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Abstract. This paper derives an equation for a networked control system’s (NCS) performance
as a function of the network’s dropout process. We assume that the NCS is modelled as a discrete-

time system whose dropout process is governed by a Markov chain. The equation computes the
system output’s power as a function of the Markov chain’s probability transition matrix, Q. This

equation is used to pose an optimization problem whose solution yields the transition matrix Q that
optimizes closed loop output power for fixed average dropout rates. The ”optimized” Markov chain
is interpreted as a specification on the quality of service (QoS) delivered by real-time schedulers in

the communication network. This paper, therefore, provides a method for obtaining specifications
on real-time schedulers that assure overall feedback system performance. For a specific example, we

compare the performance of this ”optimal” scheduler to a soft version of schedulers implementing
the popular (m, k)-firm guarantee model. The comparison demonstrates that schedulers enforcing

the optimal Markovian policy may outperform (m, k)-firm guarantee schedulers.

1. Introduction

In recent years there has been considerable interest in networked control systems (NCS) [1] [2] [3].
The feedback loops in an NCS are implemented over a communication network. The measurements
are sent to the controller over the network, the controller computes the control output, and then uses
the network to send the control to the actuators. This paper focuses on NCS implemented by non-
deterministic networks. In a non-deterministic network, the measurement and control packets are
not reliably delivered to their destination. Data may be dropped in the feedback path for a variety
of reasons. An interesting question is: how much does the overall control system’s performance
degrade in the presence of such data dropouts? This paper provides an answer to that question
under the assumption that the dropout process is governed by a Markov chain.

There is little prior work investigating the effect of dropouts on NCS performance. In [3] [4],
networked control systems with dropouts are modelled as asynchronous switched systems. The
approach replaces the true switched system with an ”averaged system” and then provides some
sufficient stability conditions on the system. Because only average dropout rates are used, the
achieved results may be very conservative. Another important contribution is found in [5]. In
this work, the dropouts are modelled by a Markov chain with two states and are treated as vacant
sampling. This work proposes two approaches for handling data dropouts: using past control signals
or estimating the lost data and computing new control signals. The stability of an optimal LQ
controller under the two approaches is analyzed. This work, unfortunately, does not provide a
rigorous analysis of the dropout model and only demonstrates the results through examples. A
recent work [6] derived a closed form expression for the power spectral density of a single-input
single-output discrete-time networked control system whose dropout process is modelled as an i.i.d.
process. The scope of [6] is limited by its assumption on the i.i.d. nature of the dropout process.
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The work in this paper extends [6] to dropout processes governed by Markov chains. We assume that
the feedback measurements are randomly dropped with a distribution selected from an underlying
Markov chain. The main result of this paper is an equation that expresses the power in the networked
control system’s output signal as a function of the Markov chain’s probability transition matrix, Q.
This result directly relates a measure of system performance (output signal power) that is commonly
used by control system engineers to a measure of the network’s quality of service (QoS) (dropout rate)
that is commonly used by real-time system engineers. This result provides, in our opinion, a method
by which real-time engineers can identify QoS measures that directly address NCS performance issues
of interest to control system engineers.

The main result of this paper can be used to obtain an ”optimal” specification on the network’s
quality of service (QoS). In particular, we use our equation for the output power to pose an opti-
mization problem whose solution is the Markov chain that minimizes the output signal power for
a fixed average dropout rate. The resulting Markov chain is interpreted as a specification on the
network’s optimal quality of service. This QoS specification is optimal in the sense that if our real-
time system has a scheduler that can enforce the specified dropout behavior, then we can guarantee
that no other soft real-time scheduler will result in an NCS whose output power is smaller. This
paper demonstrates this observation by comparing the NCS’s performance obtained with schedulers
implementing the ”optimal” Markov specification against the performance of schedulers enforcing
soft (m, k) deadlines [7]. The (m, k)-firm guarantee model requires that at least k out of m con-
secutive packets be delivered by the network. Prior work [8] has empirically demonstrated that the
(m, k)-model can greatly improve control system performance in overloaded networks. The results
in this paper show, however, that an (m, k) policy for dropouts is not necessarily the optimal policy
from the control system’s point of view. This paper identifies a scheduling policy that apparently
outperforms the (m, k)-policy for a specific example system.

The remainder of this paper is organized as follows. Section 2 goes through the mathematical pre-
liminaries. Section 3 presents the assumed NCS model. Section 4 presents results on the asymptotic
stability and wide-sense stationarity of switched discrete-time systems whose switching is controlled
by Markov chains. The main result of the paper is an equation for the NCS output power. This
equation is found in section 5. Section 6 uses the main result to pose an optimization problem whose
solution specifies the ”optimal” dropout process. This section then compares the performance of
that optimal dropout policy against a soft (m, k) dropout policy. Concluding remarks will be found
in section 7. The proofs of all theorems and technical lemmas have been moved to the appendix
(section 8).

2. Mathematical Preliminaries

Let x be a random vector and let E[x] denote the expectation of x. A real-valued discrete-time
stochastic process x = {x[n]} is convergent in the mean square sense if there exists a random vector
x such that

lim
n→∞

E
[
(x[n]− x)T (x[n]− x)

]
= 0.

It can be shown [9] that a random process x = {x[n]} is convergent in the mean square sense if and
only if

lim
n→∞

sup
m≥n

E
[
(x[m]− x[n])T (x[m]− x[n])

]
= 0.
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A jump linear system is a linear dynamical system whose system matrices are random processes. It
has the form {

x[n+ 1] = A[n]x[n] +B[n]w[n]
y[n] = C[n]x[n] +D[n]w[n]

,(2.1)

where x = {x[n]} is the system’s state process; w = {w[n]} is a random process representing
an exogenous input; y = {y[n]} is the system’s output process; and {A[n]}, {B[n]}, {C[n]}, and
{D[n]} are matrix valued random processes. This paper confines its attention to strictly proper
jump linear systems, i.e. D[n] = 0. The state x[n], therefore, depends on only the past parameters
{(A[n−1], B[n−1]), (A[n−2], B[n−2]), (A[n−3], B[n−3]), · · · } and the past inputs {w[n−1], w[n−
2], w[n− 3], · · · }.

If the input process w[n] = 0, then we say that system 2.1 is a free jump linear system. A free jump
linear system is said to be asymptotically stable in the mean square sense [10] whenever

lim
n→∞

E
[
x[n]Tx[n] | x0

]
= 0

for any initial states x[0] = x0. If the corresponding free jump linear system is asymptotically stable
in the mean square sense, then the process x = {x[n]} in equation 2.1 will eventually forget its
dependence on the initial condition.

