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¹emporal characteristics of a scheduled linear parameter varying system, controlled by switching
from a finite collection of setpoint amplitude controllers, are derived and used to construct timed
automata models of the switched system.

Abstract

This paper discusses recent results on multiple linear agent control for systems satisfying a bounded amplitude performance
constraint. The plant is assumed to be a linear parameter varying (LPV) system scheduled along a nominal parameter trajectory; in
this respect, the control problem represents a plant operating between a prespecified set of operating conditions. Linear controllers are
designed at setpoints along this scheduling trajectory to satisfy bounded amplitude performance constraints. This paper discusses an
approach to analyze the switched system behavior under practical assumptions on the structure of the switching rule. The approach
combines the scheduling parameter with LPV system properties to derive bounds on the switching behavior of the system. These
estimates are then used to construct a logical model of the switched system behavior in the form of a timed automaton. In this respect,
this paper presents a way of extracting logical models of continuous time system behavior. ! 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

This paper addresses the problem of scheduling a
linear parameter varying (LPV) system between
a predefined set of operating conditions by switching
from a set of LTI controllers, called agents, so that the
controlled system satisfies constraints on signal ampli-
tude. The primary theoretical result of this study is a suf-
ficient condition for bounded amplitude performance

expressed as a dwell time, a lower bound on the time for
which an agent must be kept in feedback with the plant.
This dwell time condition is parameterized by solutions
to a set of matrix inequalities similar to those defined in
Bett and Lemmon (1997) for bounded amplitude control
of LPV systems. Analyzing the switched system for the
dwell time conditions allows the extraction of a timed
logical model of the controlled system. This result has
important implications for hybrid systems because it
provides a necessary link between continuous state and dis-
crete event representations of the switched system de-
rived from modern linear robust control methodologies.

In the area of scheduled control, this paper provides
contributions to the study of switched scheduling under
bounded amplitude performance constraints. While the
framework established in this paper describes a schedul-
ing problem, the framework is distinct from traditional
and modern gain scheduling paradigms (e.g. Apkarian
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and Gahinet, 1995; Becker and Packard, 1994; Packard
1994; Rugh, 1991; Shamma and Athans, 1990, 1991,
1992), which compute continuous controls even when the
design is based on a collection of local controllers. To
emphasize the distinction from traditional views, the
control technique described in this paper is denoted
switched agent control. An additional deviation from the
gain scheduling literature is the amplitude performance
criterion assumed for the paper. Such an objective arises
naturally in any application where it is useful to avoid
certain regions in the state space, such as robotics or high
performance drive positioning. Theoretical and practical
results on scheduling control are concerned primarily
with L

#
stability and performance; amplitude perfor-

mance in this context is apparently absent from the
literature. The results of this paper indicate that tradi-
tional gain scheduling rule demanding slow scheduling is
a key concern in switched agent problem when signal
amplitude constraints are imposed; this rule manifests
itself as the dwell time condition described above.

Because the switched agent controlled system gener-
ates a mixture of continuous and discrete-valued signals,
it can be seen as a hybrid system (Branicky et al., 1998;
Stiver et al., 1998). Such systems can be studied as either
switched, continuous state systems or as timed, discrete
event systems. The continuous state approach offers
more insight into the structure of the controlled dynam-
ical system, but analysis and synthesis problems often
encounter computational intractability. Examples of this
approach can be seen in Johansson, and Rantzer (1998),
Morse (1996), Polla and Shamma (1995). The concept of
dwell time used in this paper is directly related to that
defined in Morse (1996) and alluded to in Polla and
Shamma (1995). In the discrete event approach, the con-
trolled system is abstracted into a timed logical model.
This abstraction allows one to study distinctly different
types of systems in a common domain and may then be
used to verify whether or not the supervised system meets
timing specifications expressed as temporal logic for-
mulae. In some cases, this approach can offer enormous
computational advantages for verifying stability and per-
formance. A drawback is that the abstraction process
often ignores the inherent structure of the underlying
continuous state dynamical system, often neglecting im-
portant questions of stability and performance in the
continuous domain and necessitating additional compu-
tation and analysis. Examples of this approach are seen
in Stiver et al. (1996), where a continuous dynamical
system is abstracted into an untimed finite automata, and
in Deshpande and Varaiya (1995), where the continuous
dynamics are modeled piecewise as simple linear differen-
tial inclusions and then abstracted to a timed automaton
(Alur and Dill, 1994).

The development of a useful and efficient design meth-
odology for hybrid system design and analysis requires
the integration of these distinctly different viewpoints.

This paper contributes to such an integration by demon-
strating that performance analysis of the switched, con-
tinuous state system provides the information required to
construct a timed, discrete event representation of the
controlled system in the form of a timed automaton. The
approach used here is loosely analogous to Deshpande
and Varaiya (1995) but the LPV framework used here
offers a richer structure and allows the abstraction to be
based on guaranteed robustness properties of the system
which are computed using modern linear robust control
methodologies. Thus, the automata extraction procedure
presented here explicitly accounts for continuous state
performance constraints.

The remainder of this paper is organized as follows.
Section 2 describes the problem setup, including assump-
tions on the plant and control agents. Section 3 states
sufficient conditions for the bounded amplitude perfor-
mance of a continuous time system whose dynamics
switch between two different LPV realizations. These
conditions include the aforementioned dwell time condi-
tion and provide a basis for the analysis presented in
Section 4. Section 4 contains conditions for estimating
the switching times of the scheduled system which can
then be compared to the dwell time condition. Section 5
demonstrates, by example, how the analysis results can
be used to extract timed automata models of a switched
dynamical system. Both finite-time and periodic schedul-
ing examples are provided. All proofs are located in
Appendix A.

Notation. Throughout the paper, !)! denotes the
Euclidean vector norm. For a finite constant ¹'0, the
finite-horizon infinity norm of a signal f :!!P!" is
defined as ! f !

$"%&"#'
:"ess sup

$(%&"#'
! f (t)!. The linear

space L"
$
[0, ¹] :"" f : !!P!"#! f !

