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Abstract

This paper derives the power spectral density(PSD)
of the output generated by a discrete-time feedback
control system in which feedback measurements are
dropped with a known probability, ε . This class of
systems is a model for soft real-time control systems
in which the feedback path is implemented on a non-
deterministic computer network. The PSD computed
in this paper is a function of the dropout probabil-
ity. The dropout probability is taken as a measure
of the network quality of service (QoS). Based on the
derived PSD, the power semi-norm of the output is
predicted. So a direct way of linking control system
performance(as measured by the power semi-norm of
the output) to the network’s QoS (as measured by the
dropout probability) is provided.

1 Introduction

In recent years there has been considerable interest in
implementing sampled data control systems over non-
deterministic communication networks [4] [5]. A non-
deterministic network is one in which data packets can-
not be delivered within hard deadlines. In these cases,
the networked control system becomes a soft real-time
system. In soft real-time networks, data packets may
be excessively delayed due to network congestion. For
control purposes, however, it often turns out that de-
layed feedback data is more harmful than no data at
all. As a result it is often desirable to purposefully
drop packets that are greatly delayed. Industrial prac-
tice appears to support this ad hoc approach to soft
real-time networks [1] [2]. The rate of data dropouts
therefore becomes a measure of the soft real-time sys-
tem’s quality of service (QoS). The challenge faced by
control engineers is finding a way of relating this par-
ticular QoS measure to actual control system perfor-
mance.

There has, however, been relatively little work studying
the impact of data dropouts on control system perfor-
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mance. Most of the prior work has only focused on
the impact of dropouts on overall system stability. In
[9] [10], networked control systems with dropouts are
modelled as asynchronous switched systems. The ap-
proach replaces the true switched system with an ”av-
eraged system” and then studies the stability of the
system. In [8], the dropouts are governed by a Markov
chain and are treated as vacant sampling. The work
proposes two approaches for handling data dropouts:
using past control signals or estimating the lost data
and computing new control signals. The stability of
an optimal LQ controller under the two approaches is
analyzed. This work unfortunately does not provide
a rigorous analysis and demonstrates the results only
through examples.

This paper presents a formal analysis that directly re-
lates control system performance to the data dropout
rate in a soft real-time system. Let y be the con-
trol system’s output and y be wide sense station-
ary(WSS). Control system performance is character-
ized by the power semi-norm, ‖y‖P =

√

Trace(Ryy[0]),
where Ryy[0] is the autocorrelation of y. This pa-
per derives the PSD of y, Syy(e

jω), for a single-input
single-output discrete-time control system with data
dropouts. The resulting PSD is a function of the
dropout rate (dropout probability) ε so we can directly
relate system performance ‖y‖P to the data dropout
rate through Ryy[0] =

1
2π

∫ π

−π
Syy(e

jω)dω. This rela-
tionship, therefore, provides control engineers a way
of finding bounds on the dropout rates that assures a
specified level of control system performance.

The remainder of this paper is organized as follows.
Section 2 presents the mathematical preliminaries in
this paper. Section 3 presents the modelling framework
used in this paper. Section 4 states sufficient conditions
for the stability and the wide sense stationarity of the
networked control system. Section 5 states the power
spectral density of the output and presents experimen-
tal data supporting the result. Final remarks will be
found in section 6. The proofs of all theorems have
been moved to the appendix (section 7) to improve the
paper’s readability.



2 Mathematical Preliminaries

Let x = {x[n]} be a random vector process.
When x is wide sense stationary, denote the mean
as µx = E [x[n]], the correlation as Rxx[m] =
E
[

x[n+m]xT [n]
]

, and the power spectral density as

Sxx
(

ejω
)

(ejω is often dropped to improve the readabil-

ity, i.e. Sxx
(

ejω
)

will be simply denoted as Sxx.) Refer
to [11] for the detail of the above definitions. Because
the power spectral density is the Fourier transform of
the correlation 1,

the power semi-norm of y can be computed through

‖y‖P =

√

Trace

(

1

2π

∫ ∞

−∞

Syy(ejω)dω

)

In section 7, the positive and negative single-sided
power spectral densities of a WSS process x are used,
which are defined by the equations

S+
xx(e

jω) =
∞
∑

m=1

Rxx[m]e
−jmω

S−xx(e
jω) =

−1
∑

m=−∞

Rxx[m]e
−jmω

By the above definition, it follows that

Sxx = S+
xx + S−xx +Rxx[0]

Convergence in mean square sense is used in this paper.
Refer to [11] for its definition. It can be shown [6] that
a random vector process x = {x[n]} is convergent in
mean square if and only if

lim
n→∞

sup
m≥n

E
[

(x[m]− x[n])T (x[m]− x[n])
]

= 0

A jump linear system is a linear dynamical system with
random system matrices as follows.

