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Abstract

Many real-time systems have firm real-time requirements which allow occasional deadline violations
but discard any tasks that are not finished by their deadlines. To measure the goodness of such a system,
a quality of service (QoS) metric is needed. Examples of often used QoS metrics for firm real-time
systems are average deadline miss rates and (m, k)-firm constraint. However, for certain applications,
these metrics may not be adequate measures of system performance. This paper introduces a novel QoS
constraint for networked feedback control systems. We show that this constraint can be directly related
to the control system’s performance. We then present three different scheduling approaches with respect
to this QoS constraint. Experimental results are provided to compare these approaches.

1 Introduction

Real-time systems are usually classified as being hard, soft and firm. For hard real-time systems, no deadline

misses are tolerated. For soft real-time systems, it is acceptable for tasks to miss deadlines occasionally and

tasks not finished by their deadline are still completed albeit with a reduced value. Firm real-time systems

also allow occasional deadline misses. But, unlike soft real-time systems, if a task is not completed by its

deadline, the task is considered valueless and is discarded (or dropped) [4]. Examples of firm real-time

systems can be found in many control and multimedia applications.

Quantifying the “occasional deadline misses” is critical for evaluating the Quality of Service (QoS) of

a firm real-time system (FRTS). One often used QoS metric for FRTS is the deadline miss ratio or average

dropout rate (as a task is dropped if it cannot be finished by its deadline), defined as the percentage of the

average number of deadline misses with respect to the number of tasks admitted to the system. Two other

similar metrics are the effective processor utilization and completion count discussed in [2, 3]. The advan-

tage of these metrics is that they can be estimated offline and used directly to guide the scheduler design.

A problem with these metrics is that they cannot express the information about how the deadline misses or

dropouts are distributed. In some systems, such as those found in control and multimedia applications, the
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system performance is very sensitive to the dropout patterns. For example, if dropouts occur consecutively

for several invocations of the same task, then the system performance may be totally unacceptable.

To overcome the shortcoming of the dropout rate based metrics, a variety of window-based QoS con-

straints have been proposed for FRTS. A window refers to a fixed number of consecutive invocations or

jobs of a task. Hamdaoui and Ramanathan introduced the (m, k)-firm constraint in [9]. The (m, k)-firm

constraint specifies that tasks should meet at least m deadlines in any k consecutive invocations. Koren

and Shasha proposed the skip factor [13] constraint, where a task with a skip factor of s is allowed to have

one invocation skipped out of s consecutive ones. In [4], Bernat, et. al., proposed a set of firm constraints

based on the desired deadline miss patterns. They suggested, for example using the following constraints to

characterize the dropout pattern: (i) meeting at least n consecutive deadlines in a window of m consecutive

invocations, (ii) missing less than n consecutive deadlines in a window of m consecutive invocations.

The window-based QoS constraints provide a more comprehensive measure of deadline misses than

the average dropout rate. The associated schedulability analyses are carried out assuming the complete

knowledge of the tasks is available. Unfortunately, many real-time systems must face uncertainties inherent

in executing software tasks themselves as well as those arising from the environment. Simply using the

worst case parameters would result in overly expensive system implementations. Furthermore, it may be

inadequate to use just two parameters (e.g., n and m in [4]) to specify the desired dropout patterns in a

system where uncertainties in task parameters are to be considered.

This paper introduces a novel QoS constraint for FRTS that is more general and flexible than the window-

based constraints mentioned above. The constraint is specified based on the Markov chain (MC) process. It

will become clear later that the model can be used to describe all the QoS metrics or constraints discussed

above. The power of the MC based constraint lies in that it can incorporate the probabilistic behavior of the

system. Moreover, for control systems, this constraint can be directly related to the overall control system’s

performance. In fact, it is the desired control system performance that determines the actual parameters of

the MC-based constraint. We will illustrate this through an example networked feedback control system.

To meet an MC-based constraint, previous scheduling results (e.g., [4, 9, 13, 18, 19]) are no longer

applicable since these methods assume a deterministic dropout pattern. We present several scheduling alter-
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natives for the new QoS constraint. A common feature of these scheduling approaches is to use feedback

information to adjust the schedule. They differ in terms of the monitored variables and the actual schemes

used in adjusting the schedule.

