supervisory commands

MICHAEL LEMMON² and CHRISTOPHER BETT²

Two di�erent types of control strategy used to safely implement supervisory
commands of hybrid dynamical systems are compared. Both approaches consid-
ered switch between members of a family of control agents to ensure that
constraints on the plant state are not violated at any time. The ®rst approach is
motivated by a hybrid system architecture outlined by Kohn and Nerode (1993)
and uses a Fliess functional series of the plant’s output to form a system of linear
inequalities characterizing safe control inputs. Control signals are determined by
solving a sequence of linear programs. The second approach is a model reference
control approach to hybrid systems introduced by Lemmon and Bett (1996) and
uses a known safe dynamical reference model to characterize the desired plant
behaviour. The controller is determined by representing the resulting error dy-
namics as a linear parameter varying system and applying linear robust control
techniques to enforce a bounded amplitude performance level. The fundamental
results underlying each of the methods are derived; the approaches are compared
with regard to their complexity, performance and sensitivity to modelling uncer-
tainty. A numerical example is included for illustration.

1. Introduction

This paper considers the high level supervision of continuous-time dynamical
control systems evolving over a state set which is dense in n. It is assumed that a
supervisory command is characterized by a set of guard conditions and a goal
condition. These guard and goal conditions are inequality conditions on the plant’s
state. A control system is used to implement the supervisory command. This
controller is said to be safe when the controlled plant’s state trajectory triggers the
goal condition in ®nite time without triggering any of the guard conditions. This
paper compares two di�erent types of controllers used to safely implement super-
visory commands.

Both approaches considered in this paper switch between members of a family of
control agents to ensure that the guard conditions are not triggered. The ®rst
approach is motivated by a hybrid system architecture outlined by Kohn and Nerode
(1993). This approach uses a Fliess functional series of the plant’s output to form a
system of linear inequalities characterizing safe control inputs. In this method,
control signals can be determined by solving a sequence of linear programs (LP). The
second approach is a model reference control approach to hybrid systems introduced
by Lemmon and Bett (1996). In this approach, the controlled plant follows a
reference model which is known to be safe. The error dynamics of this system are
represented as a linear parameter varying (LPV) system whose controllers enforce a
bounded amplitude performance level. This paper formally derives the fundamental
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results behind both these methods and compares both approaches with regard to
their complexity, performance and sensitivity to modelling uncertainty.

This paper is concerned with switched control systems as they appear in the
design of hybrid dynamical systems. The primary contribution of this work concerns
the formal development of two methods for the safe control of such systems. Safety
is a bounded amplitude performance measure which seeks to ensure that the
amplitude maxtix(t)i of a signal is appropriately bounded. For continuous-time
systems there is very little work concerned with the control (switched or otherwise) of
systems satisfying bounded amplitude performance measures. In particular, most of
the prior work on switched dynamical systems has dealt with the assurance of
induced L 2 performance norms. In this regard, the results and methods of this paper
provide a perspective on bounded amplitude control which has not been well
addressed in the academic community.

A formal de®nition of safe controllers is given in section 2. The remainder of the
paper discusses the two methods for characterizing safe controllers which were
outlined above. The ®rst method will be referred to as the LP-method since it solves a
sequence of linear programs to determine safe control signals. The LP-method is
discussed in section 3. The fundamental result in section 3 is a set of inequality
constraints characterizing locally safe piecewise constant control signals. The second
method is referred to as the MRC-method since it uses a model reference control
(MRC) approach to formulate the controller synthesis problem. The MRC method
is discussed in section 4. The fundamental results in this section are su�cient
conditions characterizing controllers ensuring bounded-amplitude performance for
the switched control system. Section 5 compares both methods and draws some
general conclusions about their relative strengths and weaknesses.

2. Safe supervisory controllers

Hybrid dynamical systems arise when the time and/or the state space have mixed
continuous and discrete natures. Such systems frequently arise when computers are
used to control continuous state systems. In recent years, speci®c attention has been
focused on hybrid systems in which a discrete-event system is used to supervise the
behaviour of plants whose state spaces are dense in n. In this class of hybrid control
systems, commands are issued by a discrete-event system to direct the behaviour of
the plant. These commands are high-level directives to the plant which require that
the supervised plant satisfy logical conditions on the plant’s state. The simplest
conditions are inequality conditions on the plant’s state.

