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Liveness-Enforcing Supervision of Bounded Ordinary
Petri Nets Using Partial Order Methods

Kevin X. He, Member, IEEE, and Michael D. Lemmon

Abstract—This paper combines and refines recent results into
a systematic way to verify and enforce the liveness of bounded or-
dinary Petri nets. The approach we propose is based on a partial-
order method called network unfolding. Network unfolding maps
the original Petri net to an acyclic occurrence net. A finite prefix of
the occurrence net is defined to give a compact representation of
the original net’s reachability graph while preserving the causality
between net transitions. A set of transition invariants denoted as
base configurations is identified in the finite prefix. These base con-
figurations capture all of the fundamental executions of the net
system, thereby providing a modular way to verify and synthesize
supervisory net systems. This paper proves necessary and suffi-
cient conditions that characterize the original net’s liveness and
the existence of maximally permissive supervisory policies that en-
force liveness.

Index Terms—Petri nets, supervisory control, unfolding.

I. INTRODUCTION

ANORDINARY Petri net is live if it is possible to reach any
transition from any reachable marking. At each reachable

marking, amarking-based supervisor disables the firing of a se-
lected set of controllable transitions. The marking based super-
visor is said to be liveness-enforcing, if its supervisory policy
ensures that the controlled Petri net is live. If a liveness-en-
forcing supervisor exists, then we know that there also exists a
maximally permissive supervisor [3]. A liveness-enforcing su-
pervisor is said to be maximally permissive, if it allows the
supremal controllable sublanguage [4] that enforces liveness.
A variety of theoretical results [5]–[8], and computational al-

gorithms [9]–[10], have been developed to assess the liveness
of certain classes of Petri nets. Most of these results were based
on the fact that the liveness of a Petri net is closely related to the
satisfiability of some properties on place invariants of the net,
namely siphons and traps. A siphon is a subset of places once
being emptied, will never again obtain new tokens, while a trap
is a subset of places once marked, will always remain marked. It
was shown in [5] and [8] that under certain structural constraints
of the net, such as free-choiceness [5] or asymmetric choice-
ness [8], the liveness property is necessary-and-sufficiently de-
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termined by checking the coverability of every siphon at every
reachable marking.
Previous results on the existence and construction of live-

ness-enforcing marking based supervisors were presented by
Sreenivas [11], [12]. The verification test and the search for
liveness-enforcing supervisors in these papers used the KM-tree
[13] of the original Petri net. The KM-tree of a given Petri net is
basically a reachability graph. It was proven in [11] that the exis-
tence of liveness-enforcing supervisors is undecidable for arbi-
trary Petri nets. However, for bounded Petri nets or Petri nets
without uncontrollable transitions, the supervisor’s existence
was proven to be decidable. Themajor drawback of these results
is the low computational efficiency. This drawback is partially
due to the poor scalability of the reachability graph. Further-
more, these results overlooked the causal relationship among
transitions. Transition is said to be in the cause of transition
, if either precedes or equals . Causal relationships are im-

portant when dealing with nets with uncontrollable transitions,
because these relationships help identify which transition in the
cause of an uncontrollable transition can be used to disable
while preserving the net’s live behavior. Overlooking causal
relationships is a major reason for these results’ high compu-
tational complexity when dealing with nets with uncontrollable
transitions.
Network unfolding originated from the notion of a branching

process that was presented in [14]. A branching process unfolds
a Petri net into an acyclic structure called an occurrence net.
Occurrence nets were used to provide a concurrence semantics
to nets [15]. McMillan in [15] used unfolding to avoid the state
explosion problem in the verification of asynchronous circuits
modeled by Petri nets. It was shown in [15] that network un-
folding avoids enumerating the arbitrary interleaving of concur-
rent transitions and thus provides a compact way of describing
the net system’s state space. A cut (or restriction) of the occur-
rence net was presented in [15] and it was proven that the finite
prefix resulting from this cut of the occurrence net enumerates
all the reachable markings of the original net system. Extensions
of McMillan’s work to model checking were found in [16] and
[17]. In [16], algorithms were developed to verify the reacha-
bility of a marking or the liveness of transitions for 1-safe Petri
nets, while in [17], other properties such as boundedness and
persistence were verified for a general class of nets.
This paper uses network unfolding to provide a systematic

way to achieve liveness verification and synthesis of liveness-
enforcing supervisors. Our work is based on a new finite prefix
that is composed of the finite prefix defined in [15] and the first
tier of cutoff transitions. The intuition behind our method is that
while the finite prefix in [15] provides a compact representation
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of the state space, the inclusion of cutoff transitions helps iden-
tify concurrent and causally related base configurations. Each
base configuration is considered as a fundamental execution of
the net system. These fundamental executions provide an effi-
cient and modular way to analyze net behavior since the lan-
guage generated from the net system can be described by the
interleaving of fundamental executions. In particular, this paper
shows that the liveness of a bounded ordinary Petri net can be
verified by examining the interaction between fundamental exe-
cutions. Furthermore, if a certain interaction violates liveness, a
maximally permissive liveness enforcing supervisor can be de-
veloped to control-disable the undesirable interaction at its crit-
ical marking.
The remainder of this paper is organized as follows. Section II

reviews definitions and concepts related to the supervisory con-
trol of Petri nets. Section III summarizes results related to net-
work unfolding. Section IV presents results that verify the live-
ness of bounded ordinary Petri nets based on network unfolding.
Section V extends the results in Section IV to develop maxi-
mally permissive liveness-enforcingmarking based supervisors.
Finally, Section VI concludes with directions of future research.

II. SUPERVISORY CONTROL OF PETRI NETS

This section reviews the definition of ordinary Petri nets and
states the supervisory control problem. For more details on Petri
nets, refer to [18], [19], and [20]. For more details on supervi-
sory control refer to [3], [4], and [21]–[23].