$"%&"#'
(R$ denotes

all finite-horizon infinity norm bounded signals; the set of
all such signals bounded to the unit sphere is denoted
BL"

$
[0, ¹]. These notions generalize to the infinite hor-

izon case in the obvious way. A parameter variation set,
F!% , consists of all piecewise continuous mappings taking
!! into a compact &J L!%. For a finite ¹'0, the set
F![0, ¹] denotes the set of all piecewise continuous
mappings taking [0, ¹] into a compact &-&% . The
notation '3F! denotes a function in the parameter
variation set; '3&% denotes a vector in a compact subset
of !%. A linear parameter varying (LPV) system is a dy-
namical system whose dynamics evolve as

!xR (t)z (t)""!A(' (t)) B (' (t))
C(' (t)) D(' (t))"!x (t)

w(t)"
where '3F! and where the matrix mappings are con-
tinuous operators on !%. Finally, a positive definite
matrix P3!""" which satisfies the matrix inequality

A(P#PA#)
!
P# 1

)
#

PB(BP40, *#P5C(C
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Fig. 1. Control system architecture.

for A3!""", B3!"""&, C3!"'"" and scalars )
!
, )

#
and

* is denoted P3MI (A, B, C, )
!
, )

#
, *).

2. Problem description

In this section, the control system architecture is de-
scribed and the performance objective for the controlled
system is stated. The components of the system architec-
ture are depicted in Fig. 1.

2.1. Plant dynamics

The plant processes considered in this paper are
assumed to take the form of an LPV system

xR (t)"A
!
('(t))x (t)#B

!
('(t))w(t)#B

#
('(t))v(t), (1)

z(t)"C
!
x (t)#D

!#
v (t), (2)

with '3F!% where &% is some compact subset of !%. Here,
x3!" is the plant state, v3!"( is the control input,
w3!") represents bounded, exogenous disturbances and
z3!"' represents plant performance. It is assumed that
the disturbance vector w3BL")

$
.

The parameter vector ' is assumed to be defined by
a parameter mapping, '(t)"S (x

*
(t), x (t), v(t)); the argu-

ment x
*

3!" represents an exogenous reference or sched-
uling variable. The evolution of ' (t) in &% L!% is called
the parameter trajectory. A known parameter trajectory,
called the nominal parameter trajectory, is assumed to
exist and to represent ideal performance. The nominal
parameter trajectory is defined as

'
#$%

(t) :"S (x
*
(t), 0, v

*
(t)) (3)

The argument v
*
(t) represents a nominal control input to

the plant. In some cases, such a function may be derived
analytically from knowledge of the plant dynamics and

the control objectives, e.g. a feedback linearizing control.
(Implementation of the feedback linearizing control may
not be desirable for robustness reasons or if hardware
constraints do not permit.) In other cases, v

*
(t) may be

found by computing local solutions to linearized prob-
lems and interpolating the results.

The parameter mapping, S, is assumed continuous,
available for measurement and bounded so that small
deviations in !z! correspond to small deviations in ' (t)
from '

#$%
(t). Specifically, for points x and v correspond-

ing to small !z!"!C
!
x#D

!#
v!,

#S
+
(x

*
, x, v)!S

+
(x

*
, 0, v

*
)#4k

'+
!z! (4)

for known, nonnegative constants k
'+
, i"1, 2, s.

Remark. The framework just described captures the
LPV frameworks presented in the literature. When the
parameter mapping is purely a function of exogenous
parameters, x

*
, which are available for measurement,

then the system describes a class of LPV gain scheduling
problems (see, e.g. Apkarian and Gahinet, 1995; Shamma
and Athans, 1991, 1992). Similarly, when ' depends on
the system state, the LPV systems which result are some-
times referred to as quasi-¸P» systems. (Such systems
have been studied extensively in, for example, Shamma,
and Athans (1990)). LPV (or quasi-LPV) systems arise in
nonlinear model reference control problems where ideal
performance is measured in terms of a dynamical refer-
ence model with state, x

*
, and state error, x. A parameter

mapping arises from grouping state and control depen-
dent terms in the coefficient matrices of the system.

2.2. Performance objective

Attention in this paper is restricted to bounded
amplitude performance problems. Two types of amplitude
performance problems will be considered. Let ¹ and * be
a fixed positive constants.

2.2.1. Finite-time scheduling
For the LPV system in Eqs. (1) and (2), the finite-time

bounded amplitude performance objective is to ensure
that, given !z(0)!4*,

sup
)(BL")

$ %&"#'

!z (t)!4*. (5)

2.2.2. Periodic scheduling
For the LPV system in Eqs. (1) and (2) with a periodic

nominal parameter trajectory,

'
#$%

(t)"'
#$%

(t#¹),

the bounded amplitude performance objective in this
case is to ensure that, given !z(0)!4*,

sup
)(BL")

$

!z(t)!4*. (6)
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Both objectives represent important classes of perfor-
mance problems. The first represents tasks which reach
completion in a finite time; the second represents cyclic
processes which run continually. The purpose of this
paper is to analyze these performance problems for the
class of plant processes just described under the control
of a class of switched agent controllers described next.

2.3. Switched agent controller structure

There are two primary components to the switched
agent controller depicted in Fig. 1: control agents and
switching logic. These are now described.

2.3.1. Control agents
Consider a sequence of times, "t

+
$ indexed by

i3IK""1,2, M$. The parameter vectors obtained by
sampling the nominal parameter trajectory at times t

+
for

i3IK form a finite collection of design points, "'
#$%

(t
+
)$.

The ith design point will be denoted ')+*
#$%

. With each
i3IK, associate a control agent designed so that the LPV
system in Eqs. (1) and (2) demonstrated amplitude perfor-
mance in the face of parameter variations about ')+*

#$%
. The

ith control agent is represented by the system

vR "u; u"K)+*
!
x#K)+*

#
v

where K)+*
!

and K)+*
#

are constant gain matrices of
appropriate dimensions. The collection of control agents,
for i3IK, is denoted K.

The integrator in the controller is used to eliminate
discontinuities in the control input signal to the plant
when a switch between control agents occurs. For analy-
sis and synthesis purposes, the integrator will be incorp-
orated into the plant. The modified LPV plant is given by

xL + (t)"A('(t))xL (t)#B
)
('(t))w (t)#B

&
u(t), (7)

z(t)"CxL (t), (8)

where

A('(t))"!A!
('(t)) B

#
('(t))

0 0 ",
B
)
('(t))"!B!