A random process x = {x[n]} is said to be wide sense stationary (WSS) if its mean is constant and
its covariance is shift invariant. In other words, {x[n]} is WSS if and only if E [x[n]] = constant = µx
and E

[
(x[k]− µx)(x[l]− µx)T

]
= E

[
(x[k + n]− µx)(x[l + n]− µx)T

]
for arbitrary n. Obviously if

{x[n]} is WSS, E
[
x[k]xT [l]

]
= E

[
x[k + n]xT [l + n]

]
for arbitrary n. The mean of the WSS process

x = {x[n]} is denoted as µx and the correlation matrix of this process is denoted as Rxx[m] =
E
[
x[n+m]x[n]T

]
, where n can be arbitrarily chosen because of the wide sense stationarity of x.

The power semi-norm of a WSS process x = {x[n]} is

‖x‖P =
√

Trace(Rxx[0]).(2.2)

Power semi-norm is taken as a measure of control system performance.

A random process q = {q[n]} is called a Markov chain if its state space S is discrete,i.e. S =
{1, 2, · · · }, and for any n ≥ 2, t1 < · · · < tn and any i1, · · · , in ∈ S

Pr(q[tn] = in | q[tn−1] = in−1, · · · , q[t1] = i1) = Pr(q[tn] = in | q[tn−1] = in−1),(2.3)

which is called Markov property.

A Markov chain is time-homogeneous if its probability distribution is time-invariant, i.e. for any
states i1, · · · , in, any time instants t1, · · · , tn and any time shift L,

Pr(q[tn = in, · · · , q[t1] = i1) = Pr(q[tn + L] = in, · · · , q[t1 + L] = i1).(2.4)

In this paper, all Markov chains are limited to time-homogeneous ones.

For a time-homogeneous Markov chain, the n step transition probability from state i to state j is
defined as qij [n] = Pr(x[n + L] = j | x[L] = i),where L can be chosen arbitrarily. The one step
transition probability qij [1] is denoted as qij for simplicity. The probability transition matrix Q is
defined as Q = (qij), i.e. the element of Q at the i-th row j-th column is qij .

A pair of states, i and j, communicate if there exist n and m such that qij [n] > 0 and qji[m] > 0. If
any pair of states of a Markov chain communicate, we say the chain is irreducible.
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If the greatest common divisor of {n | qii[n] > 0, i = 1, 2, · · · } is 1, the Markov chain is aperiodic.

For a time-homogeneous irreducible aperiodic Markov chain with N(N < ∞) states, the following
limit exists

lim
n→∞

qij [n] = πj(i, j = 1, 2, · · · , N).(2.5)

The limiting distribution π =
[
π1 π2 · · · πN

]
can be computed from the following equation





πj =
∑N
i=1 qijπi

1 =
∑N
i=1 πi

πj > 0

.(2.6)

The limit, limn→∞ Pr(q[n] = j) = πj), is called the steady state of the Markov chain. In this paper,
the dropout Markov chain is time-homogeneous, irreducible and aperiodic. So the above limiting
results are applicable. It is usually assumed that the dropout Markov chain always stays in the
steady state.

The mean of x, µx = E [x[n]], is the ensemble average of x[n] (because x is WSS, E [x[n]] is constant

for any n.). The time average of x for n steps can be defined as Ên [x] = 1
n

∑n
i=1 x[i]. x is ergodic if

lim
n→∞

Ên [x] = µx in the mean square sense.(2.7)

It can be shown [11] that a WSS process x = {x[n]} is ergodic if

lim
m→∞

E
[
(x[n+m]− µx) (x[n]− µx)

T
]

= 0.

When µx = 0, the above condition is equivalent to limm→∞Rxx[m] = 0.

Some of the technical proofs in section 8 make use of the Kronecker product, ⊗. The Kronecker
product of two matrices A = (aij)M×N , B = (bpq)P×Q is defined as

A⊗B =




a11B a12B · · · a1NB
a21B a22B · · · a2NB

...
...

. . .
...

aM1B aM2B · · · aMNB


 .

For simplicity, A⊗A is denoted as A[2] and A⊗A[n] is denoted as A[n+1] (n ≥ 2).

For two vectors x and y, x⊗ y simply rearranges the columns of xyT into a vector. So for two WSS
processes {x[n]} and {y[n]}, limn→∞E [x[n]⊗ y[n]] = 0 if and only if limn→∞E

[
x[n]yT [n]

]
= 0. It

then follows that a zero-mean WSS process x = {x[n]} is ergodic if

lim
m→∞

E [x[n+m]⊗ x[n]] = 0.

The following property of Kronecker products will be frequently used in the technical proofs,

(A1 A2 · · ·An)⊗ (B1 B2 · · ·Bn) = (A1 ⊗B1) (A2 ⊗B2) · · · (An ⊗Bn),(2.8)

where Ai, Bi(i = 1, 2, · · · , n) are all matrices with appropriate dimensions.

In the computations on Kronecker product, two operators, vec and devec, are frequently used.
They are defined as follows.

Definition 2.1. vec is applied to a matrixA = (aij)M×N . vec(A) = [a11 a21 · · · aM1 a12 · · · aM2 · · · a1N · · · aMN ]T .
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Definition 2.2. devec is the inverse of vec for a square matrix. When A is square, devec (vec(A)) =
A.

It is straightforward to see that

E
[
x yT

]
= devec (E [y ⊗ x]) ,

for two random vectors with the same dimensions, x and y.

3. Data Dropout Model

A block diagram of a discrete-time networked control system is shown in figure 1. The system
shown in this figure consists of a discrete-time loop function with strictly proper frequency response
function H(ejω). This loop function generates the output signal y. y drives a model of the data
dropout process which generates the feedback signal y. The plant H(ejω) is driven by the input
signal u = y + w which is simply the sum of an exogenous disturbance signal w and the feedback
signal y.

A state space representation of H(ejω) is
{
xP [n+ 1] = APxP [n] +BPu[n]
y[n] = CPxP [n]

,(3.1)

where xP [n] ∈ RnP , u[n] ∈ Rp, y[n] ∈ Rm, and the matrices AP , BP and CP have the appropriate
dimensions.

e
jωH(        )

e
jω-

w u y

d

y
_

×

_

    

Figure 1. Networked Control System with Data Dropouts

The system shown in figure 1 has two inputs. The exogenous input disturbance process w is assumed
to be white with zero mean. The other input is the dropout process d = {d[n]}. When d[n] = 0,
y[n] = y[n], i.e. the measurement is sent out successfully; when d[n] = 1, y[n] = y[n − 1], i.e. the
measurement is dropped and the past measurement is reused. d is random with the distribution
selected from an underlying Markov chain. The Markov chain is time-homogeneous, irreducible
and aperiodic with N (N < ∞) states, {q1, q2, · · · , qN}, and the probability transition matrix,
Q = (qij)N×N . The state of the Markov chain at time step n is denoted as q[n]. We define a
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function f(·) such that d[n] = f(q[n]). The function f , therefore, maps the state of the Markov
chain into the actual dropouts.