A. Petri Nets
A Petri net is represented by the 4-tuple,

where is the set of places, is the set of transitions,
is a set of input arcs (from places to transitions)

and output arcs (from transitions to places), and is
a mapping that assigns each arc in a positive integer called
a weight. A Petri net is called ordinary if the weight is 1 for
all arcs in . Since the weight is the same for all arcs, we
drop the and represent an ordinary Petri net as the 3-tuple,

. In the sequel, we assume that the Petri net is
ordinary.
We denote the preset of a transition as and define

it as the set of places, such that . In a dual
manner, we introduce the postset of a transition as and
define it as the set of places, such that . We
define presets and postsets of places in a similar way.
Let be a set of transitions of , we define the preset of

as

for some
and for all

In a dual manner, we define the postset of as

for some
and for all

For example, in Fig. 1, if we take , then
and .

Fig. 1. An example net.

Note that the definition of in this paper is different
from its traditional definition .
The relationship between the new definition and the
traditional one is that

.
The current “state” of the Petri net is represented by the

marking of the network. The marking is a
mapping from the places onto nonnegative integers. The
marking of place denotes the number of tokens in
that place. Graphically, we represent places by empty cir-
cles, transitions by bars and tokens by small filled circles.
Fig. 1 shows an example Petri net with initial marking

.
The dynamics of ordinary Petri nets are characterized by the

way in which the network marking evolves. We say that the
transition is enabled if for all . An enabled
transitionmay fire.We introduce a firing function
such that if is firing and is zero otherwise. If and

denote the marking of place before and after the firing
of enabled transition , denoted by , then

if
if
otherwise.

(1)

We define a net system as the pair , where
is a Petri net and is its initial marking. We say a se-

quence of transitions is an occurrence sequence,
if there exist markings such that

is the marking reached by the occurrence of , also denoted
by . Given two markings and , we say is reach-
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able from , if there exists an occurrence sequence such
that . The reachability graph of network is a labeled
graph having the set of reachable markings of as nodes and
the relations between markings as edges.
We define as the set of markings reachable from .

We say a net system is -safe or bounded, if there exists
a finite number such that , , ,
i.e., there exists no place that contains more than tokens at any
reachable marking. We say a net system is 1-safe, if . The
net system in Fig. 1 is 1-safe. In the sequel, we assume the net
system is bounded.
We say a transition is reachable from a marking if there

exists a marking and an occurrence sequence such that
and enables . We say a place is reachable from a

marking if there exists a transition such that is reachable
from and . Moreover, we say a set of transitions
is reachable from a marking if every transition is
reachable from . We say a set of places is reachable from a
marking if every place is reachable from .
We denote a sequence of arcs

in the net as a path. We say that
the net is acyclic if there is no path such that .
Let be an acyclic net and be

two nodes of . We define the ordering relations between
and in the following way.
• We say precedes , denoted as , if and only
if there exists a sequence, , of arcs (also called a path) of
the form

(2)

such that and . In Fig. 2, we can see that
transition precedes transition , since there exists the
path .

• We say and are in conflict, denoted by , if
there exist distinct transitions such that

and for . We say a node is
in self conflict if . This means that there is a node
preceding such that can be reached by more than one
distinct occurrence sequence from . In Fig. 2, transitions

are in conflict since and .
• We say and are concurrent, denoted by , if
they are not in precedence and not in conflict. In Fig. 2,
transitions and are concurrent.

A Petri net is said to be finitary if every node is preceded by
a finite number of nodes.
A net system is said to be deadlock free if every reachable

marking enables at least one transition. A net system is said to
be live if for any reachable marking and any there exists
a marking reachable from and enables .

B. Supervisory Control of Petri Nets

We define a net supervisor as a mapping
, where is the set of all reachable markings for the

net system . A transition is said to be control enabled (control
disabled) at a marking , if . A

Fig. 2. An occurrence net.

supervised net system is a net system in which only control-
enabled transitions can fire.
Assume that the transitions of net system can be partitioned

into a set of controllable, , and uncontrollable transitions, .
An uncontrollable transition in the controlled system , is a
transition that cannot be control disabled by the net supervisor.
A controllable transition is a transition that is not uncontrollable.
An admissible supervisor is one in which for all
and any reachable marking of the supervised net system.
Consider a net system and let represent all finite length

sequences of transitions in . The formal language
is said to be the accepted language of if and only if a

string is an occurrence sequence of . In a similar
way, the formal language accepted by the supervised net system

is denoted as . If is an admissible supervisor then
is called a controllable sublanguage.

Consider a net system with accepted language . We
identify a set of forbidden markings which is a subset
of . The language accepted by a supervised net system

is said to be legal if there is no occurrence sequence
such that where . For a given

set of forbidden markings , there may be many legal con-
trollable sublanguages. The largest such language that contains
all other legal controllable sublanguages is called the supremal
controllable sublanguage. We say ismaximally permissive, if

accepts the supremal controllable language of . The
objective in supervisory control synthesis is to find the admis-
sible maximally permissive supervisor . Furthermore, since a
bounded ordinary Petri net can be represented as a finite state
machine, the results of [3] can be used to infer that the supremal
controllable sublanguage always exists.

III. NETWORK UNFOLDING

This paper uses a Petri net analysis method known as network
unfolding [15], [16]. Unfolding is a partial-order method that
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identifies collections of causally dependent conflict free tran-
sitions. This section reviews basic concepts and results about
network unfolding [15], [16].
Given a network , let denote the set

of places

(3)

An occurrence net is a finitary acyclic net
with initial marking such that
1) for every ;
2) no transition is in self conflict;
3) if and only if .

The acyclic net in Fig. 2 shows an example occurrence network.
Let and be two nets

with initial markings and , respectively. A net homo-
morphism, is a mapping between nodes
of and such that the following hold.
1) and .
2) For every , the restriction of to is a bijection
between (in ) and (in ). Similarly for the
postsets and . In other words, a net homomor-
phism preserves the preset and postset of transitions.