('(t))
0 " , (9)

B
&
"!0I", C"[C

!
D

!#
]

and xL "[x( v(]. The modified plant is now seen to have
a control agent K)+*"[K)+*

!
K)+*

#
] so that u"K)+*xL .

2.3.2. Switching logic
The switching logic is the set of rules which define how

the control agents are switched into feedback with the
plant process. In this paper, the switching logic is as-
sumed to have two components called the switching sets
and the nearest neighbor switching rule.

2.3.3. Switching sets
Associate with each element of K a compact subset

&
+
L&% , called a switching set, defined by

&
+
:"#' $ max

,
$',!')+*

#$%", $4!
$&'% (10)

where the subscript, j, denotes the jth vector com-
ponent and !

$&'
is a positive constant called the switching

parameter. The collection of switching sets is denoted
C""&

+
$.

2.3.4. Nearest-neighbor switching rule
Switching between the different control agents in K is

controlled by the parameter vector, '. Attention in this
paper is focused on a nearest neighbor switching rule.
Suppose that control agent K)+* is in the feedback loop at
time t

&
and assume that ' (t

&
)3&

+
. Then the control

agent K)+* will remain in the feedback loop until the
earliest time t

(
when the parameter trajectory ' (t) satisfies

max
,

#'
,
(t
(
)!')+*

#$%",
#"!

$&'
.

At time t
(
, the control agent K)** is then switched into the

feedback loop where

m"arg min
,(IK

!'(t
%
)!'),*

#$%
!.

As described, the switched agent controller switches
state feedback controllers into and out of the feedback
loop on the basis of the LPV system’s current para-
meter vector. A parameter trajectory ' (t) will be said
to be legal if and only if it is continuous (except possibly
at switching instants) and ' (t)3&

+
for all t3",:

u(,)"K)+*
!
x (,)#K)+*

#
v(,)$. A legal parameter trajectory is

denoted '3FC.

2.3.5. Adequate sampling assumption
From the preceding discussion it is clear a given con-

trol agent, K)+*, is switched out of the feedback loop when
the parameter ' (t) leaves the switching set &

+
. The nearest

neighbor switching rule requires that the resulting switch
will be to the controller, K),*, whose associated design
point ') ,*

#$%
is closest (with respect to the Euclidean vector

norm) to the parameter ' (t
(
) at switching time t

(
. To help

ensure that ' (t!
(
)3&

,
, it is assumed that for all t there

exists l3IK such that

#'
#$%",

(t)!')-*
#$%",

#4!
%",

(11)

where

!
%",

4!
$&'

!k
',
* (12)

for j"1,2, s. In other words, this is an assumption that
'
#$%

(t) has been sampled ‘‘adequately’’ and will be called
the adequate sampling assumption.
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3. Performance of switched LPV systems

Consider a time interval [0, ¹] with 0(t
(
(¹ and

a system that switches between two LPV realizations at
time t

(
. Associate parameter sets, &

!
and &

#
, with the

first and second realizations, respectively. Under appro-
priate conditions, one may find Bett (1998), Bett and
Lemmon (1997) ellipsoidal sets E)+*, i"1, 2, with !z!4*
for any x3E)+* which are invariant for '3F!)

and
'3F!*

, respectively. These conditions imply that
amplitude performance is guaranteed over the interval
[0, ¹] if (1) x (0)3E)!*, '3F!)

[0, t
(
], (2) x (t

(
)3E)#* and

(3) '3F!*
[t

(
, ¹].

Assuming that the first condition is satisfied, the
second is assured if the state decays to an ellipsoid
rE)!*-E)#* for r3(0, 1]. From Theorem 1 of Bett and
Lemmon (1997), this decay can be bounded exponentially
by solving an appropriately defined matrix inequality.
The time, t

+
, for the exponential decay to occur repres-

ents a lower bound on the switching time, t
(
, sufficient for

switched system performance and is called a dwell time
constraint. The dwell time constraint, t

(
't

+
, guarantees

that the state error has had sufficient time to decay so
that any transient associated with the switch will not
violate performance constraints. This result is formally
stated in the following proposition, called the ¸P»
switching lemma, which provides the basis for analyzing
switched system behavior in this paper.

Proposition 1 (LPV switching lemma). Consider finite
constants r3 (0, 1] and *'0, compact sets &

!
, &

#
L&% ,

continuous matrix mappings A
+
: !%P!""", B

+
: !%P!"""&

and C
+
: !%P!"'"" for i"1, 2. Let C""&

!
, &

#
$. Sup-

pose there exist constants )'0, -'0 and .'0 and
positive definite matrices P

!
and P

#
such that

rP
#
4P

!
P
!
, (13)

P
!
3MI&A!

('), B
!
('), C

!
('), 2-#)

r
, ), *'

∀'3&
!
, (14)

P
#
3MI (A

#
('), B

#
('), C

#
('), ., ., *) ∀'3&

#
. (15)

¸et w, x, and z be the input, state, and output, respectively,
of the dynamical system

!xR (t)z (t)""#!
A

!
(' (t)

C
!
('(t))

B
!
('(t))
0 " !x (t)

w(t)", t3[0, t
(
) ,

!A#
('(t))

C
#
('(t))

B
#
('(t))
0 " !x (t)

w(t)", t3 (t
(
, ¹],

(16)

where t
(
'0, ¹3(t

(
,R). If x((0)P

!
x (0)41 and w3BL")

$
,

then for any switching time satisfying

t
(
't

+
:"! 1

2-
log r (17)

with parameter trajectory ' (t)3F
.

satisfying '(0)3&
!

and ' (t!
%

)3&
#
,

!z!
$"%&"#'

4*.

Note that because of the integrator in the controller
structure, the control input to the plant is continuous.
Since the state is also continuous, no discontinuities in
the parameter trajectory will occur. Thus, under the
nearest neighbor switching rule, the adequate sampling
assumption ensures that the parameter variation condi-
tion of the lemma is satisfied for the switched systems
considered in this paper. The remaining conditions which
must be analyzed for the switched system concern the
initial condition and dwell time constraints.

Remark. The initial condition and dwell-time con-
straints of the lemma are directly related to the concept of
uniform ultimate boundedness (Corless, 1981). The ¸P»
switching lemma possesses the parameter variation condi-
tion which is key to the switching behavior considered in
this paper. In particular, the conditions of the lemma are
special cases of Lemma 5.2 in Khalil (1996). The para-
meter variation condition may be seen as enforcing the
perturbation bound of that result.