Using feedback information for scheduler design is not new. The original work can be traced back

to [5] for general-purpose operating systems scheduling. In recent years, using feedback information for

scheduling has also seen an increase in the real-time system area. For example, in [10], the authors pro-

posed Adaptive Earliest Deadline (AED) priority assignment policy to stablize the performance of Earliest

Deadline First (EDF) under overload situations. Brandt and his colleagues presented a dynamic QoS man-

ager (DQM) to change task QoS levels according to the sampled central processing unit (CPU) utilization

or deadline misses [6]. Another group of works in the real-time system area can be categorized as applying

feedback control theory to scheduling (e.g., [1, 17, 20, 21]). Similar to [6], these works (except [20]) target

soft real-time systems where each task has multiple versions (or QoS levels) with different values.

In our work, real-time tasks do not have multiple versions but have firm deadline constraints. They are

periodic but their execution times can vary between the best case execution time (BCET) and worst case

execution time (WCET). Since our MC-based QoS constraint is different from those used in all the previous

work, we present several alternative scheduling approaches and evaluate their effectiveness.

2 Preliminaries

We consider a system consisting of periodic tasks. The i-th task is denoted as τi. Each instance of a task

is called a job. The jth job of τi is denoted as τij . The period of τi is denoted by ti, and the deadline

of τi is denoted by di. The execution time of τi is represented by a random variable Ci. Without loss

of generality, we assume that Ci is a discrete random variable which takes values ci1, ci2, . . . , ciki
with

probability pi1, pi2, . . . , piki
, respectively. The jth job of task τi, τij , requires Cij time to finish. The

probability that Cij equals to cih is pih. The distribution of Ci could be obtained from experimental data or

through profiling.

In this paper, we study systems in which a task is discarded (or dropped) if it is not completed by

its deadline. This practice is adopted in many feedback control systems [14]. We use fij to denote the
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completion status of job τij , i.e., fij = 1 if τij is completed at or before its deadline and fij = 0 otherwise.

Note that fij = 0 is due to either the late finish of τij or the rejection of τij before it is even started. For

simplicity, we refer to both cases as the jobs being dropped. The average dropout rate of task τi is denoted

by ε(i).

3 A Markov Chain Based QoS

Many real-time systems demonstrate probabilistic behavior due to uncertainty inherent in the operating

environment and the task parameters. The patterns of jobs being completed or dropped can have a significant

impact on the overall system performance. To capture the dependency of QoS on both job dropout patterns

and system probabilistic behavior, we propose using a Markov chain (MC) to describe the desired stochastic

job dropout behavior associated with task τi. We call this the MC constraint of τi and denote it by MCi.

Specifically, MCi is a discrete stochastic process with two or more states and the transition probability

from one state to another denotes either the probability of the next job being dropped or the probability of

the next job being completed. Each state is denoted by a specific string of job’s completion status bits fij to

represent the recent execution history pattern. For example, if we use two bits to represent the string of the

job completion status bits (i.e., we only use the execution status of the two most recent jobs), the state which

represents the history pattern of one completed job followed by one dropped job can be written as {10}.

(We use the rightmost bit to represent the completion status of the most recent job). Note that each state

can transition to at most two other states with non-zero transition probabilities. For instance, state {10} can

only transition to either state {00} (if the next job is dropped) or state {01} (if the next job is completed).

Figure 1(a) depicts the general MC process for the case of using two completion status bits for each state,

where ε1 to ε4 are the probabilities of the next job being dropped at the respective states. Figure 1(b) shows

a specific example of an MC constraint, which has three states and ε1 represents the dropout probability at

state {11}. It is not difficult to verify that this is equivalent to the (m, k) constraint [9] where m = 2 and

k = 3.

The completion status of a task, i.e., jobs being dropped or not, can be considered as a discrete stochastic

process when the task execution times are probabilistic. An MC constraint then specifies the desired stochas-
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(a) The general MC dropout process. (b) An example MC constraint.
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Figure 1: Two Markov chains for the case where two bits are used for the history pattern.
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Figure 2: An example MC constraint. It is equivalent to the constraint that at least 2 consecutive jobs must
meet the deadline in any window of 4 consecutive jobs.

tic dropout process. The length of the bit string associated with a state (i.e., the number of consecutive jobs

observed) determines the general structure (the maximum number of states and all possible transitions) of

a MC constraint. For example, if we use 4 bits in each state of a MC constraint, the maximum number of

states is 24. In practice, the number of bits used is not large. Figure 1 has shown an example MC constraint.