A state space representation of the NCS in figure 1 is
{
x[n+ 1] = A[n]x[n] +Bw[n]
y[n] = Cx[n]

,(3.2)

where x[n] ∈ Rn0(n0 = nP +m), w[n] ∈ Rp, y[n] ∈ Rm. {A[n]} is switching matrix-valued random

process. When d[n] = 0, A[n] = A0; when d[n] = 1, A[n] = A1. A0 =

[
AP +BPCP 0nP×m

CP 0m×m

]
,

A1 =

[
AP Bp

0m×nP Im

]
, B =

[
BP

0m×p

]
,C =

[
CP 0m×m

]
, where 0nP×m denotes a zero matrix

with nP rows m columns and the other matrices have the similiar meanings, Im denotes an identity
matrix with the dimension of m.

For convenience, A[n] is denoted as Ai when q[n] = qi. Obviously Ai = A0 when d[n] = f(qi) = 0;
Ai = A1 when d[n] = f(qi) = 1. A very important matrix is constructed with Ai and Q:

A =




q11A1 ⊗A1 q21A1 ⊗A1 · · · qN1A1 ⊗A1

q12A2 ⊗A2 q22A2 ⊗A2 · · · qN2A2 ⊗A2

...
...

...
...

q1NAN ⊗AN q2NAN ⊗AN · · · qNNAN ⊗AN


(3.3)

Throughout the paper, the following four assumptions are taken:

(1) w is a zero-mean white input noise with finite variance Rww[0]
(2) The dropout Markov chain is time-homogeneous, irreducible and aperiodic with N (N <∞)

states. The probability transition matrix is Q = (qij)N×N . The steady state of the Markov

chain is π =
[
π1 π2 · · · πN

]
, which is computed from equation 2.6.

(3) The disturbance process, w, is independent from the dropouts.
(4) The matrix, A defined in equation 3.3, is asymptotically stable, i.e. λmax(A) = λ0 < 1,

where λmax(·) denotes the maximum magnitude of the eigenvalues of a matrix.

Under assumption 2, we know that the Markov chain will eventually reach the steady state shown
in equations 2.5 and 2.6. Throughout this paper, we assume the Markov chain stays in its steady
state.

4. Stability and Wide Sense Stationarity

In order to study control system performance (as measured by the output’s power semi-norm), we
first need to show that the NCS is stable and the output process is wide sense stationary. Theorem
4.1 provides a necessary and sufficient condition for the NCS to be asymptotically stable in the mean
square sense. Based on this stability result, a sufficient condition for the wide sense stationarity of
the state and the output are presented in theorem 4.2 and corollary 4.3, respectively. These results
are based in large part upon results cited or proven in [12] and [13].

Theorem 4.1. Consider the free jump linear system (w = 0) given in equation 3.2 under assumption
2. The free jump linear system is asymptotically stable in the mean square sense if and only if
assumption 4 is valid.
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Remark: Theorem 4.1 shows that the stability of the NCS depends on not only the system matrices
A0 and A1, but also the probability transition matrix Q which describes the dropout rule in a random
manner.

Remark: The proof of the sufficient part of theorem 4.1 is repeated from [13]. [13] claims that
necessity is obvious, but does not formally prove the result. We provide a complete formal proof of
the theorem’s necessity in the appendix. To our best knowledge the necessity proof is new.

The disturbance input signal, w, is assumed to be WSS. The following theorem shows that the state
of the NCS is also WSS under certain conditions.

Theorem 4.2. Consider the NCS in equation 3.2. Under assumptions 1—4, the state process
x = {x[n]} is wide sense stationary.

Remark: It is not surprising that x is WSS, because the input w is WSS, the dropouts d are
time-homogeneous and d is independent from w. The proof is somewhat standard. We’ve included
it in the appendix to make the paper self-contained. The following corollary shows that all linear
outputs of the NCS are WSS.

Corollary 4.3. Consider the NCS in equation 3.2. Under assumptions 1—4, any linear output
{y
n

= C[n]x[n] + D[n]w[n]} is WSS, where C[n] = C0, D[n] = D0 when d[n] = 0; C[n] = C1,

D[n] = D1 when d[n] = 1.

Remark: The proof of corollary 4.3 is similar as the one of theorem 4.3. So the proof is omitted.
By corollary 4.3, it follows that any two linear outputs, {y

1
[n]} and {y

2
[n]} are mutually WSS

by considering wide sense stationarity of the combined linear output {y[n] = [(y
1
[n])T (y

2
[n])T ]T }.

The state x can also be treated as a linear output. So x and all linear outputs are mutually WSS.
Similarly w and all linear outputs are also mutually WSS.

5. Main Result

For a system with noise as the input, the output signal’s power semi-norm may be taken as a measure
of the control system’s performance. In this section, an equation for the output’s power semi-norm is
computed. The computed power semi-norm is a function of the dropout Markov chain’s probability
transition matrix. This equation is presented in theorem 5.1.

Experimental results are presented to support the correctness of the result. In the experiment, the
power semi-norm for an NCS is predicted using the result of theorem 5.1 for various average dropout
rates. A simulation of the NCS was used to compute the time average of the output signal’s power
semi-norm. Theorem 5.2 states and proves sufficient conditions for the NCS to be ergodic. Using
this theorem, we identify an interval of dropout rates over which the example system is known to be
ergodic. The predicted and time-averaged power semi-norms of the output agree closely for those
dropout rates over which ergodicity can be guaranteed. These experimental results therefore appear
to support the correctness of paper’s main result.

If the NCS is asymptotically stable in the mean square sense, then the initial state will be eventually
forgotten. So if we set the initial time as −∞, the initial state may be taken as zero without loss of
generality. In a similar way, we can assume that the dropout Markov chain is at steady state. In the



8 QIANG LING, MICHAEL D. LEMMON

following theorems, these assumptions on the initial time, initial state and Markov chain’s steady
state will be used without explicit explanations.