Assume that the plant’s dynamics are generated by the di�erential equation

Çx = f (x,u) (1)

where x Î n is the state, u Î m is the control input, and f :
n ´ m ® n is a

Lipschitz continuous mapping. A supervisory directive to this system is characterized
by a set of functionals, hj :

n ® , for j = 0,. . . ,N, that separate the state space.
The functionals, hj , are said to separate the state space if and only if for all x,
y Î n, such that hj(x) >0 and hj (y) <0, there exists 0 <¸ <1 such that
hj(¸x + (1 - ¸)y) = 0. The functional h0 is said to be the goal trigger and the
other functionals, hj for j = 1,. . . ,N, are called the guard triggers. Consider a state
feedback controller

u = k(x) (2)
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Such a controller is said to be safe if and only if there exist ®nite times T1 and
T2( T1 < T2) such that

� hj(x(t) ) <0, for all t0 £ t < T2, j = 1,. . . ,N
� h0(x(t) ) <0, for all t0 £ t < T1

� h0(x(t) ) >0, for all T1 < t < T2

Essentially, these conditions state that the goal condition is triggered in ®nite time
without any of the guard triggers being violated. Assume that we have a monotone
increasing function r(t) such that r(0) = h0(x(0)) and r( T1) = 0. We can use this
`reference’ function to rewrite the preceding list of conditions as a set of inequality
constraints such that the guard triggers ( j = 1, . . . ,N) satisfy hj(x(t) ) <0 and the
goal trigger satis®es h0(x(t) ) - r(t) >0 for all t Î[0, T2]. However, note that with
this setting the switching time for h0 is less than T1.

3. LP-method

The LP-method is motivated by a hybrid system architecture outlined by Kohn
and Nerode (1993). This method characterizes safe control signals as a set of linear
inequality constraints. The LP-method assumes that the plant’s di�erential equation
has the form

Çx = f0(x) + å
m

i=1
fi(x)ui(t) (3)

where fi :
n ® n are analytic functions forming a non-singular distribution of

vector ®elds in n. It is also assumed that the set of trigger functions {hj}N

j=1 is
analytic.

Assume that the trigger functions hj(x( t) ) are known at time, t. Under
appropriate conditions it is possible to represent the trigger functions at time t + d

as a Fliess functional series. To formally state these results, some notational
conventions need to be introduced. Let f :

n ® n be a vector of analytic
functions, fÂ= [f1 f2 ´ ´ ´ fn]where fi :

n ® n, i = 1,. . . ,n. The Lie derivative
of an analytic function h :

n ® with respect to vector ®eld f is

L f h(x) = å
n

i=1

¶h

¶xi

fi(x) (4)

Let i Î{1,. . . ,m}be an index and let i1, . . . , ik be a sequence of indices of length k

called a multi-index. The set of all multi-indices will be denoted as I
*. Associated

with the multi-index i1, . . . , ik is the iterated integral,

Eik,...,i1 (t) = ò
t

0
dxik ´ ´ ´xi1 (5)

where for i = 1, . . . ,m
xi(t) = ò

t

0
ui(¿)d¿ (6)

ò
t

0
dxik ´ ´ ´ dxi1 = ò

t

0
dxik

(¿) ò
¿

0
dxik- 1 ´ ´ ´ dxi1 (7)

The following theorem, which is proven by Isidori (1989), will be used in our
following development.

Safe implementations of supervisory commands 273
D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
N
o
t
r
e
 
D
a
m
e
]
 
A
t
:
 
1
7
:
2
4
 
9
 
M
a
r
c
h
 
2
0
1
0



Proposition 1 (Isidori 1989): Consider the system given by (3). If there exist K >0
and M >0 such that

|L fi1 ´ ´ ´ L fi
k
hj(x( t) )| £ Kk!Mk (8)

for all k, j, and all multi-indices in I
*
, then there exists a real n >0 such that for all

d Î[0,n]and piecewise continuous control functions ui(t) de®ned over [t,t + n]subject

to the constraint

max
dÎ[0,n]|ui(t + d)| <1 (9)

then the series

hj(x(t) ) + å
¥

k=1
å
I*

L fi1 ´ ´ ´ L fik
hj (x(t) ) ò

d

0
dxik ´ ´ ´ dxi1 (10)

is uniformly and absolutely convergent to hj(x(t + d) ) .
If we can ®nd a control signal u so that the safety conditions are satis®ed over

[t,t + d], for all t then we say the control is locally safe. The Fliess series is a formal
series over the control symbols ui. It provides a means of expressing the values of the
trigger functions hj over a ®nite interval [t,t + d]. It therefore makes sense to use the
Fliess series in characterizing control inputs ui ensuring local safety of the control
system. The following proposition provides just such a characterization.

Propositon 2: Consider the system given by (3) and let r(t) be a known reference

trigger such that Çr(t) = R >0 and r(0) = h0(x(0)) . Assume that Proposition 1 holds

and that x(0) is safe. If there exist g>0,g1 >0, and n >0 such that the constant

vector u* Î m
satis®es

- g> hj (x(0)) + å
m

i=1
[L fihj(x(0))]u*

i n, j = 1, . . . ,N (11)

|u*
i | £ 1, i = 1,. . . ,m (12)

and

R- g1 <å
m

i=1
[L fih0(x(0))]u*

i
(13)

then the constant control u(t) = u
*

generates a safe state trajectory in [0,n) .