As another example, we show in Figure 2 the MC constraint corresponding to the window-based constraint

that at least 2 consecutive jobs must meet the deadline in any window of 4 consecutive jobs. Again, ε i for

i = 1, 2, 3, 4 is a dropout probability. (Note that the mapping from a window-based constraint to an MC

constraint is not unique.)

Given an MC constraint, one can readily compute the average dropout rate. Thus, an MC constraint

generalizes the dropout rate constraint. Moreover, a window-based constraint can be represented as an MC

constraint as illustrated in Figure 1 and 2. However, what makes the MC-based constraint attractive is that

it provides much more descriptive power than both of them. One might argue that a MC constraint can be

replaced by simply combining the dropout rate constraint and a window-based constraint. But, from the

above two MC examples, one can see that a window-based constraint does not care about the actual values

5



of the dropout probabilities, i.e., εi. On the other hand, an average dropout rate cannot uniquely define the

dropout probabilities εi. Therefore, the MC-based constraint facilitates a more precise description of the

allowed stochastic dropout patterns.

Besides having more descriptive power, the MC-based constraint can also quantitatively relate the

dropout probabilities to the performance of a real-time control system. This assertion is based on recent

results [15] characterizing the performance of networked control systems (NCS) in the presence of data

dropouts satisfying the MC constraint. This characterization is important for it allows us to directly evaluate

different MC constraints in terms of their impact on application performance.

A networked control system is a control system whose feedback path is realized over a communication

network. Feedback measurements are occasionally dropped for one of two reasons; either the medium is

unreliable or else the measurement is purposely dropped to stay within an allocated transmission rate. The

transmission rate allocation is provided by the network as a means of congestion control. The results in

[15] focus on a so-called discrete-time generalized regulator problem [8] in which unity gain feedback is

used to reject a white noise disturbance injected into the system. The lefthand block diagram in Figure

3 shows the NCS under consideration. This system consists of a loop function L(z) whose input, w[n],

is a zero-mean white noise disturbance. The output y[n] is fed back through the network in a manner

that is controlled by a dropout process, {d[n]}. The dropout process is a binary random process that is

generated by an underlying Markov chain with transition matrix Q. Since this particular control system tries

to reject disturbances, the system’s performance is characterized by the output signal power, (denoted as

‖y‖P = TraceE
[

y[n]yT [n]
]

). The main result in [15] provides a systematic method of computing ‖y‖P as

a function of the dropout process’ transition matrix.

The result in [15] was framed as an optimization problem whose solution is a dropout process that

maximizes overall system performance (i.e. minimizes output signal power) subject to a lower bound on the

average dropout rate. In other words, the solution to this problem provides the statistical pattern of dropouts

that degrade overall control system performance as little as possible for a given dropout rate. The ”optimal”

dropout process represents the best control system performance that we can obtain for a fixed transmission

rate constraint. By directly comparing the performance of other QoS constraints against this optimal dropout
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process’ performance, we obtain an objective means of evaluating different QoS constraints.

Such a comparison is found in the right-hand plot in Figure 3. This figure is taken from [15] and it

compares the output signal power (performance) of a specific control system under three different types

of dropout processes. In this example, the open loop system was unstable with transfer function L(z) =

z+2
z2+z+2 . Assuming unity gain feedback, the closed loop transfer function becomes z−1 + 2z−2 which

is asymptotically stable. In other words, this is a networked control system in which dropouts cause us

to switch between a stable and unstable system configuration. The output signal power for this system

was evaluated for three different types of dropout processes; the ”optimal” dropout process, a (2, 3)-firm

guarantee process, and process in which dropouts are independent and identically distributed (i.i.d.). The

graph in Figure 3 plots the system’s output power as a function of the average dropout rate.
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Figure 3: Left - NCS model: Right - comparison of the three dropout models