Theorem 5.1. Consider the NCS in equation 3.2 under assumptions 1—4. Let the initial time be
−∞. Denote the conditional correlations: Pi = πiE [xn ⊗ xn | q[n− 1] = qi] for i = 1, 2, · · · , N .
Then the power semi-norm of y can be computed through

‖y‖P =

√√√√Trace

(
devec

(
C [2]

N∑

i=1

Pi

))
.(5.1)

where Pi satisfies the equation

Pi = A
[2]
i

N∑

k=1

qkiPk + πiB
[2]µw2

,

Ai = A0 when f(qi) = 0, Ai = A1 when f(qi) = 1, and µw2
= vec(Rww[0]).

Remark: The power semi-norm in equation 5.1 is a function of the probability transition matrix Q
as well as the closed-loop parameters A0 and the open-loop parameters A1. So the power semi-norm
can be predicted with the system parameters and Q, i.e. the dropout rule.

We applied theorem 5.1 on a simple NCS. The assumed plant was an unstable system with transfer

function of H(ejω) = ejω+2
ej2ω+ejω+2 . Assuming unity gain feedback, the closed loop transfer function

becomes e−jω +2e−j2ω, which is stable. The dropout process therefore switches our system between
a stable and unstable configuration. The input noise, w, is white zero-mean Gaussian. The dropout

Markov chain has N = 3 states; its probability transition matrix is Q =




1− ε ε 0
0 0 1
1 0 0


, where

ε is a parameter between 0 and 1. This particular Markov chain specifies a soft (m, k) scheduling
model with m = 3, k = 2 [14].

We used theorems 4.1 and theorem 4.2 to determine that the system is asymptotically stable in
the mean square sense and wide sense stationary when ε ≤ 24.9%. We then used theorem 5.1 to
numerically evaluate the power semi-norm for dropout rates, ε, between 0 and 24%. The predicted
power levels are plotted in figure 2 as a function of ε. The plots show that as the dropout rate
increases, the output’s power semi-norm approaches infinity, which is expected since we are switching
between a stable closed loop and unstable open-loop system. The question is whether or not the
theorem accurately predicts how quickly the performance degrades as we increase ε?

To answer this question, we created a Matlab simulink model of the example system. The simulation
was used to experimentally generate the system’s output signal under various ε. We used these
output traces to compute a time average of the output signal’s power. This time average was taken
as an estimate of the system’s true expected output power, E

[
y[2]
]
. For a sample path of length 2L

time steps, the time average is computed as

ÊL

[
y[2]
]

=
1

L

(
y[2][L+ 1] + y[2][L+ 2] + · · ·+ y[2][L+ L]

)
.(5.2)

The following theorem provides the conditions for ÊL

[
y[2]
]

to efficiently approach E
[
y[2]
]
.

Theorem 5.2. Under the assumptions of theorem 5.1, if the following two additional assumptions
are satisfied,
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Figure 2. Theoretical Predition of Output’s Power Semi-Norm (0 ≤ ε ≤ 24%)

(1) All the fourth order moments of w exist, E [w[n+ k1]⊗ w[n+ k2]⊗ w[n+ k3]⊗ w[n+ k4]]
is shift-invariant with respect to n, and E [w[k1]⊗ w[k2]⊗ w[k3]⊗ w[k4]] = 0 except for the
following 3 cases:
• k1 = k2 and k3 = k4;
• k1 = k3 and k2 = k4;
• k1 = k4 and k2 = k3.

Moreover, E
[
(w[n])[4]

]
= µw4

< ∞, E
[
(w[n])[2]

]
= µw2

, and E
[
(w[k])[2] ⊗ (w[l])[2]

]
=

(µw2
)[2] when k 6= l.

(2) All eigenvalues of A(4) = diag(A
[4]
i )(QT ⊗ In4

0
) lie inside the unit circle, where n0 is the

dimension of the NCS.

Then

lim
L→∞

ÊL

[
y[2]
]

= E
[
y[2]
]

in the mean square sense,(5.3)

where ÊL

[
y[2]
]
, the time average of the process {y[2][n]}, is computed through equation 5.2.

Remark: This theorem may be used to determine an upper bound, ε such that for ε < ε the time-
averaged power (equation 5.2) is guaranteed to converge to the true ensemble average predicted

in theorem 5.1. So for this range of ε, we can verify theorem 5.1 by simply comparing ÊL

[
y[2]
]

and E
[
y[2]
]
. For ε > ε, no conclusions can be drawn about the correctness of the theorem in this

manner, because we cannot guarantee the ergodicity of the NCS.

Remark: If w is generated by passing white noise w0 through a stable linear filter and w0 satisfies
all the requirements in assumption (1) of theorem 5.2, then theorem 5.2 is still valid. The proof is
straightforward and is not included in this paper.

For the example in this paper, theorem 5.2 guarantees the convergence of the estimate in equation
5.3 if ε is below 6.1%. This upper bound 6.1% is smaller than the upper bound (24.9%) by theorem
5.1.

The networked control system was simulated with various dropout rates between 0 and 6%. For
each value of ε, we ran 5 different simulations for 200, 000 time steps and then estimated the power
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semi-norm by the time average in equation 5.2. The simulation results are shown in figure 3. The
figure shows close agreement between the predicted and the experimentally estimated power semi-
norms of the output. So we have high confidence in the correctness of the results stated in theorems
5.1 and 5.2.
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Figure 3. Output’s Power Semi-Norm (0 ≤ ε ≤ 6%)
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Figure 4. Output’s Power Semi-Norm (7% ≤ ε ≤ 24%)

For completeness, we also present results for the networked control system with dropout rates be-
tween 7% and 24%. Figure 4 shows that the predicted and the experimentally estimated power
semi-norms of the outputs disagree under large dropout rates. As discussed early, the disagreement
comes from the violation of the ergodicity conditions in theorem 5.2. Figure 4 still shows close agree-
ment for dropout rates less than 10%. This thereby shows that theorem 5.2 is somewhat conservative
in its estimate of the interval over which the system is ergodic.

Remark: To our best knowledge, the results in theorem 5.1 and 5.2 are new. It is useful to compare
the results in this paper to those obtained in [6]. The overall approach followed in this section is
similar to our earlier work for i.i.d. dropouts [6]. There are, however, some important differences.
The first obvious difference is that this paper’s results pertain to a more general class of dropout
processes than those assumed in [6]. The general approach used in both papers is different. In [6], we
focused on an input-output characterization of the NCS, so that [6]’s main result actually obtained
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a closed form expression for the output signal’s power spectral density. In this paper, we adopted a
state-based approach. The state-based approach only yielded an equation for computing the power
semi-norm, so that the analytical characterization of the spectral density is missing. In return for
this, however, it should be apparent that the results in this paper apply to multi-input multi-output
systems ([6] restricted its attention to SISO systems).