Proof: Assuming that Proposition 1 holds, then there exist K >0 and M >0 such
that the growth constraint (8) is satis®ed. Given inequality (12), we know that the
Fliess series is uniformly convergent in an interval [0,n]and that for any d Î[0,n]
we can expand hj(x(d) ) as

hj(x(d) ) = hj(x(0)) + å
¥

k=1
å

i1,...,ik
L fi 1

´ ´ ´ L fik
hj(t)Eik ,...,i1 (d) (14)

Assuming a constant u
* over this interval, we see that

hj(x(d) ) = hj(x(0)) + å
¥

k=1
å

i1,...,ik
L fi1 ´ ´ ´ L fi

k
hj(x(0))u*

i1 ´ ´ ´ u*
ik

d
k

k!

= hj(x(0)) + å
m

i=1
L fihj(x(0))u*

i d+ oj(d)

(15)
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The tail term is

oj(d) = å
¥

k=2
å

i1,...,ik
L fi1

´ ´ ´ L fik

hj(x(0))u*
i1 ´ ´ ´ u*

ik

d
k

k!
(16)

The magnitude of the tail is bounded as

|oj(d)| £ K( Mmd) 2 1
1 - Mmd( ) (17)

for d <1/Mm.
We now take n = q /Mm where q <1, then

|oj(d)| £ K
q

2

1 - q
= g (18)

We take the right-hand side of this inequality to be the g of our theorem and
immediately conclude that inequality (15) can be written as

hj (x(d) ) £ hj(x(0)) + å
m

i=1
L fi

hj(x(0))u*
i n + g (19)

For j = 1,. . . ,N, this implies that the state is safe at time n. It is also safe at time
zero. Since our bound is linear this must also hold for all d between 0 and n. So for
all time in [0,n) , the desired inequality constraints ensure that the guard triggers are
not violated.

We now turn to the terminating trigger h0(x(t) ) . In this case we require that
h0(x(d) ) > r(d) for all d Î[0,n]. By assumption, h0(x(0)) � r(0) and we know by
that r(d) = r(0) + Rd. To ensure our other constraint is satis®ed, we require

r(0) + Rd < h0(x(0)) + å
m

i=1
L fi

h0(x(0))u*
i d+ K( Mmd) 2 1

1 - Mmd( ) (20)

Assuming that r(0) = h0(x(0)) , we see that the condition reduces to

R <å
m

i=1
L fi

h0(x(0))u*
i + KMm

q

1 - q

(21)

We treat this last quantity as g1, and our result follows. u

Proposition 2 characterizes the set of locally safe control signals. In practice, a
speci®c control signal will need to be chosen from this set. This selection is made with
respect to an assumed cost functional J(u) . The `optimal’ locally safe control is
determined by ®nding the control signal that minimizes this given cost subject to the
local safety conditions represented by the inequality constraints in Proposition 2. A
particularly simple choice for the cost is a linear function of u. If we restrict
0 < ui <1 for all i = 1,. . . ,m, then our cost functional becomes

J(u) = wÂu = å
m

i=1
wiui (22)

where w is an m-vector of positive weights. The control signal minimizing this cost is
obtained by solving the following linear programming problem
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minimize wÂu
with respect to u

subject to A(t)u <b

0 <ui <1

üïïï
ýïïïþ

(23)

where

A(t) =

- L f1h0 - L f2h0 ´ ´ ´ - L fm
h0

L f 1h1 L f2h1 ´ ´ ´ L fm
h1

..

. ..
.

´ ´ ´ ..
.

L f1hn L f2hn ´ ´ ´ L fm
hn

é
êêêêêë

ùúúúúú
û

(24)

and

b =

- R+ g1

- g- h1(x(0))

..

.

- g- hn(x(0))

é
êêêêë

ùúúúú
û

(25)

Note that the constraint matrix A(t) is a function of time.
The preceding discussion solved an LP problem to ®nd a constant control u

* for
a time t Î[0, T ) which was locally safe. A safe control trajectory u

*(t) for all
t Î[0, T ) , can be determined by solving a sequence of linear programs at the time
instants t0 + nn, where n is the set of positive integers and n is given by the growth
constants in Proposition 2. The constraint matrices A(t) are obtained from our
knowledge of the distribution {f0, f1, . . . , fn}as well as the current state vector. This
essentially means that an LP problem must be solved at the sampling instant t0 + n¢

to determine the piecewise constant control u
* that is used over the interval

[t0 + nn,t0 + (n + 1)n].
The solution u

* will ensure the safety of the trajectory over the interval
[t0 + nn,t + 0 + (n + 1)n]. Will the concatenation of these u

* yield a safe system?
The answer is `yes’ provided that A(t) does not change too quickly over the
generated state-space trajectory. Recall from the proof of Proposition 2 that
n <1/Mm, where m is the number of applied inputs and M is the bounding
constant given in the growth condition of (8). Assume that the growth condition
is uniformly satis®ed for all points along the state trajectory, then there exists a single
M bounding all Lie derivatives in (8) and we see that n is ®xed. In this case we can
clearly ensure the safety of the concatenated set of controls.