The results in Figure 3 show that the ”optimal” policy performs much better than either the (2, 3)-rule or

i.i.d. dropouts. Note that systems driven by the (2, 3)-rule and i.i.d. dropout processes go unstable at dropout

rates in excess of 20%. It is important to note that the optimal dropout process greatly extends the region of

stability for the closed loop system. What is, however, more surprising is the form of the ”optimal” dropout

policy. For this particular example (see [15] for details), the optimal dropout process always requires that if

a single dropout occurs, the next measurement must be dropped as well. In other words for this particular

system the optimal dropout policy is to drop two measurements in a row. This optimal dropout policy can be
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represented by the MC constraint given in Figure 4. (The (2, 3)-rule can be described by the MC constraint

given in Figure 1). The performance comparison of the two dropout policies runs directly counter to the

1

1ε

1−ε

0011 10 01

Figure 4: The Markov chain represents the optimal dropout process for the NCS model in Figure 3.

intuition inherent in the (m, k)-rule where one tries to minimize the number of consecutive drops. In fact,

for this particular example, the (m, k)-rule does not perform any better than the i.i.d. dropout process.

The results shown in Figure 3 are not representative of all networked control systems, but they do under-

score an important point, namely that it can be dangerous to use ad hoc heuristics to specify QoS constraints

in feedback control systems. The closed loop nature of these systems require a much more flexible approach

in characterizing QoS constraints. We believe that the MC constraint provides such flexibility.

4 Design and Evaluation of Scheduling Approaches

Given a set of real-time tasks and MC constraints associated with some of the tasks, one could still use a

scheduling algorithm designed without considering MC constraints. But such algorithms may not perform

well. Consider a simple example where a task set contains two periodic tasks (τ1 and τ2) with the task

parameters as given in Table 1. Assume that τ1 is a task implementing the controller for a feedback control

system and is associated with the MC constraint given in Figure 4.

Table 1: The timing parameters of a simple task set.

τi ti di (ci1, pi1) (ci2, pi2)

τ1 5 5 (2, 0.75) (5, 0.25)

τ2 10 10 (4, 1.0)

Suppose we use the nonpreemptive Earliest Deadline First (EDF) scheduling algorithm to schedule the

task set and a job is dropped if it is not finished by its deadline. Figure 5(a) depicts the resulting execution
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pattern. If we assume that the execution pattern is repeated infinitely, then the average dropout rate of τ1,

ε(1), is equal to 0.25. The execution pattern of τ1 can be described as 10101111 where 1 means a job meets

the deadline and 0 otherwise. We could use some other algorithm to obtain a different execution pattern

shown in Figure 5(b). Note that the execution pattern now is 10011111, but ε(1) is still 0.25. Task τ2 in both

cases always finishes by its deadline. The only difference between the two systems is the dropout patterns

of τ1. In terms of meeting the MC constraint, the execution pattern in Figure 5(b) is clearly more desirable.
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Figure 5: Two different execution patterns for the tasks in Table1. Jobs that miss their deadlines are colored
black.

The above example reveals that simply using existing scheduling algorithms may not help to satisfy MC

constraints and that it is worthwhile to investigate scheduling approaches for systems having MC constraints.

Before we present our new scheduling approaches, we first summarize how an MC constraint is specified.

An MC constraint is given by the transition probabilities which are functions of the average dropout rate

ε. Since each state can only transition to one of two states depending whether the next job is dropout or

not, only the dropout probability at each state is needed to uniquely specify a MC constraint. For example,

suppose we use two bits to represent the most recent dropout history. For the MC constraint in Figure 4, we
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have ε1 = ε/(2 + 3ε), ε2 = 1, ε3 = 0, ε4 = 0 (where ε1 to ε4 are the parameters in the general MC process

in Figure 1(a)). In general, the dropout probabilities cannot be expressed as a closed form formula of ε but

are given in a table. The average dropout rate ε of a task should not take any arbitrary value between 0 and

1 as it impacts both the system performance and the load that the task presented to the system. We use εu

and εl to represent the upper and lower bound on ε. The dropout probabilities as well as the ε bounds will

be used by the scheduling approaches.

A good scheduler in term of meeting the MC constraint should have the resulting dropout process be as

close to the MC constraint as possible. However, measuring the ”goodness” of a scheduler in such a case is

not a trivial matter. We will discuss how to evaluate the performance of a scheduler later in this section.