6. Optimal Dropout Policies and Scheduling

Theorem 5.1 presents an equation in which the output’s power semi-norm, ‖y‖P , is a function of the
Markov chain’s probability transition matrix Q. An obvious thing to do now is to minimize ‖y‖P
with respect to Q. This section poses this optimization problem for the example system used in
section 5, solves for the optimal Q and compares the performance of this Markov dropout process
against the soft (3, 2)-dropout rule that was analyzed in section 5. The results in this section are
purely empirical as we don’t attempt to establish conditions under which the optimization is well-
posed. The purpose of this section is to merely demonstrate the feasibility of determining an optimal
dropout process and then use the example to suggest a possible use for this result.

For mathematical tractability, let’s consider a special class of Markov chain. The state of the chain
at time instant n is determined by the last two consecutive values of the dropout process. We assume
there are four states, q1, q2, q3 and q4 which are defined as follows

q1[n] : d[n− 1] = 0, d[n] = 0,

q2[n] : d[n− 1] = 0, d[n] = 1,

q3[n] : d[n− 1] = 1, d[n] = 0,

q4[n] : d[n− 1] = 1, d[n] = 1.

When q[n] = qi (i = 1, 2, 3, 4), the next packet is dropped with the probability εi. In other words,
the probability of delivering the packet is Pr (d[n+ 1] = 0 | q[n] = qi) = 1−εi. With these notational
conventions, the probability transition matrix for this Markov chain is

Q =




1− ε1 ε1 0 0
0 0 1− ε2 ε2

1− ε3 ε3 0 0
0 0 1− ε4 ε4


 .

This dropout process satisfies assumption 2, therefore it has a steady state distribution π =
[
π1 π2 π3 π4

]

which is a function of εi. We define the average dropout rate as ε =
∑4
i=1 πiεi. With these definitions,

we can formally state the optimization problem as follows:

minimize:

√
Trace

(
devec

(
C [2]

∑N
i=1 Pi

))
,

with respect to: ε1, ε2, ε3, ε4

subject to: ε ≥ ε0,

Pi = A
[2]
i

∑N
k=1 qkiPk + πiB

[2]µw2
,

π = Qπ,

1 =
∑N
i=1 πi,

λmax(A) < 1.

(6.1)

The constraints in this optimization problem are taken directly from theorem 5.1. The last constraint
ensures that the solution is stable in the mean square sense.
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We used Matlab’s optimization toolbox to numerically solve this optimization problem. This prob-
lem, essentially, has two constraints: the stability constraint λmax(A) < 1; and the average dropout
rate constraint, ε ≥ ε0. The optimization problem was solved by using a standard gradient-descent
algorithm. In particular, we used the Matlab function fmincon() after a suitable initial condi-
tion was identified. The initial condition for our problem had to be stable and this condition was
identified by solving the preliminary optimization problem given below:

minimize: (ε− ε0)2

subject to: λmax(A) < 1

Using the initial condition εi = 0 (for i = 1, . . . , 4), we used fmincon() to identify a stable solution
and then used this as the initial condition for the full optimization problem (equation 6.1). For this
stable initial condition, the solution to the full optimization problem was obtained using fmincon().
The optimal εi are plotted on the left hand side of figure 5 for various average dropout rates, ε0

between 0 and 0.5. Directed graphs representing the optimal dropout policy and the (3, 2) policy
used in section 5 are shown on the right hand side of figure 5
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Figure 5. Optimal ε for 0 ≤ ε0 ≤ 0.5 (left) and the Dropout Policies (right) Used
in This Comparison.

It is interesting to note that the optimal dropout policy only allows two types of dropout sequences.
Either there are no dropouts or there are two consecutive dropouts following by two successes. This
optimal rule runs counter to the heuristic inherent in the (3, 2)-rule. A direct comparison of the
two policies will be found in figure 6. This figure shows the estimated power semi-norm for the
NCS under the optimal dropout policy (plus), an i.i.d. dropout policy (circle), and the (3, 2)-rule
(asterisk). The estimated power semi-norm is plotted as a function of the average dropout rate ε0.
What is apparent here is that the optimal dropout policy achieves lower power levels over a wide
range average dropout rates. What is surprising, however, is that the (3, 2)-heuristic appears to
actually be worse than an i.i.d. dropout process. This observation seems to imply that the heuristic
inherent in the (m, k)-firm guarantee is not necessarily meaningful for all feedback control systems.

We found the optimization exercise in this section interesting for a number of reasons. To understand
these reasons, we first digress to talk about the way in which real-time system engineers specify
the quality of service on feedback streams. Real-time system engineers must build the computer
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Figure 6. Comparisons of the three dropout models

networks that guarantee (as much as possible) the delivery of packets across the network by a
specified deadline. This is particularly difficult in networks where congestion, scheduling conflicts,
or processor faults may result in network overloading. In an overloaded network, the system is no
longer capable of delivering their packets by the specified deadline. A common strategy used to
handle this problem is to simply drop packets that are excessively delayed. This is done in soft
real-time control systems as well as multi-media streaming applications. The problem is that there
appears to be no clear way of relating a chosen dropout policy to the performance of the overall
system.

An example of this is seen with the (m, k)-firm guarantee model. The (m, k)-firm guarantee model
seeks to guarantee the delivery of at least k out of m consecutive packets. In [8] it was shown that
such a policy can greatly improve the performance of overloaded network control systems. This
rule, however, is based on a simple (though reasonable) heuristic that a fixed percentage of the
packets should be delivered at a regular rate. Other than simulation and empirical studies, however,
there is no reason to believe that such heuristics are reasonable for feedback control systems. The
underlying model presented in section 3 is a switched linear system, and it is well known from the
hybrid system’s community [15] that certain switching sequences can have a dramatic impact on
overall system stability. The (m, k)-heuristic does not take this possibility into account and this fact
suggests that there may be many situations in which the heuristic may actually do more harm than
good. The question is whether we can identify such ”bad” switching sequences without having to
resort to exhaustive simulation?

The results in theorem 5.1 and the optimization exercise in this section seem to shed some light
on this question. This result seems to provide a direct relationship between the control system
performance and the dropout process’ probability transition matrix. Moreover, as demonstrated in
this section, it may be possible to find ”optimal” dropout process’ that optimize the control system
performance. To some extent, we can see the optimization as ”searching” for those ”bad” switching
sequences and excising them from the dropout rule. In this regard, the optimization presented in
this paper seems to provide a systematic way of designing dropout policies that are based on an
analytical understanding of the closed loop system. This may be a significant improvement over
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current practice in which heuristics are proposed and then evaluated primarily through simulation
analysis.