Example: A simple example is used to illustrate the approach. The following
example has been modi®ed from Deshpande and Varaiya (1995) to yield a plant
which is a�ne in the control. The modi®ed plant equations are

Çx1 = - x1 + (u1 - u2) (26)

Çx2 = - x2 + (1 + x
2
1)(u3 - u4) (27)

where ui is constrained to be non-negative for i = 1,. . . ,4. This vector ®eld clearly
satis®es the growth conditions of (8), so we can apply our method to safely control
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this system. We can rewrite this as a linear combination of vector ®elds

Çx1

Çx2[ ] =
- x1

- x2[ ] +
1
0[ ]u1 +

- 1
0[ ]u2 +

0
1 + x

2
1[ ]u3 +

0
- (1 + x2) 2[ ]u4 (28)

The control objective is to move the plant from an initial state near the operating
point (0, 0) to a point near (2.5, 2). Note that the control inputs have been paired, so
there is a positive input (u1 and u3) and a negative input (u2 and u4) which work in
opposition to each other.

The guard triggers are

h1(x) = x2 - 1.25x1 - 0.5 (29)

h2(x) = x2 - 1.25x1 + 0.5 (30)

with a goal trigger

h0(x,t) = x1(0) - Rt (31)

where R is the desired rate at which we want to achieve the desired goal set. In this
example R = 0.1. These regions are illustrated in ®gure 1.

A simple Matlab script was written to simulate this system. ®gure 1 illustrates the
state trajectory that was generated by this approach. In this case, the LP-problems
determining safe controls were computed at a rate n = 0.1. The weighting vector w

was chosen to be a vector of ones. As can be seen, the selected controls basically
select one control strategy that drives the system in the direction of the h2 guard
trigger. Once within a distance g of that guard trigger, the control strategy changes
to a chattering policy which drives the system state along the boundary until the
terminal condition is satis®ed. The chattering nature of the control policy is seen in
®gure 2.

This example illustrates some fundamental characteristics of the LP-approach to
safe controller generation. In the ®rst place, this is an on-line procedure which
requires the solution of an LP problem at each sampling instant. The computation of
the control requires signi®cant information about the underlying vector ®elds
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Figure 1. Guard and goal triggers, for example.
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generating the system’s dynamics. Finally, this approach tends to produce a
chattering control strategy, as shown in ®gure 2.

4. M RC-method

A model reference control (MRC) approach for implementing safe controllers
was introduced by Lemmon and Bett (1996). In this approach the plant is forced to
follow a reference trajectory xm (t) which is known to be safe with a worst-case
tracking error of g. Provided that there exists a time T such that h0(xm ( T ) ) >gand
for all 0 < t < T and j = 1, . . . ,N that hj(xm (t) ) >- g, the plant trajectory xp(t) is
guaranteed to be safe.

In this framework, synthesis of safe switched controllers is accomplished by
examining the error between the plant and reference trajectories. Suppose that the
plant state dynamics are generated by

Çxp = fp(xp,u) (32)

and let the reference trajectory be generated by

Çxm = fm(xm) (33)

De®ning the state error signal, x = xm - xp, yields the di�erential equation

Çx = f (xm ,x,u) = fm(xm ) - fp(xp,u) (34)

The control input is generated by a controller u = k(xm ,x) which is dependent on the
reference model state and the reference error.

One control strategy is to choose a collection of setpoints along the reference
trajectory xm (t) and design linear control agents at each of the setpoints using the
plant model obtained from linearizing about the corresponding setpoint. This is the
basic idea behind the switched linear control agent approach introduced by Lemmon
and Bett (1996). Note that, as in a classical gain scheduling approach (Shamma and
Athans 1990), each of the control agents designed using this approach is designed for
local performance near an associated setpoint. As with classical gain scheduling,
performance of the switched system will be di�cult to guarantee, in general, due to
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Figure 2. Chattering control policy.
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the approximations made in the setpoint linearizations (as well as other modelling
uncertainties). Thus, the linear setpoint controllers should, at the least, demonstrate
robustness to the system nonlinearities lost in the setpoint linearizations. One way of
incorporating this robustness requirement into the design is to use linear parameter
varying (LPV) plant models at each of the setpoints.

An LPV model of the error dynamics may be obtained by rewriting the dynamics
of (34) as

Çx = A(µ)x + Bu(µ)u + Bw(µ)w (35)

z = Cx + Du (36)

where w = 1 is introduced as a ®ctitious disturbance. The s-dimensional parameter
vector µ is a function S(xm,x,u) . The vector µ is assumed to vary continuously over a
compact subset ~

H Ì s ; this assumption is denoted µÎF ~
H . For each of the local

plant models, µ is assumed to vary continuously over a compact subset H Í ~
H for a

time interval [¿s,¿f ]; this assumption is denoted µÎF H[¿s,¿f ]. This notation
distinguishes a parameter variation over H from a point in H which will be denoted
µÎH. The vector z will be called the objective signal and is chosen (via C and D) to
re¯ect not only the trigger constraints, but also control energy constraints. The entire
LPV system will be denoted as R ( ~

H,A,B,C,D) where BÂ= [BÂuBÂw].
Let T i = [ti,ti+1) denote the time interval over which the ith setpoint controller is

used. Note that if each individual setpoint controller satis®es the performance
requirement

sup
tÎT i

iz(t)i <g (37)

then local safety of the control directive will be preserved. Local setpoint controllers
are therefore obtained by solving what is called a ®nite horizon L 1 or bounded-
amplitude optimal control problem for LPV systems.