{

x[n+ 1] = A[n]x[n] +B[n]w[n]
y[n] = C[n]x[n] +D[n]w[n]

(2.1)

where {A[n]}, {B[n]}, {C[n]}, and {D[n]} are matrix
valued random processes. If the input process w[n] = 0,
then we say that the system is a free jump linear sys-
tem. A free jump linear system is said to be stochas-
tically asymptotically stable in mean square sense [7]
if limn→∞E

[

x[n]Tx[n] | x0

]

= 0 for any initial state
x[0] = x0.

1Most of the WSS processes in this paper are zero mean, so
their covariances (auto-covariances) and correlations (autocorre-
lations) are equal. Therefore we interchangeably use these terms
throughout the paper.

3 Data Dropout Model

A block diagram of the discrete-time networked control
system is shown in figure 1.
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Figure 1: The Control System with Data Dropouts

In the system shown in figure 1, the loop function
H(ejω) is single-input single-out and strictly proper.
w = {w[n]} is the exogenous input, which is wide sense
stationary with zero mean. d = d[n] is the dropout
process, which is independently identically distributed
(i.i.d.) with probability distribution of Pr(d[n] = 1) =
ε and Pr(d[n] = 0) = 1−ε. When d[n] = 0, y[n] = y[n],
i.e. the measurement is sent sucessfully; when d[n] = 1,
y[n] = y[n − 1], i.e. the measurement is dropped and
the last measurement is reused. ε is the dropout rate.
The dropout process d and the input process w are
assumed to be independent.

A state space representation of the system is

{

x[n+ 1] = A[n]x[n] +Bw[n]
y[n] = Cx[n]

(3.1)

where x is the state, {A[n]} is a random switching pro-
cess. When d[n] = 0, A[n] = A0; when d[n] = 1, A[n] =
A1. Obviously {A[n]} is an i.i.d. matrix valued process
with the probability distribution of Pr(A[n] = A1) = ε

and Pr(A[n] = A0) = 1− ε.

4 Wide Sense Stationarity

In order to determine the power spectral density of the
output process y = {y[n]}, we first need to show that
the overall system in equation 3.1 is stable and y is
wide sense stationary. This section states sufficient
conditions for the stability of the overall system and
the wide sense stationarity of y by the following theo-
rems and corollaries. Their formal proofs will be found
in section 7.

Theorem 4.1 Consider the (free) jump linear system
given in equation 3.1 with w = 0. Let A = {A[n]} be a
matrix valued i.i.d. process such that Pr(A[n] = A1) =
ε and Pr(A[n] = A0) = 1 − ε. Let the matrix X equal



(1− ε)AT
0 A0 + εAT

1 A1. The free jump linear system is
stochastically asymptotically stable in the mean square
sense if there exists a constant σX ∈ <

+ such that
√

λmax (X) = σX < 1

where λmax (·) denotes the the maximal modulus of the
eigenvalues of a matrix.

Under the specified conditions, the above theorem
guarantees that the state processes of the free jump
linear system converge to 0 independently of the initial
state x0. We may, therefore, without loss of generality
take the initial condition to be zero (x0 = 0) in equa-
tion 3.1 and then study the behavior of the resulting
jump linear system. The theorem is conservative, be-
cause it depends on the exact state space realization,
i.e. A0 and A1. The following corollary reduces this
conservativity.