7. Conclusions

This paper studied networked control systems with data dropouts that were generated by an un-
derlying Markov chain. The main result of this paper is an equation that computes the output’s
power semi-norm as a function of the system state realization and the probability transition matrix
of the dropout Markov chain. We also established sufficient conditions under which we can expect
the NCS to be ergodic so that time-averages of the system’s signals can be used to reliably evaluate
NCS performance. The results in this paper extend earlier results in [6] to multi-input multi-output
systems as well as to a more general class of dropout processes.

Probably one of the most significant aspects of these results is that they can be used to place
specifications on the quality of service provided by networks in support of real-time networked
control systems. The equation in theorem 5.1 may be used to pose an optimization problem whose
solution is the Markov chain that optimizes the NCS’s performance as measured by its power semi-
norm. The importance of this ”optimal” Markov chain is that it specifies the ”optimal” dropout
process in a way that includes the soft (m, k)-policy, a heuristic policy that is widely used in soft
real-time applications. The results in this paper appear to provide a practical way by which control
system engineers can provide real-time system engineers with QoS specifications that truly assure
the closed loop system’s overall performance. Our future work is studying whether nor not these
results can provide the basis for a systematic method for the ”design” of optimal scheduling policies,
a design approach that takes analysis, rather than simulation, as the primary means for verifying a
scheduling policy’s impact on closed loop system performance.

8. Appendix

To enhance the readability of the manuscript we moved all of the technical lemmas and proofs to this
section. This section proves theorems 4.1, 4.2, 5.1 and 5.2. Throughout this section, the following
notational conventions will be followed. The system transition matrix for the NCS in equation 3.2
is

Φ(n;m) =

{ ∏n−1
l=mA[l], if m < n
In0

, if m ≥ n ,

where In0
is an identity matrix with the dimension of n0. With this matrix, the system’s state at

time instant n can be expressed as x[n] = Φ(n; 0)x[0]. A (Nn0)× n0 matrix CI is defined as

CI =
[
In0

In0
· · · In0

]
.

Proof of Theorem 4.1: These proofs are similar to proofs in [12] and [13]. The chief novelty here
appears to lie in our proof for the necessary part of the theorem.

First we prove the NCS is asymptotically stable in the mean square sense when assumption 4 is
valid. For initial time 0, let the initial state of the NCS in equation 3.2 be x[0] = x0 and the initial
distribution of q[0] be p =

[
p1 p2 · · · pN

]
(Pr(q[0] = qi) = pi). Then E

[
(x[2][n]) | x0

]
=
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E
[
(Φ(n; 0))[2]

]
x

[2]
0 . Define Φi[n] = Pr(q[n− 1] = qi)E

[
(Φ(n; 0))[2] | q[n− 1] = qi

]
(i = 1, 2, · · · , N).

Then

E
[
(Φ(n; 0))[2]

]
=

N∑

i=1

Φi[n].(8.1)

Φi[n] can be recursively computed as follows.

Φi[n] = Pr(q[n− 1] = qi)E
[
(A[n− 1]Φ(n− 1; 0))[2] | q[n− 1] = qi

]

= Pr(q[n− 1] = qi)E
[
(A[n− 1])[2](Φ(n− 1; 0))[2] | q[n− 1] = qi

]

= Pr(q[n− 1] = qi)A
[2]
i E

[
(Φ(n− 1; 0))[2] | q[n− 1] = qi

]

= Pr(q[n− 1] = qi)A
[2]
i

N∑

k=1

E
[
(Φ(n− 1; 0))[2] | q[n− 1] = qi, q[n− 2] = qk

]

Pr(q[n− 2] = qk | q[n− 1] = qi)

= Pr(q[n− 1] = qi)A
[2]
i

N∑

k=1

E
[
(Φ(n− 1; 0))[2] | q[n− 2] = qk

] qkiPr(q[n− 2] = qk)

Pr(q[n− 1] = qi)

=

N∑

k=1

qkiA
[2]
i Φk[n− 1],

where the second equality comes from the property of Kronecker product in equation 2.8; the fifth
equality comes from the Markov property of the dropout Markov chain in equation 2.3.

Combine all Φi[n](i = 1, 2, · · · , N) into a bigger matrix

VΦ[n] =
[

ΦT1 [n] ΦT2 [n] · · · ΦTN [n]
]T
.(8.2)

Then

VΦ[n] = A VΦ[n− 1].(8.3)

The solution of the above equation is

VΦ[n] = AnVΦ[0],(8.4)

where VΦ[0] = pT ⊗ In2
0
.

Obviously when assumption 4 is valid, i.e. λmax(A) < 1, limn→∞ VΦ[n] = 0. Because E
[
(Φ(n; 0))[2]

]
=

CIVΦ[n], limn→∞E
[
(Φ(n; 0))[2]

]
= 0. Then we get limn→∞E

[
x[2][n] | x0

]
= 0 by equation 8.1 for

any initial state x0 and any initial distribution of q[0], i.e.the NCS is asymptotically stable in the
mean square sense.

Second we prove that assumption 4 is valid for an asymptotically stable NCS. When the free jump
linear systm is asymptotically stable in the mean square sense, i.e. limn→∞E

[
x[2][n] | x0

]
= 0 for

any initial state x0 and any initial distribution of q[0], we get limn→∞E
[
(Φ[n, 0])[2]

]
= 0. In the

following, we first prove that limn→∞Φi[n] = 0 for all i ∈ {1, 2, · · · , N}.

Choose any z0, w0 ∈ Rn0 , then

E
[
(z

[2]
0 )T (Φ(n; 0))[2]w

[2]
0

]
= E

[(
zT0 Φ(n; 0)w0

)2]
.
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By equation 8.1, we get

E
[(
zT0 Φ[n, 0]w0

)2]
=

N∑

i=1

Pr(q[n− 1] = qi)E
[(
zT0 Φ[n, 0]w0

)2 | q[n− 1] = qi

]
.(8.5)

Because limn→∞E
[(
zT0 Φ(n; 0)w0

)2]
= 0 and limn→∞ Pr(q[n− 1] = qi) = πi > 0 by equation 2.6, it

follows that

lim
n→∞

E
[(
zT0 Φ(n; 0)w0

)2 | q[n− 1] = qi

]
= 0,

for any z0 and w0, i.e. limn→∞(z
[2]
0 )TΦi[n]w

[2]
0 = 0 for any z0 and w0. Then we know

lim
n→∞

Φi[n] = 0.(8.6)

By the above equation and the definition of VΦ[n], we know limn→∞ VΦ[n] = 0. Then equation 8.4
yields that

lim
n→∞

An(pT ⊗ In0
)(8.7)

for any initial distribution p. By taking p as [1, 0, 0, · · · ], [0, 1, 0, · · · ], · · · , we can easily get

lim
n→∞

An = 0.(8.8)

So λmax(A) < 1, i.e. assumption 4 is valid. The proof is completed. ♦

Based on the computations on Φ(n; 0) in the proof of theorem 4.1, we can put a bound on E
[
Φ(n; 0)ΦT (n; 0)

]

in the follwing lemma.