4. Switched system performance analysis

The results of this section show that if the parameter
variations are ‘‘nice’’ (i.e. if the constants k

'+
in Eq. (4) are

small enough), then #'(t)!'
#$%

(t) # is bounded by
a known quantity. The result is important because, under
the assumption of adequate sampling of '

#$%
(t), it allows

one to bound possible times of control agent switches
using the nominal parameter trajectory.

4.1. Parameter deviations

The following result bounds the deviation between
the nominal parameter trajectory and actual parameter
trajectory.

Lemma 2. Given performance level *'0 and the modified
¸P» system of Eqs. (7) and (8), suppose that the control
input to the system is given by u(t)"KxL (t) where K is
a constant gain matrix. ¸et '/ be a point on the nominal
parameter trajectory and let & be any compact subset of
&% containing '/ . Suppose that there exists a positive definite
matrix P and constants )'0, -50, and 0(r41 such
that

P3MI&A(')#B
&
K, B

)
('), C, 2-#)

r
, ), *' ∀'3&.

(18)
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Fig. 2. Estimation of switching times using '
#$%

(t). The shaded region
corresponds to bounds from Eq. (21).

For any ¹'0, if xL ((0) PxL (0)41 and w3BL")
$

[0, ¹],
then any parameter trajectory '3F![0, ¹] satisfies

#'
+
(t)!'

#$%" +
(t) #4k

'+
* max"#r, e+$$$ (19)

for i"1, 2,2, s and for all t3[0, ¹]. Furthermore, if
&L&% is a switching set and

max
!4+4%

#'
+
(¹)!'M

+
#"!

$&'
, (20)

then the nominal parameter trajectory at time ¹ satisfies

!
$&'

!k
'+
* max"#r, e+$#$

4#'
#$%" +

(¹)!'M
+
#4!

$&'
#k

'+
* max"#r, e+$#$ (21)

for i"1, 2,2, s.

The implication of Lemma 2 is that if the controllers
are appropriately designed (so that Eq. (18) is satisfied),
!z(t)! will be bounded and therefore the parameter tra-
jectory must remain bounded to the nominal parameter
trajectory from Eq. (4). This bound tightens while the
control agent remains in the feedback loop. This rein-
forces the intuitive notion that parameter deviation from
the nominal parameter trajectory represents modeling
error.

Lemma 2 is important because it implies that if the
bound on the parameter trajectory is small enough,
then '

#$%
(t) represents a reasonable approximation

to '(t). This further implies that '
#$%

(t) may be used
to bound switching times in the multiple agent control
system. The time at which ' (t) intersects the boundary
of & may be approximated by the times which '

#$%
(t)

evolves over points near the boundary of &. This is
illustrated in Fig. 2; when the conditions of the lemma are
satisfied and if ' (¹) lies on the boundary of &, then
'
#$%

(¹) must lie in the shaded region representing the
bounds of Eq. (17).

Remark. For quasi-LPV systems in any setting, achieved
performance objectives must guarantee '3F! since ' is
state dependant. Failure to satisfy this additional con-
straint implies existence of a state trajectory which viol-
ates '3F!, hence robust stability/performance cannot
be guaranteed.

4.2. Switching time estimation

Lemma 2, combined with the nearest neighbor switch-
ing rule, can be used to estimate switching times and the
results (destinations) of possible switches. Let

k
%!," +

(t) :"k
'+
* max"#r, e+$$$ (22)

denote the parameter deviation bound from Lemma 2.

4.2.1. Switching destinations
For m3IK, define the sets

&#
*

:""'#'3&# , !'!')**
#$%

!4!'
+
!')/*

#$%
!, q3IK, qOm$.

The set &#
*

represents the set of all parameter vectors
'3&J which satisfy

m"arg min
,(IK

!'!'),*
#$%

!;

if the parameter trajectory at time t
(
lies in &#

*
, a switch to

control agent m will take place according to the nearest
neighbor switching rule. The sets &#

*
may be represented

by a set of affine inequality constraints on the parameter
vector '. Note that these constraints may be computed in
an off-line fashion with knowledge of the design points.

As a consequence of Lemma 2, the times for which
'(t)3&#

*
can only be estimated. Define

&#
$
:""'# #'

#$%" +
(t)!'#4k

%!," +
(t) for all i"1, 2, s$.

For each time t, the set &#
$
is a hyper-rectangle centered at

'
#$%

(t) which contains the true parameter trajectory ' (t).
A requirement for a time t to be an estimate of a switch-
ing time between control agents K)-* and K)** is for the
intersection &#

$
0&#

*
to be nonempty, which is a relatively

simple convex feasibility problem.

4.2.2. Switching times
As a consequence of Lemma 2, the times for which the

nominal parameter trajectory satisfies

!
$&'

!k
%!," +

(t)4#'
#$%" +

(t
(
)!')-*

#$%" +
#4!

$&'
#k

%!," +
(t)

for some i"1,2, s, bound the times for which the true
parameter trajectory may intersect the boundary of the
parameter set &

-
. This condition represents an additional

restriction for a time t to be a possible switching time
given that control agent K)-* is in the feedback loop. Note
that this requirement may also be expressed with a set of
affine inequality constraints on the parameter vector
' which may be computed in an off-line fashion.
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Proposition 3. Given a performance level *'0 and the
modified ¸P» system of Eqs. (7) and (8), let K be a set of
control agents which forms a control policy with the near-
est neighbor switching rule under adequate sampling. Sup-
pose that at time t"0, the control input to the system is
given by u(0)"K)-*xL (0) where K)-*3K is a constant gain
matrix. ¸et &

-
be a switching set and suppose there exist

positive definite matrix P and constant )'0, -50, and
0(r41 such that

P3MI&A(')#B
&
K)-*, B

)
('), C, 2-#)

r
, ), *' ∀'3&

-
.

Define the sets

¹)-"** :"

#t $&# $0&[
*
O!, and for some 14i4s,

!
$&'

!k
%!," +

(t)4#'
#$%" +

(t)!')-*
#$%" +

#4!
$&'

#k
%!," +

(t)%
If xL ((0) PxL (0)41, w3BL

$
, and a parameter trajectory

' is generated by the nearest neighbor switching rule under
adequate sampling, then the switch time, t

(
, between the lth

and mth systems satisfies t
(
3T)-"**.