3) The restriction of to is a bijection between
and . In other words, a net homomor-

phism also preserves the initial marking.
A branching process of a net system is a pair

such that
1) is an occurrence network;
2) is a net homomorphism from to such that if

and , then .
Two branching processes and

are said to be isomorphic if there is a bijective homomorphism
between them such that . This means and
are different only in the labels (names) of their nodes and

arcs. Given two occurrence nets and
, we say contains , denoted as , if

, and for all , is the same in
as in , so is . We say a branching process
contains if . A branching process is
maximal if it contains all other branching processes of a network
. An unfolding of a net system is the maximal branching

process of .
Let be the occurrence net obtained from

the branching process of . A set of transitions is a
configuration, if the following holds:
1) if , then implies ;
2) no two elements in are in conflict.

Fig. 2 shows an occurrence net obtained in the unfolding of the
network in Fig. 1. In the occurrence net, transitions form
a configuration.
From the definition, we can see that if a transition is in a con-

figuration, then all the transitions preceding should be in the
same configuration. In addition, transitions that are concurrent
with can also be included in that configuration. Let be a
transition of , we denote as the set or
. We call the cause of . This notion of cause is the same as

the notion of local configuration in [15]. For example, in Fig. 2,
. The following two lemmas describe some char-

acteristics of and the configuration.
Lemma 1: For any transition of an occurrence net ,

forms a configuration.
Proof: First, it is clear that all transitions in satisfy the

first condition in the definition of configuration. Second, there
must not exist two transitions in conflict in since otherwise
is in self conflict. The lemma is therefore proved.
Lemma 2: For a configuration , if transition , then

.
Proof: Directly follows the definition of configuration.

Lemma 3: A set of transitions of forms a configuration,
if and only if there exists a set of concurrent transitions of
such that . Furthermore, the set is unique for
configuration .

Proof:
Sufficiency: Let be a transition in . Then there must
exist a transition such that , and therefore,

. This means if then , .
Moreover, there must not exist two transitions in
such that , since otherwise there must exist
, , and .

Necessity: Consider the set of transitions
. First, following the definition of config-

uration, all transitions in this set are concurrent. Second,
any transition preceding a transition in must also be in
, which means . Finally, for any transition

, either , or there exists a such that
. This means , and therefore

. We thus conclude that is the set of tran-
sitions satisfying the necessary condition.
Finally, we need to prove that the defined in the neces-

sity proof is a minimal set satisfying and this
minimal set is unique for configuration . Supposing
there is another set such that , then for
every , there should be a such that or

. We thus have and .
holds only if there is a subset of

equal to . This means is a subset of any other set
satisfying , which is enough to prove that
is minimal and unique.

Definition: Let be a configuration, we denoted any transi-
tion in as an end transition of
.
We define the cut of a configuration as

. s of configurations are used to
represent reachable markings of the original net system. The
link between s and reachable markings can be described in
the following way. Let be the set of s in the occurrence
net . Let be the set of places in the original net.
Let be a mapping such that for all
in , .
In other words, the th element of the vector
is the number of copies of place in . It is
has been proven [16] that given a configuration ,

is a reachable marking of the original
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net system. For example, in Fig. 2,
,

and . We have

. In other words, is reachable from after
firing .
An unfolding may be infinite, and therefore it makes sense

to define a finite prefix of it for verification purposes. A
branching process is a prefix of the unfolding

if is contained by .
Definition: A transition of the unfolding is called a

cutoff transition if there exists a smaller cause such that
, or .

A cutoff transition of is called a post cutoff transition, if
is a cutoff transition, i.e., ’s immediate prede-

cessors are all cutoff transitions.
Remark: The relationship between and the finite prefix
defined in [15] can be illustrated as follows. Recall that

is obtained after removing all cutoff transitions
from . It is therefore easily seen that contains and the
first “tier” of cutoff transitions in . The inclusion of cutoff
transitions allows us to find transition cycles (or transition in-
variants) which are important for the verification of liveness.
(Details will appear later). Some initial effort that attempt to in-
clude cutoff transitions in the finite prefix to verify net proper-
ties can be found in [24].
Fig. 2 shows the finite prefix of the unfolding of the net in

Fig. 1. Note that in Fig. 2, transitions are cutoff transi-
tions and is obtained by removing from .
In , we say that a transition is an end transition, if there

is no transition such that . Note that an end transition is
either a cutoff transition, or a deadlocked transition that precedes
no transition in . Consider the occurrence net shown in Fig. 2.
In that figure, transition are end transitions. Among
them, are cutoff transitions and are end transitions
that precede no transition in .
The following lemmas were proven in [25].
Lemma 4: Amarking is a reachablemarking of the original

net system if and only if there is a configuration of such
that .

Proof: See [25].
Lemma 5: If is -safe, then is finite.
Proof: See [25].

It is obvious to see that enumerates all the reachable mark-
ings of the original net system, since contains . It is also
clear that is finite if is finite, since there are finite number
of end transitions in . The following lemma proves that
enumerates all the transitions reachable from .
Lemma 6: For any transition of that is reachable from
, there exists a transition of such that .
Proof: Note that for a configuration of the unfolding

, all the transitions in the original net which
are enabled by should have their image ap-
pear in . Since every reachable marking of maps to a
of and contains , then any reachable transition must
have their image appear in . Another version of the proof can
be found in [24].

Lemma 7: Let and be two configurations of
and , then in the original net system ,

is reachable from .
Proof: By Lemma 3, there exists a minimal set of con-

current transitions of such that and
a minimal set of concurrent transitions of such that

. Since , then for every ,
there must exists a such that or .
Pick a transition , and look for the associated transition

. We can see that is not in conflict with any transi-
tion in , since otherwise and transitions in are in the
same configuration. Since is not in conflict with any transi-
tion in , then all transitions in can be fired one after
another and it follows that is reach-
able from . Now, pick another transition in

and continue the above process, by induction we conclude
that is reachable from .
We conclude this section with an example to illustrate the

unfolding process. In the occurrence net, we define the depth
of a place as the number of transitions preceding . Places
having the same depth are called a tier. A tier encapsulates a set
of reachable markings. A new tier is formed by enumerating all
the markings reached from a marking in the old tier after firing
one transition. Unfolding is carried out tier by tier until every
transition enabled by the latest tier is a cutoff transition.
Specifically, consider the original net system shown in the

left part of Fig. 3. The initially marked places
form the first tier. The second tier is formed by enumerating the
cuts of all configurations consisting of transitions enabled by the
first tier. In this example, there are four transitions enabled by
the first tier, namely . Since these transitions are
concurrent, then every element in the power set of
is a configuration and the second tier is formed by firing every
element in the power set of . It is worth noticing
that in forming the second tier, we do not enumerate arbitrary
interleaving of and this avoids the state explosion
problem that occurs in constructing the reachability graph.
Having formed the second tier, the third tier can be con-

structed by enumerating the cuts of all configurations that
contain a new transition that is enabled by a cut in the second
tier. For example, we add transition and places to
the occurrence net since is enabled by and

. Note also that
is a cutoff transition since .