There are, unfortunately, relatively few results for the solution of L 1 optimal
control problems. Dahleh and Pearson (1987) showed that optimal solutions to this
problem are irrational or in®nite dimensional, even for rational and ®nite-dimen-
sional plants. For deterministic linear time-invariant systems (Nagpal et al. 1994) an
approach to L 1 optimal control synthesized a sub-optimal controller minimizing an
upper bound on the bounded-amplitude gain by solving a set of linear matrix
inequalities. To use this prior work in our synthesis problems, however, existing
synthesis methods must be extended to LPV systems. We remark here that previous
results on gain scheduling for LPV systems (Shamma and Athans 1991) do not
directly apply to the performance problem introduced here because those results
apply to an L 2 performance measure. The following theorem provides a character-
ization of systems whose L 1 gains are bounded.

The remainder of the paper will use the following notation. The in®nite-horizon
¥-norm of a signal x(t) is de®ned as ix(t)i¥ := suptix(t)i where i ·i is the
Euclidean norm. L n

¥ is the space of n-dimensional vector signals with ®nite ¥-
norm; BL n

¥ is the space of n-dimensional vector signals with ¥-norm bounded by 1.
For constants ¿ < T , ®nite-horizon ¥-norm of a signal x(t) de®ned on the interval
[¿, T]is

ix(t)i¥,[¿,T] := suptÎ[¿,T]ix(t)i
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L n

¥[¿, T] and BL n

¥[¿, T] are de®ned in an analogous manner. Recall that
µÎF H[¿, T]is an s-dimensional signal µ(t) which takes values on a compact subset
H Ì s for t Î[¿, T]. This implies that µÎL s

¥[¿, T] Finally, throughout the
remainder of the paper, the matrix inequality M >N( M � N) where M and N

are symmetric matrices indicates that the matrix M - N is positive de®nite (positive
semi-de®nite).
Proposition 3: Given constants r >0,g>0 and T >0 and the L PV system

R ( ~
H,A,B,C,D) with u = 0. L et H be a compact subset of

~
H and suppose there exists

a>0 and b � 0 and a positive de®nite matrix P Î n´n
satisfying

P � r

g2 CÂC (38)

and

AÂ(µ)P + PA(µ) + 2b + a
r( ) P +

1
aPBw(µ)Bw(µ)ÂP £ 0 (39)

for all µÎH. If µÎF H[0, T]and w ÎBL nw¥[0, T], then

if xÂ(0)Px(0) £ r, then xÂ(t)Px(t) £ r and zÂ(t)z(t) £ g2, for all t Î[0, T]
if b >0 and xÂ(0)Px(0) = r0 > r, then xÂ(t)Px(t) £ r, for all t Î[td , T]where

td := - 1
2b

log
r

r0( ) (40)

(assuming td £ T )
Proof: Let r >0,g>0 and T >0 and assume that there are constants a>0 and
b � 0 and a positive de®nite matrix P so that the conditions of the theorem are
satis®ed. For any µÎH

1
aPB(µ)BÂ(µ)P � 0 (41)

If (39) holds for all µÎH, then

AÂ(µ)P + PA(µ) + a
r

+ 2b( ) P £ - 1
aPB(µ)BÂ(µ)P £ 0 (42)

Using Schur complements, this inequality is true if and only if

AÂ(µ)P + PA(µ) + qP PB(µ)
BÂ(µ)P - aI[ ] £ 0 (43)

where q = 2b + a/r. This inequality is true if and only if

x
t[ ]Â AÂ(µ)P + PA(µ) + qP PB(µ)

BÂ(µ)P - aI[ ] x
t[ ] £ 0 (44)

for all xÎ n and t Î nw . Expanding, it is apparent that

xÂ[AÂ(µ)P + PA(µ) + 2bP]x+ tÂBÂ(µ)Px+ xÂPB(µ)t + a
r
[xÂPx- r]+ a[1 - tÂt]£ 0

(45)

This last equation implies that

xÂ[AÂ(µ)P + PA(µ)]x+ tÂBÂ(µ)Px+ xÂPB(µ)t £ - 2bxÂPx£ 0 (46)
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for all xand t such that xÂPx� r and tÂt £ 1.
Now consider a function, V :

n ® , such that V (x) = xÂPx. Along trajectories
of the LPV system with u = 0, the time derivative of V (x(t) ) is
dV

dt
(x(t) ) = xÂ(t)[AÂ(µ( t) )P + PA(µ(t) )]x(t) + wÂ(t)BÂ(µ(t) )Px(t) + xÂ(t)PB(µ(t) )w(t)