Given the preceding descriptions, the set T)-"** is con-
structed by finding all times for which the nominal para-
meter trajectory lies near the switching surface and for
which the corresponding set &#

$
has a nonempty intersec-

tion with &#
*
. Constructing a set T)-"** amounts, essen-

tially, to conducting a line search over the nominal para-
meter trajectory, evaluating a set of convex constraints at
each point. Note that the computation is performed
off-line; time and computational resources are not a sig-
nificant issue.

It is apparent from the construction of the switching-
time sets, T)-"**, and from the nearest neighbor switching
rule that certain switches will never take place. In fact,
given that control agentK)-* is currently in feedback with
the system, under the assumption of adequate sampling,
then a switch to control agent K)** should take place if
and only if m3I

-
where

I
-
:""m #mOl, &

-
0&#

*
O!$. (23)

Such a switch from agent K)-* to agent K)** will be called
an admissible switch.

4.3. Stability and performance results

In this section, the switching-time sets, T)-"**, of
Proposition 3 are combined with the ¸P» switching
lemma to state conditions for bounded amplitude per-
formance of the switched agent controlled system. The
conditions are expressed in the following proposition.

Proposition 4. Given a performance level *'0 and modi-
fied ¸P» system of Eqs. (7) and (8), let K be a set of

control agents which form a control policy with the nearest
neighbor switching rule under the assumption of adequate
sampling. Suppose that for each l3IK, there exists a posit-
ive definite matrix P)-* and constants ))-*

!
5))-*

#
'0 such

that

P)-*3MI (A (')#B
&
K)-*, B

)
('), C, ))-*

!
, ))-*

#
, *), ∀'3&

-
.

(24)

Denote the agent initially in the feedback loop by K)&*. If
all possible switches are admissible, xL ((0)P)&*xL (0)41 and
if, for all admissible switching sequences kPlPm,

r)-"**

))-*
#

!))-*
!
r)-"**

log r)-"**4min ¹)-"**!max ¹)0" -* (25)

where

r)-"** :"max#r #rP)**4P)-*,
))-*
#

))-*
!

(r41% (26)

then for any ¹3[0, R),

!z!
$"%&"#'

4* (27)

and for ¹PR,

!z!
$"%&"$*

4*. (28)

Proposition 4 is interpreted as follows. Denote

R)-"** :"#r #rP)**4P)-*,
))-*
#

))-*
!

(r41.% . (29)

The set R)-"** represents the set of all possible constants
r which yield a positive dwell time, as defined in the LPV
switching lemma, for a switch between control agents
K)-* and agent K)**. Similarly, the quantity

min T)-"**!max T)0" -*

represents the minimum time that can elapse between
switches kPl and lPm. Eq. (25) therefore represents the
dwell time constraint of the LPV switching lemma verifi-
ed using the switching-time estimates obtained from
Proposition 3. Thus, after applying the results of Prop-
osition 3 to obtain the switching sets T)-"**, Proposi-
tion 4 may be applied to analyze bounded amplitude
performance in the finite-time and periodic scheduling
problems stated in Section 2.2. (Note that Proposition 4
applies to nonperiodic '

#$%
(t) defined for t3[0,R) as

well.)

5. Applications to hybrid systems

The switched agent control system is a hybrid system
because it generates a mixture of discrete event and
continuous valued signals. As previously noted, hybrid
systems can be studied from two distinct viewpoints; as
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a supervised collection of real-time computer processes
or as switched dynamical systems. While performance of
a given switched dynamical system may best be accomp-
lished in the continuous domain, integrating the control-
led system with other systems may best be accomplished
on the discrete supervisory level. Integration of these two
viewpoints is therefore required to develop useful and
efficient methodologies for hybrid system design. In this
section, the results of the switched system performance
analysis (conducted using a continuous time control the-
oretic approach) are used to construct a timed automa-
ton model of the controlled system. This automaton ex-
traction provides part of the link between the the discrete
and continuous approaches to analysis and design of
hybrid systems. The extraction procedure is demon-
strated by example for finite-time and periodic schedul-
ing problems. The remainder of the section begins with
a brief description of the timed automata model used in
this paper. For more information on automata models
and applications, the reader is referred to Alur et al.
(1993); Alur and Dill (1994); Burch et al. (1992); Clarke
and Emerson (1981) and McMillan (1992).

5.1. Timed automata extraction

A timed automaton is defined by the tuple, (N, X, l
1
,

l
2
, l

(
). N"(V, A, 13

&
) is a finite automaton with a finite

set of MV vertices, V, a set of directed arcs, A, between
the vertices and an initial marking vector, !

&
, represent-

ing the initial state of the finite automaton. X is a finite
set of local clocks. The ith clock is characterized by the
ordered triple X

+
"(c

+
, x

+&
, ,

+&
) where x

+&
3!", ,

+&
3!

and c
+
3!". The local time of the ith clock, x

+
(,) (,5,

+&
)

generated by clock X
+
is the solution to the initial value

problem

xR
+
(t)"c

+
; x

+
(,

+&
)"x

+&
. (30)

The set of all local times and clock rates at time , will be
called the clock state and will be denoted

xN (,)""(x
+
(,), c

+
)$

+,!"#"2"MV
. (31)

The arcs are labeled with constraints on the local clocks
which must be satisfied in order for enabled transitions to
occur. When satisfied, the firing condition, l

1
, means that

the arc is free to fire provided that it is already enabled.
The vertex constraint, l

2
, forces the certain local clock

states to satisfy an equality constraint. The reset con-
straint, l

(
, represents an equality constraint which the

clock state is reset to immediately after the firing of
a given arc.

The preceding definition of timed automata is essen-
tially the same as that used in Alur and Dill (1994). The
description provided above, however, follows notational
conventions found in the Petri net literature and appears
to be more closely related to the control theoretic ap-
proach described earlier. The mappings l

1
, l

2
and l

(
all

represent constraints on the clock states which must be
satisfied for transitions to occur. In the examples that
follow, the vertex constraint is simple because the clocks
do not change. In a more general setting, clock con-
straints can change as the system evolves. The clocks
themselves can also be defined as the solution of a more
general set of differential equations; the timed automaton
is then referred to as a hybrid automaton (Alur et al.,
1993). In a model reference control problem, one may
view the reference model as a clock. The vertex constraint
then corresponds to changing the reference model.