After the third tier is obtained, the fourth tier can be con-
structed in the same way. In obtaining the fourth tier,
it is easy to see that is also a cutoff transition since

. It is also
true that is a cutoff transition since . Note that is
not a post cutoff transition since and is not a cutoff
transition. Transitions and are not cutoff transitions. But no
transition will succeed and since no transition is enabled
at marking .
It can be seen that any transition enabled by the fourth tier
will be a post cutoff transition since it succeeds both and .
Therefore, it is obvious that the fourth tier is the final tier in the
branching process.
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Fig. 3. An unfolding example.

It is also worth noticing that deadlocks in the original
net system can be identified in the unfolding process.
In the example, we can see that the cut of configuration

is a deadlocked marking since it enables
no transition. We can also see that the critical transition that
leads to this deadlock is , since after the firing of the net
system has no choice but to reach the deadlock. These informa-
tions are used in Section IV to obtain necessary and sufficient
conditions that characterize the liveness of the original net
system.
Remark: Notice that although the above example only shows

the unfolding of a 1-safe net system, the unfolding of bounded
but unsafe net systems can be achieved following the same steps.
The only difference is that if a place in the original net systems
contains more than one token, then we need to make as many
copies of this place in the occurrence net as the number of to-
kens in that place. To further illustrate this point, consider the
unfolding of the same example net with place containing 2
tokens initially. The first tier of the unfolding, therefore, consists
of one copy of places and two copies of of the
original net. The second and following tiers are still formed by
enumerating all the markings reachable from the previous tier.
The determination of cutoff transitions still follows the same
rule. The complete occurrence net for the unsafe net system is
shown in Fig. 4.
Remark: The computational complexity of unfolding de-

pends, to a large degree, on the structure of the original net
system. It has long been recognized that unfolding can reduce
the space complexity required to represent systems containing
a large number of concurrent executions. This means that an
unfolding’s occurrence net can be much more compact than the
standard reachability graph. Due to this advantage, unfolding

Fig. 4. The unfolding of an unsafe net system.

has been used as a verification tool for electronic circuits [24].
The time complexity of constructing the occurrence net is equal
to the time-complexity of constructing the reachability graph.
This is because both constructions require an enumeration of
the net system’s reachable markings. Given the speed, however,
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of modern computers, space complexity (e.g., the amount of
memory required to store the graph) may be more important
than the construction’s time-complexity.
Remark: The problem addressed in this paper is intimately

connected to liveness verification in bounded net systems. There
may be problems for which the algorithm’s computational com-
plexity is unattractive. The key, of course, is to identify a sub-
class of the original problem for which the algorithmworks well
(i.e., with polynomial complexity). For unfolding methods, this
sub-class of problems can obviously be characterized by the
minimal number of configurations in the net system. In other
words, the number of configurations can be thought of as a mea-
sure of the “dimension” of the concurrent system. Systems with
a large number of concurrent configurations are “complex” and
for these systems we cannot expect unfolding to provide any
greater benefits than the exhaustive enumeration found in the
reachability graph. For those systems, however, in which there
are a handful of concurrent configurations unfolding methods
are attractive analysis tools.

IV. LIVENESS VERIFICATION

This section proves necessary and sufficient conditions that
characterize the liveness of bounded ordinary Petri nets. These
conditions are based on the intuition that since the interleaving
of all fundamental executions completely characterizes a
system’s behavior, then liveness can be verified by identifying
local (or global) deadlocks between fundamental executions of
the net system. The existence of a (local or global) deadlock
means that at least part of the system cannot proceed and
therefore some transitions can never be enabled (or re-enabled).
The next concern is the liveness of every net transition when
there is no deadlock in the system. Note that although in this
case every part of the system can proceed, some transitions
may still never be re-enabled since they do not belong to any
transition cycle.
The preceding discussion provided an intuitive characteriza-

tion of the liveness condition presented in this paper. The re-
mainder of this section proves this characterization in detail.
Specifically, Section IV-A demonstrates how deadlocked con-
figurations can be identified in the finite prefix. Section IV-B
shows how transition cycles can be determined by identifying
cut cycles in the cut graph. Finally, Section IV-C summarizes
and proves the main theorem for liveness verification.
Remark: It is worth noticing that this paper characterizes the

liveness of bounded Petri nets in a different way than did [1].
The difference can be explained as follows. Recall that in [1],
the liveness of a bounded Petri net was characterized by the live-
ness of base configurations and the absence of cyclic locks be-
tween base configurations. Intuitively, the liveness of base con-
figurations means that any “sequential” execution of base con-
figurations does not cause either deadlock or the unreachability
of transitions, while the absence of cyclic locks means that the
“concurrent” execution of base configurations does not result in
any (local or global) deadlock. This section refines the results
in [1] by encapsulating all of the “sequential” or “concurrent”
deadlocks in the notion of deadlocked configurations and char-
acterizing the repeatability of transitions in cut cycles in the cut

graph. Details of these refinements and justifications of their
advantages appears in Sections IV-A–C.