4.1 Three online scheduling algorithms

All three scheduling algorithms are online algorithms. The common idea of them is to partition jobs dy-

namically into different groups. Some groups are given higher priorities than others. This is similar to the

mandatory v.s. optional job partitioning used in [18, 19]. Instead of two-way partition, we use three groups

as Must Finish (MF), Better Finish (BF) and Optional Finish (OF). As the names indicate, the three groups

have decreasing priorities. The tasks in the first two groups are executed by using a priority-based schedul-

ing algorithm such as EDF or RM while the tasks in the OF group can be scheduled by using a randomized

priority assignment similar to [10]. A hard real-time job is always put in the MF group while the BF group

contains tasks that demand best effort. Jobs with MC constraints are partitioned between MF and OF group.

By judiciously partitioning the jobs into different groups, our goal is to make the job dropout processes

follow the MC constraints as much as possible and to bound the average dropout rate by εu and εl. The three

algorithms differ in their ways of partitioning the jobs and are discussed in detail in the rest of the section.

4.1.1 MC Driven Algorithm (MDA)

The MDA algorithm directly uses MC constraints to partition jobs. That is, the dropout probabilities of the

given Markov chain are used to decide whether a newly arrived job is put in the MF or OF group. Since

the actual value of the dropout probability at a specific state depends on the value of the average dropout

rate, we need to determine which average dropout rate should be used. Note that this average dropout rate
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reflects the desired load that the corresponding task should present to the system and should be bounded by

εu and εl. A reasonable choice is the estimated deadline miss ratio of the task when scheduling the task set

by an algorithm optimal in terms of schedulability (e.g., RM or EDF).

Specifically, for a given task set and a chosen scheduling algorithm such as EDF or RM, we first ap-

ply offline an estimation algorithm such as the ones introduced in [7, 11, 12, 22] to obtain the average

dropout rate for each task. (An alternative to using an estimation method is simulation.) Based on the

dropout rate for τi, we obtain the dropout probability at each state of MCi. Let the number of bits used

to represent the state in MCi be ni. During run time, the scheduler records the dropout status of the

most recent ni jobs. Assuming the newly arrived job is τij , the current state of the system is specified

by X(i) = {fi(j−ni)fi(j−ni−1) · · · fi(j−2)fi(j−1)}. If X(i) corresponds to the k-th state in MCi, the dropout

probability εk is readily obtained. Then, τij is put in the OF group with probability εk. Otherwise, it is put

in the MF group.

The complexity of this scheduling algorithm depends on the lengths of the most recent execution patterns

to be kept (i.e., ni’s) and the random number generation. Usually the value of ni is small, and modern

random number generators are quite efficient as shown in [16].

4.1.2 Dropout rate Driven Algorithm (DDA)

The main difference between the MDA algorithm and DDA algorithm is that the latter retains for each task

a “long” history execution pattern instead of just the most recent execution pattern used to determine the

previous state of the system dropout process. This execution pattern feeds back a task’s dropout status

history to the scheduler, which uses the feedbakc information to compute the estimated average dropout

rate, ε̃, at the current time instant. The length of this history execution pattern, m, is a parameter set by the

user. The DDA algorithm also does not require the computation of the estimated deadline miss ratio as the

MDA algorithm (though the ratio may be used as the upper bound on ε if desired).

During run time, the DDA algorithm uses the long history execution pattern for τi, represented by an m

bit binary number, to compute ε̃(i), i.e., ε̃(i) =
∑m

k=1(1 − fj−k)/m where τij is the newly arrived job. The

bits fj−1 to fj−ni
is used to determine the current state of the dropout process. The algorithm then applies
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the following rules to decide in which group the newly arrived job is placed.

1. If ε̃(i) > εu(i), put τij in the MF group.

2. If ε̃(i) < εl(i), put τij in the OF group.

3. If εl(i) ≤ ε̃(i) ≤ εu(i), find the dropout probability corresponding to the current state and the ε̃(i)

value. τij is put in the OF group with this dropout probability. Otherwise, it is put in the MF group.

The rational behind the DDA algorithm is to make the average dropout rate stay within the given bounds

and the dropout process follow the MC constraint for ε̃ within the given bounds. DDA is less efficient than

MDA since the history patterns maintained by DDA are usually much longer than those by MDA. However,

the length of the history patterns should not be too big so that the recent dropout process is not overshadowed

by the dropout process long time ago. In our experiments, we found that setting m to 100 is reasonable.