Now consider the application of Proposition 4 to the
multiple agent system. To apply the proposition, one
needs to construct the switch-time sets, T)-"**, and verify
that the dwell time constraints in Eq. (25) are satisfied. If
these sets can be constructed, one may next construct
a sequential model of the switching behavior with a
tree structure. The nodes of the tree correspond to a
control agent being switched into feedback with the
plant. The nodes can be collected into levels. Each level,
l
%
3"0, 2, N$, of the tree contains possible states of the

system after l
%
switches have taken place, i.e. each level

contains the indices of control agents in the loop after
l
%
switches have taken place. In turn, a state l in level l

%
is

connected to a state m in level l
%
#1 by an arc labeled

with the time interval over which the switch could pos-
sibly take place, T)-"**. Because this model is constructed
while ensuring that the bounded amplitude performance
constraint is satisfied, this model is called a performance
validation tree. The performance validation tree is now
used to construct a timed automaton model for the
switched agent system. Suppose that a control agent,
K)-*, in feedback with the plant is seen as a state of
the controlled system. Then, assuming that a finite num-
ber of switches occurs over a finite interval, [0, ¹],
a finite sequence of states will be reached by the control-
led plant during [0, ¹]. The performance validation
tree described above represents all possible finite
sequences of states which can be assumed by the closed-
loop system over [0, ¹]. In other words, the performance
validation tree represents all possible trajectories
of a timed automaton model of the multiple agent con-
trolled system.

5.2. Finite time scheduling

We now turn to numerical examples illustrating the
results presented above. The plant chosen for the pur-
poses of illustration is a second-order nonlinear system
given by

xR
4!

"!x
4!

#v
!
, (32)

xR
4#

"!x
4#

#(1#x#
4!

)v
#
. (33)

The finite time scheduling objective considered here is to
move the state of the plant from points near x

4
"(2.5, 2)
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Fig. 3. Performance validation tree for finite time example: !
$&'

"0.4, *"0.068.

to points near x
4
"(1, 3) in one second (¹"1) according

to the reference model

xR
*!

"!1.5, (34)

xR
*#

"1. (35)

By defining x :"x
*
!x

4
and choosing a parameter

mapping

'
!

'
#

'
-

"
.
#!

x#
4!

!#/
#!

0
-

x
*!

!1
-

2x
*#

!5
(36)

so that the nominal parameters would all vary between
!1 and 1, a quasi-LPV description of the error system is
given by

xR "A(')x#B
)
(')w#B

(
(')v (37)

where

A(')"!!1 0
0 !1", B

)
(')"!-0 '

#
#!

0
!
#

'
-
#1

# ",
(38)

B
(
(')"!!1 0

0 !#!
.

'
!
!-1

. "
Here, w"1 is introduced as a fictitious disturbance so
that the nonlinearities grouped in the B

)
(') term are

treated as a bounded disturbance. The performance con-
straint is given by !z!

$"%&"#'
4* where z"C

!
x#D

!#
v

with C
!
"I and D

!#
"0.01I. Control agents take the

form

vR "u, (39)

u"K)-*
!
x#K)-*

#
(v#v)-*) , (40)

where the index l indicates the design point and v)-* is
a constant bias term internal to each agent. The bias term
for each design point ')-* is chosen as

v)-*"!B
(
(')-*)+!B

)
(')-*). (41)

Note that the inverse exists in this case for all nominal
parameter values.

Control gains were synthesized for the biased systems
using the techniques presented in Bett and Lemmon
(1997) combined with LMI pole placement constraints
(Chilali and Gahinet, 1996). A MATLAB program was
written to implement the conditions associated with
Propositions 3 and 4. First, the switch time sets T)-"**
were computed according to the conditions of Proposi-
tion 3. The nominal parameter trajectory was searched to
determine possible switching times and the resulting
switches. The results of the search were used to form
a performance validation tree for a fixed performance
level * and switching parameter !

$&'
. Fig. 3 depicts one

such tree for a multiple agent design with switching
parameter !

$&'
"0.4. The performance validation tree

shown in the figure represents a performance level of
*"0.068. The performance validation tree is initialized
with control agent K)!* in feedback with the plant.
A search of '

#$%
(t) indicated a possible switch to agent

K)#* for t3T)!"#* or to agent K)-* for t3T)!"-*. This
result is indicated by the two branches leaving node
1 and labeled with T)!"#* and T)!"-*. The second level of
the tree is constructed by first assuming that agent K)#* is
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Fig. 4. Timed transition table for finite time example: !
$&'

"0.4, *"0.068.

Fig. 5. Performance validation tree for periodic scheduling example: !
$&'

"0.8, *"0.09.

switched into feedback at time max T)!"#*; '
#$%

(t) is then
searched, resulting in nonempty sets T)#"-* andT)#"0* in-
dicating possible switches to agents K)-* or K)0* from
agent K)#*. The process is repeated until the time interval
is exhausted with no further switches.

The performance validation tree of Fig. 3 was then
used to construct an automaton model which is repre-
sented by the timed transition table shown in Fig. 4. For
the underlying finite automaton, V consists of seven
states with connecting directed arcs, A, as indicated in
the figure. The initial marking vector satisfies 1 (1)"1,
i.e. the automaton is initialized in state 1. There are no
reset conditions on the single local clock t. Firing con-
straints are indicated in the figure, e.g. t3¹)-"0* .

The timed automaton represented in Fig. 4 represents
an abstraction of the multiple agent controlled system
which can be analyzed on the supervisory level. If the
switched system described here is one of many similar
subsystems, this timed-logical model would be useful in
the verification of, for example, desired synchronous be-
havior among the subsystems.

5.3. Periodic scheduling

The periodic scheduling objective considered here is to
cycle the state of the plant described by Eqs. (32) and (33)
between points near x

4
"(0.5, 0.5) and points near

x
4
"(1, 0.5) and back with a one second (¹"1) period

according to the reference model

xR
*!

"2
2

sin 22t; x
*!