(47)
and from (46), it is immediately evident that

dV

dt
(x(t) ) £ - 2bV (x(t) ) £ 0 (48)

for any x(t) and w(t) such that xÂ(t)Px(t) � r and wÂ(t)w(t) £ 1 with t Î[0, T].
Assume for some w ÎBL nw¥[0, T]that there is a trajectory with initial state x(0)

satisfying V (x(0)) = xÂ(0)Px(0) £ r and V (x( T ) ) > r. Since V (x(t) ) is di�erentiable
in t, the mean value theorem may be used to imply the existence of a time ¿ Î[0, T]
such that V (x(¿) ) � r and ÇV (x(¿) ) >0. This is a contradiction of (48), so one must
conclude that xÂ(t)Px(t) £ r, hence zÂ(t)z(t) £ g2 for all t Î[0, T].

If V (x(0)) > r, then the di�erential inequality implies that

V (x(t) £ V (x(0)) - ò
t

0
2bV (x(¿) ) d¿ (49)

and the Bellman±Gronwall inequality may be used to conclude that

V (x(t) ) £ V (x(0)) e- 2bt (50)

Now suppose that V (x(0)) = r0 > r,b >0 and let td be the dwell time given in (40).
If td £ T , then

V (x(t) ) £ r0e- 2btd = r (51)

for all t Î[td , T]. u

Proposition 3 characterizes a class of uncontrolled (u = 0) LPV systems where
izi¥,[0,T]£ g and where the parameter variation is con®ned to the set H. The next
result helps to characterize a class of controlled LPV systems using linear state
feedback, u = Kx.

Proposition 4: Given g>0 and an LPV system R ( ~
H,A,B,C,D) with state-space

realization

Çx(t)
z(t)[ ] =

A(µ) Bw(µ) Bu(µ)
C 0 D[ ]

x

w

u

é
êë

ùú
û

(52)

Let H Í ~
H be a compact subset and consider a state feedback control law u = Kx

where K Î nu´n
. De®ne

~
A(µ) = A(µ) + Bu(µ)K. Then there exist constants

a1 � a2 >0, a positive de®nite matrix P Î n´n
and a controller K satisfying

P � 1
g2 (C + DK)Â(C + DK) (53)

and

~
AÂ(µ)P + P

~
A(µ) + a1P +

1
a2

PBw(µ)Bw(µ)ÂP £ 0 (54)
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for all µÎH if and only if there exists a positive de®nite matrix Q Î n´n
and a matrix

V Î nu´n
such that for all µÎH

Q QCÂ+ VÂDÂ
CQ + DV g2

I[ ] � 0 (55)

and

QAÂ(µ) + A(µ)Q + a1Q +
1
a2

Bw(µ)BÂw(µ) + Bu(µ) V + VÂBÂu(µ) £ 0 (56)

Proof: Assume that there exists a positive de®nite matrix Q and a matrix V such
that

Q QCÂ+ VÂDÂ
CQ + DV g2

I[ ] � 0 (57)

Using Schur complements, this holds if and only if

Q - 1
g2 (QCÂ+ VÂDÂ) (CQ + DV ) � 0 (58)

If we let P = Q
- 1 and K = VQ

- 1, then this holds if and only if

P � 1
g2 (C + DK)Â(C + DK) (59)

which establishes the ®rst condition in the proposition.
Now assume that there also exist constants a1 � a2 >0 such that

~
AÂ(µ)P + P

~
A(µ) + a1P +

1
a2

PBw(µ)Bw(µ)ÂP £ 0

for all µÎH. Substituting P = Q
- 1 and K = VQ

- 1 as above

[A(µ) + Bu(µ)K]ÂP + P[A(µ) + Bu(µ)K]+ a1P +
1
a2

PBw(µ)BÂw(µ)P (60)

= Q
- 1[QAÂ(µ) + A(µ)Q + a1Q +

1
a2

Bw(µ)BÂw(µ) + Bu(µ) V + VÂBÂu(µ)]Q- 1 (61)

Since Q
- 1 >0, the conclusion of the theorem immediately follows. u

The following remarks summarize the importance of Propositions 3 and 4.
Under the assumptions of Propositions 3 and 4, it should be apparent that if (55)

and (56) hold, then under control u = Kx, the objective function z = (C + DK)x will
have a ®nite horizon sup-norm less than g provided that the parameter variation is
bounded according to µÎF H[0, T].

From the proof of Proposition 4 it should be apparent that the matrices Q and V

satisfying (55) and (56) parametrize a set of locally safe controllers. In particular, for
any such Q and V , the controller is K = VQ

- 1.
The importance of (55) and (56) is that these can be used to form matrix

inequalities which are linear in Q and V . These inequalities need only be satis®ed
pointwise over H without regard to parameter variation rate, so long as the
parameter variation is bounded according to µÎF H[0, T].