Corollary 4.2 Consider the (free) jump linear system
given in equation 3.1 with w = 0. Let A = {A[n]} be an
i.i.d. matrix valued process such that Pr(A[n] = A1) =
ε and Pr(A[n] = A0) = 1−ε. The free jump linear sys-
tem is asymptotically stable in the mean square sense
if there exists a nonsingular matrix P and a constant
σXP

∈ <+ such that
√

λmax (XP ) = σXP
< 1

where XP = (1 − ε)(P−1A0P )
T (P−1A0P ) +

ε(P−1A1P )
T (P−1A1P ).

The proof of corollary 4.2 is similar to the proof of the-
orem 4.1, the details are omitted here. Corollary 4.2
and theorem 4.1 take the same assumptions, so theo-
rem 4.1 can always be freely replaced by corollary 4.2.
Based on the above results, the wide-sense stationarity
of the state process x = {x[n]} is characterized by the
following theorem.

Theorem 4.3 Under the assumptions of theorem 4.1,
the state process x is wide sense stationary.

The following corollary gives the result for the wide
sense stationarity of the outputs. The proof is similar
to the one of theorem 4.3 and is omitted. The mea-
surement y can also be taken as output.

Corollary 4.4 When all conditions in theorem 4.3 are
satisfied, all output processes are wide sense stationary.

5 Main Result and Example

This section states the main result of this paper in the-
orem 5.1, which is an expression for the power spectral

density Syy(e
jω). Experimental data are then provided

to support the correctness of this result. The formal
derivation is presented in section 7.

Theorem 5.1 Consider the system in equation 3.1. w
is wide sense stationary with zero mean, whose power
spectral density is Sww. The dropout process d is i.i.d.
with the probability distribution of Pr(d[n] = 1) = ε and
Pr(d[n] = 0) = 1 − ε. d is independent of w. If there
exists a nonsingular matrix P and a constant σXP

∈
<+ such that

√

λmax (XP ) = σXP
< 1 with XP = (1−

ε)(P−1A0P )
T (P−1A0P )+ε(P

−1A1P )
T (P−1A1P ), the

overall system is stochastically asymptotically stable in
mean square sense, the output process y = {y[n]} is
wide sense stationary and the power spectral density of
y can be computed as follows.

Syy =

∣

∣

∣

∣

H

1−DH

∣

∣

∣

∣

2

Sww +

∣

∣

∣

∣

DH

1−DH

∣

∣

∣

∣

2

∆ (5.1)

where D(ejω) = 1−ε
1−εe−jω , and ∆ can be computed

through the following equation

∆ =
1

π(1− ε)

∫ π

−π

D∗(D − 1)

∣

∣

∣

∣

H

1−DH

∣

∣

∣

∣

2

Swwdw

+∆
1

π(1− ε)

∫ π

−π

(1−H)

∣

∣

∣

∣

D

1−DH

∣

∣

∣

∣

2

dw

The power spectral density in equation 5.1 consists
of two terms. The first term is the usual term we
would expect to see if a WSS process w were driving
a unity gain feedback system. For this first term, data
dropouts introduce an additional transfer functionD in
series with the plant, H. The second term in equation
5.1 is more interesting. This term models the explicit
effect that the dropout process d has on the system’s
output. It is the inclusion of this second term that
greatly complicates the derivations in section 7.

In order to experimentally verify the correctness of the
theorem, we used the theorem to predict the power
semi-norm of the output of a simple feedback con-
trol system. This system is then simulated to exper-
imentally estimate the same power semi-norm. The
assumed plant transfer function was an unstable sys-

tem with transfer function H(ejω) = ejω+2
ej2ω+ejω+2 . w

is a Gaussian wide sense stationary process with the
power spectral density of Sww =

1
(1−0.5e−jω)(1−0.5ejω) .

By theorem 5.1, when the dropout rate ε ≤ 18.9%,
the overall system is stochastically asymptotically sta-
ble and the power spectral density of y can be pre-
dicted by equation 5.1. The power spectral densities
under this range of dropout rates are shown in figure
2. The theoretically predicted and experimentally es-
timated power semi-norms of y are shown in figure 3.
A Matlab simulink model was created for the sim-
ulation. For each value of ε, 5 simulations were run



for 200, 000 time steps. The expectation of the out-
put’s power, Ryy[0], was estimated by the time average
of the output’s power over the last half of the output
samples, R̂yy[0]. The power semi-norm of the output

was estimated by
√

R̂yy[0]. This estimation approach

is very practical. It will, however, put more contraints
on the acceptable dropout rate. In this example, the
upper bound of the dropout rate to guarantee the effi-
ciency of the estimation approach is 5.6%, which is less
than the bound 18.9%. This difference results from
that the output process cannot be guaranteed to be
ergodic ε > 5.6%. The problem on ergodicity will be
explained in detail in our future papers.
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Figure 2: Output’s Power Spectral Density(0 ≤ ε ≤ 18%)
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Figure 3: Output’s Power Semi-Norm (0 ≤ ε ≤ 5.6%)