4.1.3 Feedback Driven Algorithm (FDA)

The FDA algorithm uses a somewhat different way to partition jobs from the above two. It avoids the use

of a random number generator while still tries to achieve the same goal as the other algorithms. Similar

to DDA, for each task τi, FDA retains a “long” history execution pattern to assist the computation of ε̃(i).

Furthermore, this history pattern is used to compute the estimated dropout probability at each state, ε̃k(i), in

the MC constraint for τi.

During run time, upon arrival of τij , the FDA algorithm first computes ε̃(i) and determines the current

state of the dropout process similar to DDA. Then it computes ε̃k(i) for the current state. It also finds the

desired dropout probability εk(i) for the average dropout rate ε̃ from the MC constraint specification as

MDA. The algorithm finally applies the following rules to decide in which group the newly arrived job is

placed.

1. If ε̃(i) > εu(i), put τij in the MF group.

2. If ε̃(i) < εl(i), put τij in the OF group.
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3. If εl(i) ≤ ε̃(i) ≤ εu(i) and ε̃k(i) > εk(i), τij is put in the MF group. Otherwise, it is put in the OF

group.

The FDA algorithm monitors the dropout probabilities as well as the average dropout rate and uses both

to determine job partition. Its philosophy is similar to DDA except that it avoids the use of a random number

generator by employing the observed dropout probabilities. Thus, FDA is more efficient than DDA, but it

does require some more memory during run time than MDA.

4.2 Evaluation of scheduling algorithms

We have proposed three scheduling algorithms to help meet MC constraints. One challenge we are still

facing is how to measure the “goodness” of a scheduler in order to compare the performance of different

schedulers. As we pointed out earlier, a good scheduler should produce a dropout process as close to the

MC constraint as possible. However, it is difficult to quantify the “closeness” of one stochastic process to

another. We resort to the control system performance to tackle this problem.

We have pointed out in Section 3 that the output signal power of a control system is a proper perfor-

mance measurement when the task dropout process is modeled as a stochastic process. Given the same

task specification, a scheduler essentially determines the task dropout process. So one could use the output

signal power to indicate the goodness of a scheduler. However, a low output signal power may not neces-

sarily mean that the task dropout process is close to the MC constraint. This can be illustrated by observing

the data shown in the right-hand plot of Figure 3. For example, when the average dropout rate is 0.12, the

dropout process corresponding to the (2,3)-rule gives a power value of 15 , and when the average dropout

rate is 0.35, the dropout process corresponding to the optimal MC constraint gives a power of value 20.

Though the former leads to a lower power value, it requires a much lower average dropout rate and is far

from the optimal dropout process. A lower average dropout rate would demand more resource utilization

and may adversely effect the performance of other tasks. Thus, a good scheduler should lead to a dropout

process that has lower output signal power for each task with an MC constraint and does not increase the

dropout rate of tasks without MC constraint.

Based on the above discussion, we propose the following method to compare two schedulers, A and
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B, when they are applied to a task set. If τi in the task set has an MC constraint, we denote the output

signal power resulted from applying A and B by pA(i) and pB(i), respectively. If τj only has a dropout rate

constraint (or is a hard deadline task), the two measured average dropout rates resulted from applying A and

B are denoted by ε̃A(j) and ε̃B(j), respectively. We say that A performs better than B for this task set if the

following is true

• ε̃A(j) ≤ ε̃B(j) for every τj having only a dropout rate constraint, and

• pA(i) ≤ pB(i) for every τi having an MC constraint.

Note that this metric does not impose a total order on different schedulers applied to a given task set.

However, one can repeatly perform the above for many task sets and use a scoring system to rank different

schedulers. If a scheduler makes the dropout processes of tasks with MC constraints follow closely the

optimal dropout process specified by the MC constraint, it tends to receive a higher score since such a

scheduler helps to achieve lower output signal power given the same dropout rate.

5 Experimental Results

In this section, we present some experimental results to evaluate the performance of the scheduling algo-

rithms proposed in the previous section. We chose the nonpreemptive EDF algorithm as our comparison

target for its simplicity. That is, we applied the nonpreemptive EDF algorithm to schedule each task set

directly and obtained performance results. Then, we used the nonpreemptive EDF algorithm to schedule

the tasks within the MF and BF groups which are resulted from employing our MDA, DDA and FDA al-

gorithms. Finally, we compared the results obtained from using MDA, DDA and FDA to those obtained

directly from EDF. Below, we first describe our experimental setup and then present the relevant data.