Note that the µ dependence of (56) limits its usefulness; verifying the condition
for all µÎH may be unreasonable or infeasible. In certain cases, however, the
computational burden can be signi®cantly reduced. For instance, if A(µ),Bu(µ) and
Bw(µ) can be written as linear fractional transformations in µ, and if the parameter
set H is a polytope, then it is possible to express (56) as a matrix inequality which is
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independent of µ and linear in the variables Q and V . Derivation of such LMIs is a
straightforward application of the results of Boyd et al. (1994); a detailed proof is
beyond the scope of this paper but can be found in Bett and Lemmon (1997).

The results in Proposition 3 are extremely important in determining whether or
not a given set of linear setpoint controllers will safely execute a supervisory
directive. Let T i be the time interval when the ith setpoint controller is used. This
controller is characterized by the matrices Pi , the radius ri and constants ai and bi .
The results in this proposition state that the controlled system will be locally safe if
the error satis®es xÂ(ti)Pix(ti) £ r

2
i .

To ensure that the plant behaviour is safe under the next ( i + 1)th setpoint
controller, one must ensure that xÂ(ti+1)Pi+1x(ti+1) £ r

2
i+1. The problem here is that

the second condition is not guaranteed if the switch occurs too quickly. This is where
the second part of Proposition 3 has something to add. Speci®cally, if the state at
time ti starts outside the invariant set for the ( i + 1)th setpoint controller, then there
is a minimum time called the dwell time, after which the state is guaranteed to be
within the required distance. In particular, let riPi+1 £ ri+1Pi and assume that Pi and
Pi+1 both satisfy the conditions for setpoint controllers in Proposition 3. It is readily
apparent that if tt+1 - ti � td , where

td = - 1
2bi

log
ri+1

ri

(62)

then
izi¥,[ti,ti+2]£ g (63)

The satisfaction of the inequality constraints, of course, also requires that µ(t) lie in
H1 for ti £ t < ti+1 (i.e. µÎF H1[ti,ti+1]) and in H2 for ti+1 £ t £ ti+2. Satisfaction of
this parameter variation condition is not trivial to verify.

The preceding discussion has outlined how the conditions determined in
Proposition 3 can be used to ensure safe behaviour between the switch of two
di�erent setpoint controllers. These conditions are summarized in the following
proposition.

Proposition 5Ð LPV switching lemma: Given L PV systemsR ( ~
H,A1,B1,C1,D1) , and

R ( ~
H,A2,B2,C2,D2) with associated controllers K1 and K2, let the ith controller

( i = 1,2) be characterized by the matrix Pi and positive constants ri,ai and bi so

that the conditions of Propositions 3 and 4 are satis®ed for compact parameter sets

Hi Í ~
H. Assume that the controller K1 is used over the time interval t Î[t0,ts) and that

the controller K2 is used for the time interval t Î[ts, T]for any T > ts. If r1P2 £ r2P1

and the switch time ts satis®es

ts - t0 � - 1
2b1

log
r2

r1
(64)

and if µÎ{F H1[t0,ts],F H2[ts, T]}then izi¥,[0,T]£ g.

The LPV switching lemma suggests a means of testing to see whether or not a
given collection of linear setpoint controllers will generate a safe trajectory.
Essentially, this involves verifying the dwell-time condition for all possible switching
times and verifying the conditions on the parameter variation. The required dwell-
times may be computed from the synthesis LMIs and the coupling condition
r1P2 £ r2P1. Switching times and parameter variation bounds are more di�cult to
verify, but a nominal parameter trajectory S(xm( t) ,0,0) may be used to estimate

Safe implementations of supervisory commands 283
D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
N
o
t
r
e
 
D
a
m
e
]
 
A
t
:
 
1
7
:
2
4
 
9
 
M
a
r
c
h
 
2
0
1
0



these quantities o�-line. These estimates may then be compared to the dwell-time
results as a su�cient condition for safeness.

Example: As an illustration of some of the important aspects of the MRC
approach, the methods described above were applied to the process control example
described in section 3. The reference model

Çxm1 = xm1 - 1.63 - xm1 /(1 + 0.5 sin 10(xm1 - 1.63))

Çxm2 = 1 } (65)

is speci®ed to move the plant from an initial state near the operating point
(xp1,xp2) = (2.5,2) to a point near (xp1,xp2) = (1,3) in 1 s. The performance weights
for the objective function were chosen as C = I and D = 0.1I; the desired bound on
the objective function was g = 0.5.