A. Characterization of Local Deadlocks
Let be a net system and be the finite prefix

of its unfolding defined earlier. We define a base configuration
as the cause of where is an end transition of

. We say a base configuration is deadlock free,
if is a cutoff transition. We say is deadlocked,
if is not a cutoff transition. Note that in a deadlock free
base configuration, assuming is the transition such that

, then transitions in the set
forms a transition cycle (since and

represent the same marking). Note also that a deadlocked base
configuration represents a set of occurrence sequences that
leads to a local deadlock, since there is no transition succeeding
in the unfolding .
In the finite prefix in Fig. 3, , , , are the end transition

of the finite prefix . Therefore, there are four base configura-
tions in , namely , , , . Among
them, and are deadlock free, since and are
cutoff transitions. and are deadlocked, since

are not cutoff transitions. It is easy to see that transition
sequences and form two transition cycles since the
marking vector returns to the initial marking after firing these
sequences of transitions. It can also be seen that the net system
will reach a deadlock once (the image of) all transitions in
or are fired consecutively.
A local deadlock can be characterized by the occurrence se-

quences that lead to this deadlock. In the occurrence net of the
finite prefix , these occurrence sequences are represented by
configurations.
Recall from Lemma 3 that for a configuration in , there

exists a unique set of transitions such that . We
call every transition an end transition of configuration .
A configuration is said to be a deadlock free configuration, if
every end transition of is a cutoff transition. In other words,
is the union of several (concurrent) deadlock free base con-

figurations. A configuration is said to be a deadlocked con-
figuration, if it is not a subset of any deadlock free configuration.
A deadlocked configuration is said to be minimal, if it does not
contain any other deadlocked configuration. A deadlocked con-
figuration is said to be maximal, if it is not a subset of any other
deadlocked configuration. A deadlocked base configuration is a
deadlocked configuration.
Intuitively, a minimal deadlocked configuration represents a

critical point where a deadlock free path and a deadlocked path
diverge, while a maximal deadlocked configuration encapsu-
lates all the paths that lead to a (local or global) deadlock. The
following lemma proves that the existence of a deadlocked con-
figuration implies that there exist transitions that cannot be en-
abled repeatedly after the deadlock occurs.
Lemma 8: If there exists a deadlocked configuration in ,

then there must exist a transition in the original net such that
cannot be enabled repeatedly from , where

is the maximal deadlocked configuration that contains .
Proof: Let be the set of end transitions of . Ap-

parently, there must exist a transition such that is not
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a cutoff transition, since otherwise will be deadlock free.
If is not an end transition of , then for any transition
succeeding , is not reachable from .
This is because if is reachable from , then

is a deadlocked configuration and that contradicts the
fact that is maximal. If is an end transition of , then
cannot be enabled repeatedly from . This is
because if can be enabled repeatedly from ,
then that means the deadlocked base configuration keeps
receiving tokens from other deadlock-free base configurations
in . As a result, any place will contain an
infinite number of tokens. This contradicts the fact that the orig-
inal net system is bounded.
In the finite prefix in Fig. 3, since are dead-

locked base configurations, then any configuration that contains
a portion of these two base configurations is a deadlocked con-
figuration. These deadlocked configurations are, , and
. Also notice that configuration is also a dead-

locked configuration, since , are the only two
deadlock free configurations and since is not a subset of either
of them. Among the four deadlocked configurations, is a
minimal deadlocked configuration, , are maximal dead-
locked configurations, is both a minimal deadlocked
configuration and a maximal deadlocked configuration. For the
three maximal deadlocked configurations, it is easy to see that
is not reachable from and is not

reachable from either or .
Remark: The notion of deadlocked configurations intro-

duced in this section encapsulates all the (local or global)
deadlocked caused by “sequential” execution of base config-
urations and all the cyclic locks [1]. The advantage of this
encapsulation is the reduction of computation in identifying
deadlocks. Based on the example shown in Fig. 3, it can
be seen that deadlocked configurations can be identified
on-the-fly in the unfolding process. The identification of cyclic
locks as defined originally in [1], on the other hand, may be
computationally more expensive since it searches through
every transition in every combination of concurrent base
configurations.

B. Characterization of Transition Cycles
It is easy to see that, when there is no deadlocked configura-

tion in the finite prefix, firing transitions in different base config-
urations either concurrently or sequentially will reach the same
final marking. This means that the absence of deadlocks enables
us to examine the net system’s behavior by only observing the
“sequential” (as opposed to “parallel” or “concurrent”) execu-
tion of base configurations. This feature allows us to determine
the liveness of transitions by only verifying the repeatability of
base configurations. This section uses a structure called a cut
graph to characterize the reachability between base configura-
tions and proves that the original net is live if and only if every
maximal cycle in the cut graph contains a copy of every transi-
tion in the original net.
Let , be two deadlock free base configura-

tions in . We say is reachable from , denoted
as , if , where and

. Note that in this case the set of

transitions in that is reachable from
is , where and .
A cut graph is a directed graph such that is the set
of all base configurations in and is a set of
directed arcs such that if and only if

.
The semantics of a cut graph can be explained as follows.

Each node in the graph is associated with a base config-
uration. Each arc means that base configura-
tion is reachable from base configuration . The
cut graph therefore simplymaps the causal dependency between
different base configurations without regard to the sequential or
concurrent nature of these configurations.
We denote a cycle ,

in the cut graph as a cut cycle. We say
that a cut cycle is live, if either of the following conditions holds:
• , where is the set of all tran-
sitions in the original net and , ,

;
• .

Note that the first condition means that the cut cycle includes
all the transitions in the original net. The second condition
means that after traversing all base configurations in a cut
cycle, the marking vector returns to the initial marking. We
say that a transition is in a cut cycle ,

, if
, where , .