(0)"0.5, (42)

xR
*#

"2
4

cos 22t; x
*#

(0)"0.5. (43)

The control agents used for the periodic scheduling pos-
sessed a structure identical to that used for the finite time
scheduling. The control synthesis procedure was identi-
cal as well.

Because the reference trajectory is periodic and the
nominal parameter trajectory evolves over an infinite
time horizon, one cannot apply the results of Proposi-
tion 3 to compute the sets T)-"** in the same manner as
for the finite-time case. This difficulty arises because
Eq. (22) can no longer be evaluated for all times t5t

&
.

However, one can use a more conservative bound by
setting k

%!," +
(t)"k

'+
* in Eq. (22). Any predicted switch

satisfying the dwell time conditions in this more conser-
vative approach must also satisfy the dwell time con-
straints if the less conservative bound had been used.

Using this more conservative approach, only admiss-
ible switches for single period trajectories, initialized with
agents consistent with the established switching rules,
require evaluation. The switching time estimates repres-
ent absolute bounds on when a switch might occur,
regardless of the time that the agent was switched into
the loop. As an example, for !

$&'
"0.8, four agents were

sufficient to adequately sample the nominal parameter
trajectory which was searched to determine possible
switching times over a single period of the trajectory
using the modified bounds described above. The
resulting performance validation tree describing the pos-
sible switching behavior for a single period is shown in
Fig. 5. The tree indicates that if the controller is in-
itialized with agent K)!* in the feedback loop, by the end
of a single reference trajectory period, agent K)!* will
have been switched back into the loop. Therefore, in this
example, there is only a single switching cycle to be
analyzed.
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Fig. 6. Timed transition table for periodic scheduling example:
!
$&'

"0.8, *"0.09.

The periodic behavior of the switched system is seen in
the timed transition table which can be derived from the
performance validation tree. This is shown in Fig. 6. For
the timed automaton V consists of four states with
connecting directed arcs, A, as indicated in the figure.
The initial marking vector satisfies 1 (1)"1. There are
two local clocks, t

-#-'
and t. The clock t

-#-'
is never reset

and controls only a single switch. The clock t is reset on
every firing. Arcs are labeled with the reset constraints
and the firing constraints, which are derived from the sets
¹)-"** with the reset condition taken into account (as
described earlier).

6. Conclusions

This paper has described an approach for analyzing
the performance of switched LPV systems required to
meet a bounded amplitude performance constraint with
respect to a known scheduling trajectory. The LPV sys-
tems considered in this paper cover a large class of
nonlinear systems which are driven or scheduled along
a predetermined path of operating points which may or
may not be states of the system.

The central theoretical result of the paper is the ¸P»
switching lemma which states sufficient conditions for
a system switched between two LPV realizations to sat-
isfy the amplitude performance constraint over a given
time interval. Using this result along with knowledge of
the scheduling trajectory to compute bounds on the
switching times, switching sequences can be checked
against the ¸P» switching lemma to establish perfor-
mance over a sequence of intervals which can be pieced
together to establish performance over the entire refer-
ence scheduling trajectory. It was shown by example that
the performance constraints can be analyzed in this
fashion for finite time and periodic scheduling trajecto-
ries. Note that the ¸P» switching lemma applied to any
system which switches between two LPV realizations.
Thus, the results presented here should generalize in
a straightforward manner to any control agent structure

yielding a controlled system which is an LPV system, e.g.
LPV agents.

In addition, this paper has described a method for
extracting logical models representing the behavior of
a class of scheduled continuous time systems controlled
by switching between a finite set of continuous time
controllers. The results of this paper show that know-
ledge of the system scheduling can be combined with
robustness properties of LPV systems to derive logical
models of the system behavior in the form of timed
automata. The results in this paper focus on bounded
amplitude performance condition, but there does not
appear to be any reason prohibiting the use of these ideas
for other performance problems, e.g. H

#
, H

$
. These

results are therefore useful for the study of hybrid systems
because they provide a link between two distinctly differ-
ent approaches to hybrid system design and analysis.

Appendix. Proofs

Proof of Proposition 1. By the assumption of the prop-
osition, one can use arguments analogous to those used
in the proof of Theorem 3.1 in Bett and Lemmon (1997)
(see also Bett, 1998) to define functions »

!
: !"P! and

»
#
:!"P! by

»
!
(3) :"3(P

!
3 and »

#
(3) :"3(P

#
3

so that for any '3FC and along any trajectories of the
switched system, the time derivatives of »

!
and »

#
must

satisfy

d
dt

»
!
(x(t))4!2-»

!
(x (t))40 (A.1)

for any t3[0, t
(
] and any x (t) and w (t) satisfying

x((t)P
!
x (t)5r and w((t)w (t)41 and

d
dt

»
#
(x(t))40 (A.2)

for any t3 (t
(
, ¹] and any x (t) and w (t) satisfying

x((t)P
#
x (t)51 and w((t)w (t)41.

Given that -'0, for any '3FC and w3BL")
$

,
Eq. (A.1) implies that along system trajectories for
t3[0, t

(
], that

»
!
(x(t))4»

!
(x (0))#( $

&
!2-»

!
(x (,)) d, (A.3)

so that by the Bellman—Gronwall lemma

»
!
(x(t))4»

!
(x (0)) exp (!2-t) . (A.4)

Supposing that »
!
(x (0))41, the last equation implies

»
!
(x (t))4exp(!2-t)41 for all t3[0, t

(
). If t

(
't

+
, then

»
!
(x(t))4r for all t't

+
. Since z(t)"C

!
(' (t))x (t) it can

be shown that Eq. (14) implies z((t)z (t)4*# for all
t3[0, t

(
].
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The state trajectory is continuous at the switch so that
x(t!

(
)"x(t

(
) which implies that »

!
(t!
(
)4r. Combining

this fact with Eq. (13) implies that »
#
(t!
(
)41. Since

z(t)"C
#
('(t))x (t) for t't

(
and since ' (t!

(
)3&

#
, one can

easily show that Eq. (15) implies z((t!
(
)z(t!

(
)4*#.

Now suppose that »
#
(x(t))'1 for t3 (t

(
, ¹]. This

implies that either »
#
(x(t!