In figure 3, the plot shows that as the dropout rate
increases, the power semi-norm of the output increases.
This trend is expected since the system is switching
between a stable closed loop and unstable open-loop
system. Figure 3 shows excellent agreement between
the experimental data and theoretical results, so we
have high confidence in the correctness of the results
stated in theorem 5.1.

6 Conclusions

This paper studied the networked control system with
dropouts. It first identified sufficient conditions that
can be used to identify an interval of dropout rates
over which the networked control system is stochas-
tically asymptotically stable and wide sense station-
ary. It then formally derived the PSD of the output
which is a closed-form function of the dropout rate,
this PSD is used to compute the power semi-norm of
the system’s output and experiments validate the result
through simulations.

The results are significant because they provide a for-
mal analysis relating control system performance (mea-
sured by the power semi-norm of the output) to QoS of
the network (measured by the dropout rate). It there-
fore allows control engineers to specify bounds on the
network’s QoS (dropout rate) that enforce control sys-
tem performance. Embedded system engineers would
then use this dropout rate bound as a specification for
the networked implementation of the control system.

The results in this paper showed that the output power
of the system could be accurately predicted through
analysis. Figure 4 shows the output trace under a
dropout rate of 0.04. Although the system is stable
and the control system performance measured by the
power semi-norm of the output is not bad, there still ex-
ist occasional high amplitude bursts. These bursts are
of short duration, but the existence of such bursts is
very troubling for it indicates that even though output
power is acceptable, the system may still exhibit large
signal amplitudes. For practical implementations of
networked control systems in the presence of dropouts,
we must find some way of bounding the size of these
bursts.
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Figure 4: Output signal trace with burst

This observation suggests one avenue of future work.
This paper assumed that the dropout process was i.i.d.
We believe that it is possible to control the burst size
by considering a more restricted set of dropout pro-
cesses. This restricted dropout process is realized by a



judicious choice for the real-time scheduler. One such
candidate is a scheduler implementing an (m, k)-firm
guarantee model [3]. This approach represents a natu-
ral way of constraining the dropout process to bound
signal burstiness. But it is only one approach and
there may certainly be other constraints that constrain
burstiness and are still easily implemented by real-time
schedulers. Our future work intends to explore this
relationship between burstiness, real-time scheduling,
and dropouts in greater detail.

7 Appendix: Proof

Proof of Theorem 4.1: Let the initial state of the
overall system be x[0] = x0. Then by x

TXx ≤ σ2
Xx

Tx

for any x, we can get

E
[

xT [n+ 1]x[n+ 1] | x0

]

= E
[

xT [n]AT [n]A[n]x[n] | x0

]

= E
[

xT [n]E
[

AT [n]A[n]
]

x[n] | x0

]

= E
[

xT [n]Xx[n] | x0

]

≤ σ2
XE

[

xT [n]x[n] | x0

]

Recursively applying the above inequality allows us to
conclude that

E
[

xT [n+ 1]x[n+ 1] |
]

≤ σ
2(n+1)
X xT0 x0

which is sufficient to ensure that limn→∞E[xT [n +
1]x[n+ 1] |x0] = 0 for all x0. ♦

Proof of theorem 4.3: The initial time of the system
is assumed to be −∞. By theorem 4.1, the initial state
can be assumed to be zero without loss of generality.
Then the state can be expressed as follows.

x[n+ 1] =

∞
∑

k=0

Φ(n+ 1;n+ 1− k)Bw[n− k]

where

Φ(n; k) =

{

A[n− 1]A[n− 2] · · ·A[k], n > k

I, otherwise

Based on the above expression, it can be shown
by simply computations that E [x[n+ 1]] = 0 and
E
[

x[n+m+ 1]xT [n+ 1]
]

is shift invariant with re-
spect to n. So x = {x[n]} is wide sense stationary
with zero mean. ♦

Proof of Theorem 5.1: Let the impulse response
of H(ejω) be h = {h[n]}. Because H(ejω) is strictly
proper, h[n] = 0 when n ≤ 0. So the output y can be
expressed as

y = h ∗ (y + w) (7.1)

where ∗ denotes convolution. The following identities
can easily be obtained from equation 7.1.