Lemma 8.1. Consider the NCS in equation 3.2 under assumptions 1—4. There exists a nonnegative
matrix Φ0 such that

E
[
Φ(n; 0)ΦT (n; 0)

]
≤ σn0 Φ0.

Proof: From the proof of theorem 4.1, we can get VΦ[n] = AnVΦ[0], λmax(A) = σ0. Because
E
[
Φ(n; 0)ΦT (n; 0)

]
= devec (CIVΦ[n]), the lemma can be proven easily. ♦

The shift-invariance property of the dropout Markov chain yields that
E
[
Φ(n; k)ΦT (n; k)

]
= E

[
Φ(n− k; 0)ΦT (n− k; 0)

]
. So the following upper bound can be put

E
[
Φ(n; k)ΦT (n; k)

]
≤ σ(n−k)

0 Φ0.(8.9)

When the NCS in equation 3.2 is asymptotically stable in the mean square sense, we can ignore the
initial state by taking the initial time at −∞. It is very important to derive the expression of x[n].
The following lemma gives an expression.

Lemma 8.2. Consider the NCS in equation 3.2 with initial time of −∞. Under assumptions 1—4,
the state x[n] can be expressed with the following infinite series.

x[n] =
∞∑

k=0

Φ(n;n− k)Bw[n− k − 1].(8.10)

Furthermore,

E
[
x[n]xT [n]

]
<∞.
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Proof: If the infinite series in equation 8.10 makes sense, x[n] can obviously be computed as the
equation. So we just need to prove that the infinite series in equation 8.10 is convergent in the mean
square sense.

Let ei ∈ Rn0 , whose ith element is 1 and all other elements are zero. The ith component of equation
8.10 can be expressed as

eTi x[n] =

∞∑

k=0

eTi Φ(n;n− k)Bw[n− k − 1].(8.11)

Let S(p, q) denote the partial summation

S(p, q) =

p+q∑

k=p

eTi Φ(n;n− k)Bw[n− k − 1],(8.12)

where p ≥ 0, q ≥ 1.

It can be shown that

√
E [S(p, q)2] ≤

p+q∑

k=p

√
E
[
eTi Φ(n;n− k)Bw[n− k − 1]

]2
.(8.13)

Now consider a single term of the summation in equation 8.13.

E
[
eTi Φ(n;n− k)Bw[n− k − 1]

]2
= E

[
eTi Φ(n;n− k)Bw[n− k − 1]wT [n− k − 1]BTΦT (n;n− k)ei

]

= E
[
eTi Φ(n;n− k)BRww[0]BTΦT (n;n− k)ei

]
.

Let σB = λmax(BRww[0]BT ), then

E
[
eTi Φ(n;n− k)BRww[0]BTΦT (n;n− k)ei

]
≤ σBeTi E

[
Φ(n;n− k)ΦT (n;n− k)

]
ei.(8.14)

By equation 8.9, we can put an upper bound:

E
[
eTi Φ(n;n− k)Bwn−k−1

]2 ≤ σBσk0eTi Φ0ei.(8.15)

With the preceding relation, we get

√
E [S(p, q)2] ≤

√
σBeTi Φ0ei

p+q∑

k=p

σk0

≤ Mσp0 ,

where M =

√
σBeTi Φ0ei

1−σ0
.

Because σ0 < 1, limp→∞ supq≥1 E
[
S2(p, q)

]
= 0. So we know that the summation in equation 8.11

is convergent in the mean square sense.

If we set p = 0 and q =∞, S(p, q) = eTi x[n]. So

E
[
(eTi x[n])2

]
≤ M

< ∞.
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Because i is choosen arbitrarily, we can get the convergence of the infinite series in equation 8.10
and the finiteness of E

[
x[n]xT [n]

]
. ♦

Proof of theorem 4.2: As shown by lemma 8.2, x[n] exists in the mean square sense and has
finite correlation. So we just need to prove the mean of x[n] is constant and the correlation
E
[
x[n+m]xT [n]

]
is shift-invariant with respect to n.

Rewrite the expression of x[n] from equation 8.10

x[n] =
∞∑

k=0

Φ(n;n− k)Bw[n− k − 1].(8.16)

So the mean of x[n] can be computed as

E[x[n]] =
∞∑

k=0

E[Φ(n;n− k)B]E [w[n− k − 1]]

= 0,

where the first equality follows from the independence between dropouts and w; the second equality
follows from the fact w is zero-mean.

The correlation E
[
x[n+m]xT [n]

]
can be expressed as

E
[
x[n+m]xT [n]

]
=

∞∑

k1=0

∞∑

k2=0

E
[
Φ(n+m;n+m− k1)Bw[n+m− k1 − 1]wT [n− k2 − 1]BTΦT (n;n− k2)

]

=
∞∑

k=0

E
[
Φ(n+m;n− k)BRww[0]BTΦT (n;n− k)

]
.

Because the dropout Markov chain is time-homogeneous and the initial time is set to −∞, the
dropout Markov chain stays in the steady state. Then E

[
Φ(n+m;n− k)BRww[0]BTΦT (n;n− k)

]

is shift-invariant with respect to n. So {x[n]} is WSS. ♦

Proof of theorem 5.1: Corollary 4.3 guarantees that {y[n]} is WSS. Then the power semi-norm
of y can be computed as

‖y‖P =
√
Trace (E [y[n]yT [n]])

=
√
Trace

(
devec

(
E
[
y[2][n]

]))

=
√
Trace

(
devec

(
C [2]E

[
x[2][n]

]))
.

The above equation shows E
[
x[2][n]

]
has to be computed in order to get ‖y‖P . Because the initial

time is set to −∞, the dropout Markov chain can be assumed to stay at the steady state, i.e.
Pr(q[n] = qi) = πi (i = 1, 2, · · · , N), where πi is defined in equations 2.5 and 2.6. Let Pi[n] =
πiE

[
x[2][n] | q[n− 1] = qi

]
. Then

E
[
x[2][n]

]
=

N∑

i=1

Pi[n].
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Pi[n+ 1] can be recursively computed as follows.