In our experiments, we randomly generated a large number of task sets, each of which contains five

tasks. In each task set, some of the tasks are associated with an MC constraint which is the same as the one

given in Figure 4. The other tasks simply use the average dropout rate as a QoS metric. The period of each

task was randomly selected from a uniform distribution between 2 to 15 time unit, and the deadline of each

task was set to be the same as its period. The execution time distribution of every task was also randomly
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generated. That is, we first randomly selected a number ki to be the number of discrete values that the τi’s

execution time can take, and then generated ki pairs of random numbers, one as the execution time and

the other as the corresponding probability. After a task set was generated, we used the method in [12] to

compute the average dropout rate of each task with an MC constraint. If the dropout rate of such a task was

higher than 40%, we discarded the task set because the control system behavior under such a high dropout

rate is usually unstable and the comparison of output signal power is meaningless. We also discarded a task

set if a task with an MC constraint had a dropout rate lower than 2% since in this case the dropout patterns

no longer make any difference (see the right-hand plot in Figure 3).

We have developed a simulation environment to simulate both the task execution process as well as the

four schedulers, EDF, MDA, DDA and FDA. For the DDA and FDA algorithms, the upper bound εu was

set to be 50% and the lower bound εl was set to be 5%. Note that for dropout rates outside these bound, the

system performance is either unstable or insensitive to the dropout pattern variations (see Figure 3). For a

task with only the dropout rate constraint, the rate constraint was set to be the dropout rate obtained from

directly applying the EDF algorithm. A job of such a task was put in either the MF or BF group depending

on the current dropout rate is above or below the constraint. For each task set, we ran the simulation under

each scheduler to obtain the dropout pattern for each task up to one million jobs. We then employed a

control system simulator (MATLAB Simulink) to determine the output signal power of the tasks with an

MC constraint. For each task’s dropout pattern, we ran the control system simulator three times and recorded

the average power to compensate for simulation errors.

As an example, Table 2 shows the actual simulation results for two different tasks. Rows 2-5 and 6-9

correspond to task set 1 and 2, respectively. The dropout rates of all five tasks in each task set are given in

column 2-6, where column 6 is for the task with an MC constraint. The last column provides the average

output signal power. If one examines the data for task set 1, it is easy to see that FDA performs better

than EDF because it resulted smaller output signal power and lower dropout rates for tasks with dropout

rate constraints. In particular, for the task with the MC constraint, though the dropout rate has increased

significantly for FDA compared to EDF (47.5% v.s. 26.3%), the output signal power had decreased greatly.

This reveals that the dropout pattern for the FDA case is much closer to the optimal dropout pattern (refer
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Table 2: Simulation output for two example task sets

Scheduler Dropout rate for task 1 to task 5 Signal Power

type (in percentage)

EDF 20.73 10.54 35.93 28.82 26.27 2.337565e+04

MDA 20.47 10.91 35.01 28.35 5.64 6.817112e+00

DDA 20.59 10.98 35.12 28.43 3.28 6.084178e+00

FDA 17.75 9.25 31.56 22.52 47.54 4.592294e+01

EDF 13.95 21.00 5.88 47.17 24.73 3.460549e+01

MDA 14.96 20.04 5.93 41.30 3.69 6.052811e+00

DDA 15.00 20.12 5.99 42.70 0.63 5.248122e+00

FDA 14.88 19.57 5.83 38.22 8.57 1.168510e+01

to Figure 3). Of course, in some case, we may not be able to say one scheduler is definitely better than

another. For instance, comparing FDA and EDF for task set 2, we see that the dropout rates for some tasks

are decreased while for others are increased.

To deal with the challenge due to comparing multiple dimensional data, we conducted simulation for

a large number of task sets in order to collect the statistical behavior of the schedulers. We compared the

performance of different scheduling algorithms by the scoring approach discussed in Section 4.2. Since

obtaining the output signal power is a statistical analysis process, the power value needs to be treated as

having an error range. Therefore in applying the scoring approach, we considered pA to be different from

pB only if |pA − pB | > ρmin{pA, pB} (where A and B are two different schedulers). In our experiments,

we set ρ to be 0.5. If both pA and pB are greater than 100, we ignore the comparison result since a system

with power great than 100 is considered unstable in the control sense.