Syw = H(Syw + Sww) (7.2)

Syy = H
(

Syy + S∗yw
)

(7.3)

Syy = HH∗
(

Sww + Syw + S∗yw + Syy
)

(7.4)

First Ryw[m] is computed directly.

Ryw[m]

= E [y[n+m]w[n]]

= Pr(d[n+m] = 0)E [y[n+m]w[n]|d[n+m] = 0]

+Pr(d[n+m] = 1)E [y[n+m]w[n]|d[n+m] = 1]

= (1− ε)Ryw[m] + εRyw[m− 1]

Taking the Fourier transform for the above equation
yields

Syw = (1− ε)Syw + εe−jωSyw (7.5)

Combining equations 7.2 and 7.5, we can get

Syw =
DH

1−DH
Sww (7.6)

Second Ryy[m] is computed similarly for m < 0.

Ryy[m] = (1− ε)Ryy[m] + εRyy[m+ 1]

We now take the negative single-sided Fourier trans-
form for the above equation and obtain S−yy(e

jω) =

(1 − ε)S−yy(e
jω) + εejωS−yy(e

jω) + εejωRyy[0]. Then it
follows that

S−yy = D∗S−yy +
εejω

1− εejω
Ryy[0] (7.7)

The similar procedure can be repeated for Ryy [m] for
m > 0 and yields

S+
yy = (1− ε)S+

yy + εe−jωS+
yy + εe−jωRyy[0]

Then S+
yy can be expressed as

S+
yy = D−1S+

yy −
εe−jω

1− ε
Ryy[0] (7.8)

Syy is given by the equation

Syy = S−yy + S+
yy +Ryy[0] (7.9)

Inserting the results of equations 7.7 and 7.8 into the
above equation yields

Syy = D∗S−yy +D−1S+
yy +

1

1− εejω
Ryy[0]

−
εe−jω

1− ε
Ryy[0] (7.10)



Combining equations 7.3 and 7.10 yields

S−yy =
[

D−1
]∗
(

H(Syy + S∗yw)−D−1S+
yy−

1

1− εejω
Ryy[0] +

εe−jω

1− ε
Ryy[0]

)

(7.11)

By the definition of the negative single-sided power
spectral density, we know Syy = S−yy +

[

S−yy
]∗
+Ryy[0].

Inserting equation 7.11 into it yields

Syy =
[

D−1
]∗
H(Syy + S∗yw) +

[

D−1
]

H∗(Syy + Syw)

−
[

D−1
]∗ [

D−1
]

Syy +∆ (7.12)

where ∆ = 1−ε2

(1−ε)2Ryy[0]−
2

1−εRyy[0] +Ryy[0].

Combining equations 7.4, 7.6 and 7.12, Syy yields

Syy =

[

DH

1−DH

] [

DH

1−DH

]∗

Sww

+

[

D

1−DH

] [

D

1−DH

]∗

∆

We then use the above result together with equations
7.4 and 7.6 to obtain the final expression of Syy.

Syy =

∣

∣

∣

∣

H

1−DH

∣

∣

∣

∣

2

Sww +

∣

∣

∣

∣

DH

1−DH

∣

∣

∣

∣

2

∆

The last part deduces the algorithm for computing ∆.
The direct computation of Ryy [0] shows that Ryy [0] =
Ryy[0]. So ∆ =

2
1−ε (Ryy[0]−Ryy[0]). By the definition

of PSD, we get

∆ =
2

1− ε

1

2π

∫ π

−π

(

Syy(e
jω)− Syy(e

jω)
)

dω

Substitute the expressions of Syy(e
jω) and Syy(e

jω)
into the above equation and we will get the final re-
sult of ∆.
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