We say a cut cycle is contained in another cut cycle, if every
node and every arc of this cut cycle also belong to the other cut
cycle. We say that a cut cycle is maximal, if it is not contained
in any other cut cycle.
In Fig. 3, we can see that ,

, , ,
, , ,
. The cut graph is shown in Fig. 5. In the

cut graph, we can see that there are three cut cycles, namely
cycle , cycle and cycle

, . The union of these
three cut cycles forms a live maximal cut cycle.
A node in the cut graph is said to be a dead node, if

there exists no node that is reachable from . It is easy to
see that any dead node is a deadlocked base configuration and it
is trivial to prove that a cut graph does not contain any deadlock
if and only if there is no deadlock configuration in the finite
prefix. In Fig. 5, node and node are deadlocks.
Remark: The true value of cut graphs lies in the fact that

they represent a higher level abstraction of the net system’s ex-
ecutions. Specifically, a cut graph provides information on how
fundamental executions or base configurations of the net system
interact. A cut graph encapsulates all the concurrency between
fundamental executions into the sequential execution of base
configurations. This encapsulation of concurrency greatly re-
duces the complexity involved in the liveness verification and
supervision in the sense that liveness verification and supervi-
sion can be performed by only observing the reachability be-
tween base configurations without worrying about how they in-
terleave.
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Fig. 5. The cut graph of the finite prefix in Fig. 2.

Lemma 9: If there does not exist any deadlocked configura-
tion in , then the original net is live if and only if every max-
imal cut cycle is live.

Proof:
Sufficiency: we only need to proof that for any reachable
marking and any transition in the original net, is
reachable from . From Lemma 4, we know that for any
reachable from , there is a configuration such that

. From Lemma 3, we know that there
exists a set of concurrent transitions such that

. Note that since there is no deadlock, then
any end transition is a cutoff transition. Pick a transition

such that is reach-
able from ( is the cutoff transition suc-
ceeding .) This transition always exists, since other-
wise is a deadlocked configuration. Now, if there ex-
ists a copy of transition , denoted as , such that

, then apparently is reachable from , since in
order to reach , we have to first
reach . If there does not exist such
a , then find another base configuration such
that and
is reachable from . This base configura-
tion always exists since otherwise will
be a deadlocked configuration. If exists in ,
(where , , then
the proof is done. If does not exist in , then we
look for another base configuration that is reach-
able from and recheck the existence of . Con-
tinue this process and we are guaranteed to find before
completing a maximal cut cycle, since every live maximal
cut cycle contains a copy of .
Necessity: Suppose that there is a maximal
cut cycle ,

,
that is not live. It follows that there

must exist a transition in the original net such that no
copy of is contained in . Since the cut cycle

is maximal, we know that when firing transitions
in , we cannot diverge to another maximal cut
cycle. This means will not be reachable from any
marking reached in traversing . Therefore, we
see that the original net is not live.

C. The Main Theorem

Combining results in Sections IV-A and B, we obtain the fol-
lowing theorem that verifies the liveness of bounded ordinary
Petri nets.
Theorem 1: A bounded net system is live if and only

if the finite prefix of ’s unfolding satisfies the
following two conditions:
1) there does not exist any deadlock configuration in ;
2) every maximal cut cycle in the cut graph is live.
Proof:
Sufficiency: Directly follows from the sufficiency proof of
Lemma 9.
Necessity: Directly follows from Lemma 8 and the neces-
sity proof of Lemma 9.

The net system in Fig. 1 is not live, since it contains several
deadlocked configurations.
Remarks: The computational complexity involved in the

verification of liveness depends heavily on the computation
spent in obtaining the finite prefix, since deadlocked configu-
rations and the cut graph can be easily constructed during the
unfolding process. Although it is true that there exist cases
where the construction of finite prefixes does not scale well with
the size of the original net, the verification method in this paper
is still worth doing, because it provides valuable information
for supervisory control. The unfolding method extracts strings
of causally related transitions and this causal relationship can
help develop necessary and sufficient conditions for the exis-
tence of liveness-enforcing supervisors. Exploring the causal
relationship among transitions is extremely useful when the
original net contains uncontrollable transitions. In such cases,
the controller needs to decide, among all the transitions pre-
ceding the uncontrollable transition, which transition to disable
in order to obtain the maximally permissive liveness-enforcing
supervisor. The Section V discusses how the information
obtained in the network unfolding can be used to construct the
maximally permissive liveness-enforcing supervisor.

V. MAXIMALLY PERMISSIVE MARKING BASED
LIVENESS-ENFORCING SUPERVISION

This section extends the liveness verification result presented
in Section IV to synthesize a maximally permissive marking
based liveness-enforcing supervisor. Recall that a supervisor is a
mapping that returns a control input for every observable output
and the control input imposes a restriction on the original net
system’s behavior. We make the conjecture that to enforce live-
ness in a maximally permissive manner, we need to impose the
restriction right onto the critical point where live executions
and deadlocked executions are about to diverge. Understanding
that the original net system’s behavior can be characterized by
the interleaving of base configurations or fundamental execu-
tions, we can use the result from Section IV to identify interleav-
ings of fundamental executions that can lead to system deadlock
and to identify critical transitions that cause the deadlock’s ir-
reversible occurrence. The maximally permissive supervisor is
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obtained by control disabling the firing of critical transitions at
those markings that enable these transitions.
It is worth noticing that although the intuition remains the

same, the characterization of the existence of maximally per-
missive liveness enforcing supervisors in this section is different
from but conceptually equivalent to the characterization in [2].
This difference follows directly from the refinement of liveness
characterization in Section III.
We start our discussion by formally defining the notion

of a marking based supervisor. A marking based supervisor
is a one to one mapping that returns

a -dimensional binary vector for every reachable marking.
( is the set of transitions in the original net). The supervisor
permits the firing of transition at marking , only if

. We say the transition is state enabled at marking
, if at marking , all input places to a transition contain a
token. We say the transition is control enabled (control-dis-
abled) at , if . A transition in the
supervised net has to be state enabled and control enabled
before it can fire.
Denote as the set of reachable markings of the su-

pervised net system, we say that a marking based supervisor
enforces the liveness of the original net system , if every
transition of the original net system is reachable from every
marking in . A marking based supervisor is said to be
liveness-enforcing, if it enforces the liveness of the original net
system. We say a net system is completely controllable, if every
transition of the net system is controllable.
We say that a transition in the finite prefix is a critical

transition, if the following conditions hold:
• is an end transition of some minimal deadlocked config-
uration;

• there exists a base configuration such that
and is a node of some live cut cycle; but

there does not exist any such that
and is a node of some live cut cycle.