Pi[n+ 1] = πiE
[
(A[n]x[n] +Bw[n])[2] | q[n] = qi

]

= πiA
[2]
i E

[
x[2][n] | q[n] = qi

]
+ πiB

[2]µw2

= πiA
[2]
i

N∑

k=1

E
[
x[2][n] | q[n] = qi, q[n− 1] = qk

]
Pr(q[n− 1] = qk | q[n] = qi) + πiB

[2]µw2

= πiA
[2]
i

N∑

k=1

E
[
x[2][n] | q[n− 1] = qk

]
Pr(q[n− 1] = qk | q[n] = qi) + πiB

[2]µw2

= A
[2]
i

N∑

k=1

qkiPk[n] + πiB
[2]µw2

,

where the second equality follows from E [x[n]⊗ w[n]] = 0 (because x[n] depends on only the past
noise inputs {w[n− 1], w[n− 2], · · · }); the fourth equality follows from the Markov property of the
dropouts.

Let VP [n] =
[
PT1 [n] PT2 [n] · · · P TN [n]

]T
. Then the recursive computations on Pi[n] yield

VP [n+ 1] = AVP [n] + πT ⊗ (B[2]µw2
).(8.17)

Because the initial time is set to −∞, the solution of the above equation is

VP [n] =
n∑

l=−∞
An−l

(
πT ⊗ (B[2]µw2

)
)

=

∞∑

k=0

Ak
(
πT ⊗ (B[2]µw2

)
)

= constant,

where the second equality comes from the substitution of the variable , k = n− l.

Because VP [n] = constant, Pi[n] is also constant with respect to n. Then Pi[n] can be simplified as
Pi. The proof is completed. ♦

Proof of theorem 5.2: In this proof, the dropout Markov chain is assumed to stay at the steady
state π, which is defined in equations 2.5 and 2.6. The notations in the proof of theorem 5.1, Pi and
VP [n], are reused.

At the begining, the wide sense stationarity of {y[2][n]} is proved.

y[2][n] = C [2]x[2][n].(8.18)

So {y[2][n]} is WSS if {x[2][n]} is WSS.

Let P4,i[n] = πiE
[
x[4][n] | q[n− 1] = qi

]
, VP4

[n] =
[
PT4,1[n] PT4,2[n] · · · P T4,N [n]

]T
. Then

E
[
x[4][n]

]
= (CI ⊗ In2

0
)VP4

[n]. P4,i[n+ 1] can be recuresively computed as

P4,i[n+ 1] = πiE
[
(A[n]x[n] +Bw[n])[4] | q[n] = qi

]

= πiA
[4]
i E

[
x[4][n] | q[n] = qi

]
+ πiB

[4]µw4
+ µi[n].
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where

µi[n] = µi,1100[n] + µi,1010[n] + µi,1001[n] + µi,0011[n] + µi,0101[n] + µi,0110[n],

µi,1100[n] = πiE [(Bw[n])⊗ (Bw[n])⊗ (A[n]x[n])⊗ (A[n]x[n]) | q[n] = qi] ,

µi,1010[n] = πiE [(Bw[n])⊗ (A[n]x[n])⊗ (Bw[n])⊗ (A[n]x[n]) | q[n] = qi] ,

...

µi,0110[n] = πiE [(A[n]x[n])⊗ (Bw[n])⊗ (Bw[n])⊗ (A[n]x[n]) | q[n] = qi] .

It can be shown that

µi,1100[n] = (B[2]µw2
)⊗

(
A

[2]
i

N∑

k=1

qkiPk

)
.

So µi,1100[n] is constant with respect to n. Similarly µi,1010[n], · · · , µi,0110[n] can also be shown to
be constant with respect to n. Then µi[n] is constant with respect to n, which is denoted as µi. Let

µ =
[
µT1 µT2 · · · µTN

]T
. So P4,i[n+ 1] can be expressed as

P4,i[n+ 1] = A
[4]
i

N∑

k=1

qkiP4,k[n] + πiB
[4]µw4

+ µi.

Then

VP4
[n+ 1] = A(4)VP4

[n] + πT ⊗ (B[4]µw4
) + µ.

Because the initial time is −∞ and A(4) is asymptotical stable,

VP4
[n] =

∞∑

l=0

Al(4)

(
πT ⊗ (B[4]µw4

) + µ
)
.

So VP4
[n] is constant with respect to n.

Let Fi,n[m] = πiE
[
x[2][n+m]⊗ x[2][n] | q[n+m− 1] = qi

]
, VFn [m] =

[
FT1,n[m] FT2,n[m] · · · F TN,n[m]

]T
.

Then

E
[
x[2][n+m]⊗ x[2][n]

]
= (CI ⊗ In2

0
)VFn .

When m ≥ 1, Fi,n[m] can be recursively computed as

Fi,n[m] = πiE
[
(A[n+m− 1]x[n+m− 1] +Bw[n+m− 1])[2] ⊗ x[2]

n | q[n+m− 1] = qi

]

= πi(A
[2]
i ⊗ In2

0
)E
[
x[2][n+m− 1]⊗ x[2][n] | q[n+m− 1] = qi

]
+ (πiB

[2]µw2
)⊗E

[
x[2][n] | q[n+m− 1] = qi

]

= (A
[2]
i ⊗ In2

0
)
N∑

k=1

qkiFk,n[m− 1] + (B[2]µw2
)⊗

N∑

k=1

qki(m)Pk.

So

VFn [m] = (A⊗ In2
0
)VFn [m− 1] + (B[2]µw2

)⊗ (((Qm)T ⊗ In2
0
)VP ).(8.19)

Because VFn [0] = VP4
[n] is constant with respect to n and (A ⊗ In2

0
) is asymptotically stable, the

above equation yields that VFn [m] is constant with respect to n. So {x[2]
n } is WSS.
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When m→∞, Qm → Q0, where Q0 is a N ×N matrix, whose elements in the i-th column are all
πi. So when m→∞,

VFn [m]→
∞∑

l=0

(A⊗ In2
0
)l(B[2]µw2

)⊗ ((QT0 ⊗ In2
0
)VP ).

By the similiar arguments as the computations for E
[
x[4][n]

]
, we can get

E
[
x[2][n]

]
= CI

∞∑

l=0

Al
(
πT ⊗ (B[2]µw2

)
)

= constant

Denote E
[
x[2][n]

]
as µx2

. Because E
[
x[2][n+m]⊗ x[2][n]

]
= CIVFn [m], we can get

E
[
x[2][n+m]⊗ x[2][n]

]
− µx2

⊗ µx2
→ 0,

when m → ∞. So {x[2][n]} is ergodic. Then we can get the ergodicity of {y [2][n]}. The proof is
completed. ♦
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