(
))51 and »Q

#
(x (t!

5
))'0

with w((t!
(

)w (t!
(

)41 or it implies that there exists a
,3 (t

(
, ¹) such that »

#
(x (,))51 and »Q

#
(x (,))'0 with

w((,)w(,)41. Since ' (t!
(
)3&

#
and since Eq. (A.2) holds

for any '3F
.
, then »Q (x (t!

(
))(0 which generates a con-

tradiction. The only conclusion is that »
#
(x (t))41 for all

t3(t
(
, ¹]. Since z (t)"C

#
('(t))x(t) in this time interval,

one concludes that z((t)z(t)4*# for all t3(t
(
, ¹]. The

result follows immediately.

Proof of Lemma 2. Under the assumptions of the lemma
and from the proof of Theorem 3.1 in Bett and Lemmon
(1997), for any '3F![0, ¹]

!z(t)!4*max "#r, e+$$$ (A.5)

for all t. By assumption,

#'
+
(t)!'

#$%" +
(t)#"#S

+
(x

*
(t), x(t), v(t))!S

+
(x

*
(t), 0, v

*
(t))#
(A.6)

for i"1, 2,2, s. The assumptions on the parameter
mapping therefore imply that

#S
+
(x

*
(t), x (t), v(t))!S

+
(x

*
(t), 0, v

*
(t))#4k

'+
*max"#r, e+$$$.

(A.7)

Combining these last two equations yields Eq. (19). The
remainder of the lemma is proven by combining Eq. (19)
with the triangle inequality at t"¹.

Proof of Proposition 3. Under the assumptions of the
proposition, if xL ((0)PxL (0)41 and w3BL

$
, Lemma 2

implies that

#'
+
(t
(
)!'

#$%" +
(t
(
)#4k

'+
*max"#r, e+$$($. (A.8)

If the parameter trajectory satisfies the nearest neighbor
switching rule, then at t

(
,

!'(t
(
)!')**

#$%
!4!'(t

(
)!')/*

#$%
! (A.9)

for all q3I
6

with q not equal to m, or ' (t
(
)3&#

*
. Com-

bining this fact with Eq. (A.8) implies that t
(
must satisfy

the first condition for T)-"**. For the second condition,
from Lemma 2, '

#$%
(t
(
) must satisfy

!
$&'

!k
'+
*max"#r, e+$%$4#'

#$%" +
(t
(
)!')-*

#$%" +
#

4!
$&'

#k
'+
*max"#r, e+$%$ (A.10)

for some i"1, 2,2, s. One concludes that
t
%
3T)-"**. !

Proof of Proposition 4. Consider an admissible switching
sequence kPlPm with ))+*

!
, ))+*

#
and P)+* satisfying

Eq. (24). Define t
+
as the time that control agent K)+* is

switched into feedback with the system, i3"k, l, m$. As-
sume, without loss of generality, that xL (t

0
)(P)0*xL (t

0
)41.

To apply the ¸P» switching lemma to prove performance
over the interval [t

0
, t

*
], it must be established that ' (t) is

legal and that the dwell time constraint is satisfied.
To demonstrate the legality of '(t), note that from

the integrator controller structure and continuity of the
parameter mapping, '(t) must be continuous. By the
nearest neighbor switching rule and adequate sampling
assumption, ' (t)3FC (i.e. ' (t) is legal).

To demonstrate the dwell time constraint, note that
from Proposition 3, min ¹)-"**!maxT)0" -* is a lower
bound on t

-
!t

0
. The dwell time requirement is satisfied

if there exists an r3R)-"** such that

f (r)4min T)-"**!max T)0" -*

where

f (r)" r
))-*
#

!))-*
!
r
log r

and R)-"** is as defined in Eq. (29). It is easily shown that
f (r) is monotonically decreasing on R)-"**. Thus, Eq. (25)
implies that the dwell time requirement is satisfied for
t
-
!t

0
. By the ¸P» switching lemma,

!z(t)!4*, t3[t
0
, ,

-
)

for any ,
-
3[t

-
, t

*
). Furthermore, x' (t

-
)(P)-*x' (t

-
)41. As

a consequence of the nearest neighbor switching rule, the
adequate sampling assumption and the continuity of ' (t),
any finite time interval, [0, ¹], can contain at most
a finite number of switching instants. Assume, without
loss of generality, N#1 agents switched in order
0, 1, 2, 2 , N. Thus, the interval [0, ¹] can be written

[0, ¹]"7+!
4
+,&

[t
+
, ,

+!!
)#[t

7
, ¹]

where t
&
"0 and the interval [t

+
, ,

+!!
) denotes the the

admissible switching sequence iPi#1Pi#2 with
,
+
3[t

+
, t

+!!
] for i"1, 2, N!1 and ,

7
3[t

7
, ¹]. By

assumption, xL (t
&
)(P)&*xL (t

&
)41 so that with the ¸P»

switching lemma, one concludes that

!z(t)!4*, t3[t
&
, ,

!
) and xL (t

!
)(P)!*xL (t

!
)41.

In similar fashion,

!z(t)!4*, t3[t
!
, ,

#
) and xL (t

#
)(P)#*xL (t

#
)41.

By induction, one concludes that !z (t)!4* for sub-
intervals t3[t

+
, ,

+!!
), i"1, 2, N!1, and that

xL (t
7
)(P)7*xL (t

7
)41. Since Eq. (24) is satisfied for i"N and

since ' (t)3F![t7, ¹] by the fact that there is no other
switch according to the nearest neighbor switching
rule, !z (t)!4* for t3[t

7
, ¹] as well. One concludes
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that performance is satisfied over the finite interval,
!z!

$"%&"#'
4*.

For ¹PR, there are two possibilities: switching
stops after a finite time, or switching does not stop. In the
first case, there are a finite number of switches and
performance is proven by the above analysis. In the
second case, an infinite number of switches must be
considered. Then,

[0, R)" $
4
+,&

[t
+
, ,

+!!
).

Define

zN
+
:"ess sup

$(%$+" %+!!*

!z (t)!

and Z :""z # !z!4*$ as all points z satisfying perfor-
mance constraints. Clearly, from the preceding analysis,
zN
+
3Z. Furthermore, any limit point of the sequence "zN

+
$

must lie in the closure of Z. Since Z is closed and
bounded, zN 3Z, implying that performance is satisfied
in the case of an infinite number of switches. Thus,
!z!

$"&"$*
4*.
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