Intuitively, the first condition means that the firing of a crit-
ical transition may cause a local or global deadlock, while the
second condition means that the firing of may lead to the un-
reachability of certain transitions, since does not belong to
any live cut cycle.
In the occurrence net in Fig. 3, are critical transitions.

They are the two end transitions of the minimal deadlocked con-
figuration . is another critical transition, since it is the
end transition of minimal deadlocked configuration .
Let be a configuration in , we say that is a

critical marking, if the following conditions hold:
• there exist a minimal deadlock configuration and a
critical transition such that ;

• there exists a critical transition such that and
there does not exist any such that
and is a node of some live cut cycle.

Intuitively, a critical marking represents a state that is
“one step away” from an execution that is not live.
In Fig. 2, the critical markings are

, ,

and
.

The following theorem verifies the existence of liveness-en-
forcing marking based supervisors for completely controllable
nets.
Theorem 2: There exists a liveness-enforcing supervisor for

a completely controllable bounded net system , if and
only if there exist at least one live cut cycle in the cut graph.

Proof:

Sufficiency: The sufficient part is proven in a constructive
way. In other words, we first derive a marking based
supervisor and then prove enforces liveness. Let
be a reachable marking of the original net system,

then there must exist a configuration of such that
. For a transition , let

, if there exists a transition such
that the following conditions are satisfied:

1) is a critical marking;
2) is a critical transition;
3) enables .

We let , if otherwise.
We nowwant to prove that the supervisor enforces the

liveness of . We need to prove that any transition
of the original net system is reachable from any marking
reachable from under . It can be seen from its con-

struction that disables all the occurrence sequences that
lead to deadlock or cut cycles that are not live. In other
words, only permits the firing of live cut cycles. Live-
ness of the supervised net system is therefore guaranteed
since every transition is reachable in any live cut cycle.
Necessity: Assuming there does not exist any live cut cycle
in the cut graph, then there should not exist any liveness-
enforcing supervisor. This is because for any cut cycle that
is not control-disabled by the supervisor, we know from
lemma 9 that there should be some transition that is not
reachable.

There exists a liveness-enforcing supervisor for the
net system in Fig. 1, since there exists a live cut cycle

, . To enforce its liveness,
we want to disable all the critical transitions at there critical
markings. The complete supervisor is shown in Fig. 6. The first
column in the figure shows the current configuration, i.e., the
set of transitions that have been fired. The second column shows
the cut of each configuration. The third column shows the
marking vector corresponding to each cut and the last column
shows the control vector associated with each marking vector.
The derivation of the supervisor can be explained as follows.
Note that the supervisor is a mapping between reachable mark-
ings and boolean control vectors. The value of each element
in the control vector corresponds to the enabling or disabling
of a transition in the original net. Each reachable marking can
be represented by the cut of a configuration in the occurrence
net. The table in Fig. 6 actually shows the mapping from cuts
of configurations to control vectors. Specifically, we determine
the cut of every configuration in the occurrence net and obtain
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Fig. 6. The liveness-enforcing supervisory policy for the example net system.

the first and second columns of the table. We then look for the
reachable marking associated with each cut and obtain the third
column. Finally, we examine every transition enabled by a cut.
If the cut and the transition satisfy the conditions stated in the
sufficiency proof, then the element of the control vector is set
to 0 (meaning disable). The element is set to 1, if otherwise.
We thus obtain the control vectors associated with every cut
and complete the last column of the supervisor table.
The following corollary proves the maximal permissiveness

of the liveness-enforcing supervisory policy constructed in the
sufficiency proof of Theorem 2.
Corollary 1: Assuming the net system is completely con-

trolled, the supervisor constructed in the sufficiency proof of
Theorem 2 is maximally permissive.

Proof: Assuming there exists a more permissive liveness-
enforcing supervisor , then will control enable some crit-
ical transition . The enabling of will lead to either a deadlock
or a cut cycle that is not live. In either cases, some transition
succeeding will not be reachable from .
Therefore, we see that cannot enforce liveness and hence the
contradiction.
Another important property of the supervisory policy con-

structed in the sufficiency proof is that it only requires the con-
trollability of all the critical transitions. The following corollary
summarizes this point.
Corollary 2: To apply the supervisor constructed in the

sufficiency proof of Theorem 2, only the controllability of all
the critical transitions is needed.

Proof: Follows directly from the construction of .
Remark: Corollaries 1 and 2 show that the supervisor con-

structed in the sufficiency proof of Theorem 2 ismaximally per-
missive. Moreover, Corollary 2 shows that the maximally per-
missive supervisor only requires the controllability of critical
transitions. This means that to construct , the controllability
requirement isminimal. Furthermore, it can be clearly seen from
the construction that to obtain the supervisor, we only need to
decide the control vectors at critical markings and these con-
trol vectors are easily computed once the critical transitions are

identified. Recall that a minimal deadlocked configuration is a
configuration reached after firing a critical transition at a critical
marking. Critical markings and critical transitions can be effi-
ciently identified since minimal deadlocked configurations can
be identified on the fly in the unfolding process. These char-
acteristics indicate that the supervisory policy presented in this
paper is computationally more efficient and at the same time less
restrictive. These improvements come mainly from the use of
network unfolding, which efficiently enumerates the reachable
marking and preserves the ordering relationship among transi-
tions of the original net system.
Remark: The supervisory policy in Fig. 6 is for a safe

network. The same procedure can be used to construct a
supervisory policy for the unsafe network whose unfolding was
shown in Fig. 4. In this occurrence net, the deadlocked con-
figurations are and . The supervisory
policy shown in Fig. 7 simply disables the occurrence of these
configurations.
We now move to net systems with uncontrollable transitions.