Table 3: Comparison of scheduler scores for 246 task sets. Each task set contains one task with the MC
constraint.

Dropout Rate EDF to EDF to EDF to MDA to DDA to FDA to

Accuracy MDA DDA FDA EDF EDF EDF

0.001 0 0 0 44 40 57

0.01 0 0 0 147 150 83
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In Table 3, the comparison results based on a total of 246 task sets are summarized. In comparing

the dropout rates for tasks without MC constraints, we considered two cases where the dropout rates were

accurate up to the 3nd and 2rd digits after the decimal point. The two cases are given in the second and third

row in Table 3, respectively. Six types of comparisons are provided. By “EDF to MDA”, we mean that the

data are based on testing if EDF is better than MDA. Recall that the scoring method presented in Section

4.2 only gives a partial order (as compared to a total order) when comparing two schedulers applied to the

same task set. Thus, we need both “EDF to MDA” and“MDA to EDF” to see which gets a higher score. The

other columns have the same meaning. From the table, one can readily conclude that our new algorithms

outperform the EDF algorithm. If we use less accurate representation (the 3rd row) for the dropout rates,

our new algorithms score even better. This reveals that for a number of task sets all four algorithms resulted

in very similar dropout rates for the tasks without MC constraints. Table 4 shows similar information as

Table 4: Comparison of scheduler scores for 68 task sets. Each task set contains two tasks with MC con-
straints.

EDF vs MDA EDF vs DDA EDF vs FDA MDA vs EDF DDA vs EDF FDA vs EDF

1 1 1 27 24 19

Table 3 but the task sets used to generate the data contain two tasks with MC constraints (instead of one).

The accuracy for the dropout rate is set to two digit after the decimal point. The data again demonstrates

that our algorithms outperform EDF. The better performance of MDA, DDA and FDA indicates that these

algorithms have reduced the output signal power without penalizing the dropout rates of tasks without MC

constraints. This is achieved by making the job dropout processes behave close to the optimal dropout

process specified by the MC constraint.

The fact that our proposed algorithms indeed improve the job dropout processes in terms of meeting

the MC constraints can also be demonstrated by the plots in Figure 6. Each point in the plots depicts the

data obtained by applying one type of scheduler to one task set. The optimal dropout process (i.e., the MC

constraint) corresponds to the curve below all the points in each plot. From the plots, one can readily see

that the data corresponding to MDA, DDA and FDA are close to the optimal dropout curve while EDF in
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Figure 6: Output signal power v.s. the dropout rate for applying four different schedulers to 246 task sets.
The optimal dropout process is also shown.

general is not. This is especially true when the dropout rate is high. A horizontal long-dashed line indicating

power being equal to 100 is also shown in the plot. It is clear that EDF resulted many more points above this

line than the other algorithms. Since a control system is considered unstable when the power value is larger

than 100, MDA, DDA and FDA again outperform EDF greatly in this regards.

6 Conclusions

In this paper, we consider firm real-time tasks with probabilistic execution times (which are often found

in control applications). We have introduced a novel QoS constraint which is based on the Markov chain

model. The new QoS constraint generalizes both the dropout-rate type of constraints and the (m, k) type of

constraints. More importantly, it provides the flexibility needed to precisely specify the desired stochastic

behavior of a system. This is particularly valuable for control systems where the system performance can

be expressed as a function of the dropout process’s transition matrix, A networked control system has been

used to illustrate this point.
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For the new QoS constraint, we show that traditional scheduling algorithms may not be adequate. We

have presented three online algorithms which attempt to deal with the QoS constraint explicitly. The aim

of these algorithms is to lead to job dropout processes as close to the QoS constraint as possible without

impacting the utilization of the resource by other tasks. We have developed a simulation environment to help

us evaluate different scheduling algorithms. The experimental results indicate that our scheduling algorithms

indeed outperform scheduling algorithms that do not consider the QoS constraint.

The scheduling algorithms discussed in the paper are relatively primitive. Improvements can be made

by incorporating various admission control schemes to help adjust the jobs in the different groups. We plan

to investigate this direction in our future work.
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