The LPV error system is derived as

Çx = A(µ)x + Bu(µ)u + Bw(µ)w

z = Cx + Du

ü
ý
þ

(66)

with

A(µ) =
- 1 0

0 - 1[ ], Bw(µ) =
µ1 - 1.63

µ2 + 1[ ] and Bu(µ) =
- 1 0

0 - µ3 - 1[ ] (67)

and parameter mapping

µ1

µ2

µ3

é
êë

ùú
û

= S(xm,x,u) =
2xm1 - xm1 /(1 + 0.5 sin 10(xm1 - 1.63))

xm2 + (2xm1x1 - x
2
1)u2

x
2
m1

é
êë

ùú
û

(68)

Linear state feedback control agents u = Kx were designed by choosing setpoints
µ

nom = S(xnom

m ,0,0) and solving the appropriate synthesis LMIs for parameter sets

H := µ
ï
ï
ï
ï

sup
i=1,...,s

|µi - µ
nom

i | £ "{ }
for a design parameter " >0. Switching control was achieved by switching a new
feedback controller into the loop whenever the parameter variation evolved onto the
boundary of the current agent’s parameter set. The new control agent was chosen to
minimize a distance measure in the parameter space.

A Matlab program was written to solve the appropriate synthesis LMIs, as
indicated above, and simulate the closed-loop system. Simulations were performed
for various values of " , resulting in experiments requiring varying numbers of
models. The resulting state trajectory for 20 models is depicted in ®gure 3. Figure 3
also depicts the reference trajectory and forbidden (shaded) regions of the state
space. Note that the resulting trajectory is safe and non-chattering, as seen in ®gure
4. Similar results were observed for di�erent numbers of models. Figure 5 depicts the
resulting trend observed for increasing numbers of models. Note the monotonic
improvement in performance with increasing numbers of models. The quantity iµerri
represents a mismatch between the reference model dynamics and the multiple agent
controlled system; the result in the ®gure indicates that an increase in the number of
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agents (via a reduction in ") results in improved dynamical model matching. The
other performance curves are self-explanatory.

As with the previous example of the LP-approach, this example depicts some of
the fundamental characteristics of the MRC-approach. The approach is an o�-line
procedure which requires the solution of LMI problems. In the present form, the
computation of the control requires explicit knowledge of the plant dynamics and
direct measurement of the plant state. However, because the approach is based
primarily on Lyapunov and structured uncertainty methods for robust control
design, the approach should be extendable to uncertain systems. The computational
burden is large, but it is o�-line and the payo� is a non-chattering control which
satis®es amplitude constraints.

The MRC approach is a new application of classical gain scheduling and robust
control techniques in the following respects. First, classical gain scheduling o�ers no
systematic checks for stability and performance in a bounded amplitude perform-
ance problem; those results which appear in the literature (Shamma and Athans
1990, 1991) concern bounded energy (L 2) performance problems. A similar claim is
true for robust control techniques which almost exclusively apply to L 2 problems. In
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Figure 3. Simulation for 20 agents with g = 0.08. Reference trajectory (dashed) and con-
trolled plant state (solid) with forbidden regions (shaded) are shown.
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addition, robust control techniques do not apply in a direct manner to switched-
agent control problems such as the one considered here. The MRC method
represents a combination of the two techniques for bounded-amplitude problems
which arise naturally in hybrid system applications.

5. Conclusions

This paper has compared two methods for safe implementation of supervisory
commands in hybrid dynamical control systems, called the LP method and the MRC
method. Both methods appear to be able to guarantee the bounded amplitude
performance requirements dictated by the hybrid design problem, assuming knowl-
edge of the plant dynamics. The LP method produces a chattering control policy
versus the non-chattering control policy generated by the MRC method. Both
methods require that the plant dynamics do not vary too rapidly.

As presented, both methods require knowledge of the plant dynamics and full
state availability. This is required in order to compare the two approaches. Although
it is unclear if this assumption may be relaxed in the LP method, the MRC method
can be extended to structurally perturbed systems and output feedback cases in a
straightforward fashion because it is based primarily on linear robust control and
Lyapunov techniques (this is a topic of current research e�orts). Although the
extension is straightforward, it is not trivial and adds considerable complexity to the
presentation; it is not included in this paper. We note that the underlying structure of
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Figure 4. Simulation for 20 agents with g = 0.08. Error states x1 and x2 with performance
iz(t)i are shown.
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the MRC method allows the method to be generalized in another direction, as well;
namely, more complex control agents may be used. The most obvious extension is to
bounded amplitude LPV control agents, analogous to those discussed by Packard
(1994).

To emphasize, although both methods require explicit knowledge of the plant
dynamics, the MRC method appears to be more amenable to incorporation of
modelling uncertainty and disturbances into the design, yielding robust control
policies. Furthermore, the designs may be accomplished using the same tools as for
the nominal case since the design tools are linear robust control techniques. The LP
method may o�er such advantages, but they are not apparent.

In the area of numerical complexity, the LP method requires the solution of
simple linear programming problems which, of course, can be solved quickly and
e�ciently. This advantage is o�set, somewhat, by the fact that the linear programs
must be solved on-line and often. On the other hand, the MRC method requires the
solution of a series of larger convex optimization problems. However, although this
requires a more computationally intensive e�ort, the procedure is performed o�-line
and must only be performed once.
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Figure 5. Average performance versus number of agents.
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