From Corollary 2, we know that the controllability of every crit-
ical transition is crucial in constructing the maximally permis-
sive liveness-enforcing supervisor. If a certain critical transition
is uncontrollable, it is natural to look for some controllable

transition in in order to control disable . There may be
multiple controllable transitions in to chose from. One rule
for choosing is that control disabling should not disable any
other live behavior. The following paragraph defines this rule.
Let denote the set of controllable transitions. For

every critical transition in the net system’s finite prefix , we
define as the set of transitions such that the following
conditions hold for every transition :
1) ;
2) such that , , , and
is a subset of some base configuration in a live cut cycle.

We say that a critical transition is cause controllable, if
such that .

From the definition of , we can see that since ,
, then control disabling any transition in will auto-

matically control disable . Furthermore, the second itemmeans
control disabling cannot disable any live cut cycle. Therefore,
the controllability of is equivalent to the controllability of any
transition in in constructing the liveness-enforcing supervi-
sory policy.
In the occurrence net in Fig. 3, if are controllable, then

for critical transition , . Therefore, control
disabling either or will also disable . Note that although

, is not in , because and
is a subset of base configuration that is in a live cut

cycle.
The following definitions of pre-critical transition and pre-

critical marking represents the critical point to implement max-
imally permissive liveness-enforcing supervisor when the crit-
ical transition is uncontrollable. These definitions are used in
the proof of Theorem 3.
Let be a critical transition in . A transition

is said to be a pre-critical transition, if such that
and . In other words, there is no other
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Fig. 7. The liveness-enforcing supervisory policy for the unsafe net system.

controllable transition that succeeds in . In the occur-
rence net in Fig. 3, the precritical transition for is or ,
if or is controllable. It is worth noticing that there is no
pre-critical transition for or . This means if either or
is uncontrollable, then we cannot avoid the deadlock caused

by firing consecutively and therefore there does not exist a
liveness-enforcing supervisor.
Let be a minimal deadlocked configuration in and let
denoted the set of end transitions of . For any transi-

tion , let be the controllable precritical transition
of . Define a preminimal deadlocked configuration as
the configuration that satisfies . In other
words, a preminimal deadlocked configuration represents the
state “right after” we lose control of a deadlock. In the occur-
rence net in Fig. 3, the pre-minimal deadlocked configuration of

is , if and are controllable.
Let be a configuration in , we say that is a

precritical marking, if the following conditions hold:
• there exist a preminimal deadlocked configuration
and a pre-critical transition such that ;

• there exists a pre-critical transition such that
and there does not exist any such that

and is a node of some live cut
cycle.

Intuitively, a precritical marking represents a state that is
one “one step away” from an uncontrollable behavior that is
not live. In the occurrence net in Fig. 3, and

are two precritical markings.
The following theorem verifies the existence of liveness-en-

forcing supervisory policies for -safe net systems with arbi-
trary set of controllable transitions.
Theorem 3: For a bounded net system , there exists

a liveness-enforcing supervisor if and only if there exists a live
cut cycle in the cut graph and every critical transition is cause
controllable.

Proof:
Sufficiency: Knowing that we need to control-disable pre-
critical transitions at precritical markings, we can construct
the liveness-enforcing supervisor in a way similar to that in
Theorem 2 as follows. Let be a reachable marking of the
original net system and be the configuration in
such that . For a transition ,

Fig. 8. The first liveness-enforcing supervisor.

let , if there exists a transition such
that the following conditions are satisfied:
1) is a pre-critical marking;
2) is a precritical transition;
3) enables .

We let , if otherwise.
Necessity: First, it is clear from the necessity proof of The-
orem 2 that if there does not exist any live cut cycle in the
cut graph, then there does not exist any liveness-enforcing
supervisor. Second, it is also clear that if any critical tran-
sition is not cause controllable, then the net system cannot
be prohibited from reaching certain deadlock or some cut
cycle that is not live.

In Fig. 1, assume that only transitions are con-
trollable, it can be seen that the maximally permissive super-
visor constructed in the sufficiency proof of Theorem 2 does
not apply since critical transition is not controllable. How-
ever, since , then we can still disable by con-
trol-disabling precritical transitions or before the firing of
. Note that the supervisor can control-disable either or ,

since there is no controllable transition between and .
Based on this observation, two liveness-enforcing supervisors
can be derived as shown in Figs. 8 and 9.
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Fig. 9. The second liveness-enforcing supervisor.

Fig. 10. The maximally permissive supervisory policy.

Given the controllability condition in Theorem 3. Let and
be two liveness-enforcing supervisors. It was proven in [11]

that the following supervisor also enforces liveness:

if
if
if
if otherwise.

(4)

This implies that a maximally permissive (minimally restric-
tive) liveness-enforcing supervisor exists if and only if there ex-
ists a liveness-enforcing supervisor. The maximally permissive
supervisor for the example net in Fig. 1 can be derived based
on the two supervisors in Fig. 8. Fig. 10 shows the maximally
permissive liveness-enforcing supervisor.

VI. CONCLUSION

This paper provides a systematic way to verify and enforce
the liveness of bounded ordinary Petri nets based on a partial

order method called network unfolding. A salient feature of this
paper is the intuition that the execution of the net system can be
represented by the interleaving of its fundamental executions.
Network unfolding helps extract fundamental executions and
characterize their interleavings, thereby providing a computa-
tionally efficient way to verify and enforce liveness. Moreover,
this paper uses the cut graph to verify the liveness of funda-
mental executions. A cut graph represents every fundamental
execution as a node and encapsulates all the interleavings be-
tween fundamental executions into its arcs. A cut graph repre-
sents a higher level abstraction of system executions, sincewhen
deadlock is absent it suffices to check the sequential executions
between fundamental executions to verify liveness. Another fea-
ture of our approach is the preservation of causality between net
transitions. Causality is important for supervisor synthesis since
it provides the optimal alternative when the critical transition is
uncontrollable.
Future work involves extending these results to general veri-

fication and synthesis problems of Petri nets and applying this
systematic approach to real world applications. One promising
direction is to apply the net synthesis approach to distributed
software systems. Results following this direction can be found
in [26] and [27].
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