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Power Spectral Analysis of Networked Control Systems
with Data Dropouts

Qiang Ling, Student Member, IEEE, and Michael D.
Lemmon, Member, IEEE,

Abstract— This paper derives a closed form expression for a control
system’s output power spectral density (PSD) as a function of the data
dropout probability. We use the PSD to determine a dropout compensator
that minimizes the regulator’s output power. We show, by example, that
the optimal dropout compensator does not always correspond to a filter
that minimizes the mean square error between the predicted and dropped
feedback measurement.

Index Terms— Networked control system, power spectral density

I. INTRODUCTION

There has recently been great interest in networked control systems
(NCS) in which the feedback loop is implemented over a non-
deterministic communication network. Non-deterministic networks
are unable to deliver data packets within hard real-time deadlines. In
such cases, data packets may be excessively delayed due to network
congestion. As a result it is often desirable to purposefully drop
feedback measurements that are excessively delayed. The rate of data
dropouts, therefore, is an important measure of the communication
network’s service quality (QoS).

Recent work has looked at the impact of data dropouts on control
system performance as measured by the H∞ system norm [1]. The
impact of dropouts on the output signal power of a first-order NCS
was studied in [2]. A more general treatment in [3] characterized
the PSD for a wide class of NCS under i.i.d. dropouts. Jump-linear
system methodologies were used in [4] to determine the output power
of an NCS with dropouts governed by a Markov chain. It is also
possible to automate this analysis using a software tool known as
Jitterbug [5]. This paper derives a closed form expression for a
control system’s output power spectral density (PSD) as a function
of the data dropouts (section II). This result is used to synthesize
a dropout compensator that minimizes the regulator’s output power
(section III).

II. MAIN RESULT

We consider the networked control system in figure 1. The NCS
has two inputs, w and d. w is white noise with zero mean and
unit variance. d is an i.i.d. binary process with the distribution
of P (d[n] = 1) = ε, P (d[n] = 0) = 1 − ε, where ε is the
dropout rate. The loop function L(z) is strictly proper and single-
input single-output (SISO). The output signal y drives a data dropout
model: when d[n] = 0, the feedback signal y[n] is exactly y[n];
when d[n] = 1, i.e. the output feedback is dropped, y[n] will be
estimated by ŷ[n], the output of the dropout compensator F (z).
F (z) is assumed to be strictly proper. The loop function’s control
signal is u[n] = w[n]+y[n], i.e. unity feedback control is used. The
output’s power, E

[

y2
]

, is taken as a measure of the control system’s
performance. So we are studying the attenuation of exogenous signals
w and d at the the control system’s output y.

The above NCS model will jump in an i.i.d. fashion between two
configurations: the open-loop and closed-loop systems. Let L(z) and
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Fig. 1. Networked Control System with Data Dropouts and Dropout
Compensation

F (z) have the state space realizations, L s
=

[

Ah Bh

Ch 0

]

and F
s
=

[

Af Bf

Cf 0

]

,respectively. The NCS state space equations therefore

take the following form:
{

x[k + 1] = A[k]x[k] +Bw[k]
y[k] = Cx[k]

(1)

where P (A[k] = A0) = 1 − ε, P (A[k] = A1) = ε. The matrices

A0, A1, B and C have the form A0 =

[

Ah +BhCh 0
BfCh Af

]

, B =
[

Bh

0

]

, A1 =

[

Ah BhCf
0 Af +BfCf

]

, and C =
[

Ch 0
]

.

We can apply results in [6] and [7] to obtain the following stability
condition.

Theorem 2.1: The NCS in equation 1 (with w = 0) is mean square
stable if and only if A[2] = (1 − ε)A0 ⊗ A0 + εA1 ⊗ A1 has all
eigenvalues within the unit circle, where ⊗ is the Kronecker product
[8].
Because we’re interested in the output signal’s power spectral density,
we must first verify that the signal is wide sense stationary. This is
done by the following theorem.

Theorem 2.2: ([7])All linear outputs of the NCS in equation 1, i.e.
the output with the form of z[k] = Ex[k] + Fw[k], are wide sense
stationary if A[2] = (1− ε)A0⊗A0+ εA1⊗A1 has all eigenvalues
within the unit circle.

The following theorem states a closed-form expression for the out-
put’s power spectral density. The theorem is proven in the appendix
(section V).

Theorem 2.3: Consider the NCS in equation 1. Let ỹ[n] = y[n]−
y[n]. If the NCS is mean square stable, the power spectral densities
can be computed as

Syy(z) =
∣

∣

∣

L(z)
1−D(z)L(z)

∣

∣

∣

2

Sww(z) +
∣

∣

∣

D(z)L(z)
1−D(z)L(z)

∣

∣

∣

2
∆
1−ε

(2)

Sỹỹ(z) =
∣

∣

∣

L(z)(D(z)−1)
1−D(z)L(z)

∣

∣

∣

2

Sww(z) +
∣

∣

∣

D(z)(1−L(z))
1−D(z)L(z)

∣

∣

∣

2
∆
1−ε

(3)

where | · | means magnitude, D(z) = 1−ε
1−εF (z)

, and ∆ = Rỹỹ[0] is
the variance of the reconstruction error ỹ. When ε > 0 then ∆ is the
unique positive solution of the following equation

∆ =
1

2π

∫ π

−π

∣

∣

∣

∣

L(ejω)(D(ejω)− 1)

1−D(ejω)L(ejω)

∣

∣

∣

∣

2

Sww(e
jω)dω

+
1

2π

∫ π

−π

∣

∣

∣

∣

D(ejω)(1− L(ejω))

1−D(ejω)L(ejω)

∣

∣

∣

∣

2

dω
1

1− ε
∆ (4)
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III. OPTIMAL DROPOUT COMPENSATION

The PSD in equation 2 consists of two terms. The first term
characterizes the impact of the exogenous disturbance, w, on the
output power. The second term characterizes the impact that an
equivalent noise term ∆ has on the output PSD, Syy(z), where ∆ is
generated by the dropout process d. These two terms are functions of
both the loop function L(z) and dropout compensation filter F (z).
The obvious thing to do is choose F (z) to minimize the output power,
E[y2], for a fixed dropout rate. This section synthesizes such an
optimal dropout compensator.

It is important to note that the input disturbance’s PSD, Sww,
in equation 2 is shaped by a closed loop feedback function of
the form L

1−DL
, whereas the dropout’s contribution to the PSD

is shaped by the transfer function DL
1−DL

. The transfer function
D(z) = 1−ε

1−εF (z)
is completely specified by the dropout compensator,

F , and the dropout rate. Note that the two transfer functions in
equation 2 are complementary so it may be impossible to find a D
that minimizes the norms of both transfer functions simultaneously.
This is, of course, the classical tradeoff between performance and
sensitivity that dominates all feedback controller synthesis problems.
In our case, this tradeoff involves balancing how aggressively we
try to minimize the effect of the disturbance, w, and dropout noise,
∆, on system performance. This section illustrates that tradeoff by
comparing dropout compensators that minimize total output power
versus those compensators that minimize the reconstruction error ∆.

It is difficult to design dropout compensators, F (z), directly from
our NCS because that system is nonlinear and time-varying. It is
possible, however, to identify an equivalent linear time-invariant (LTI)
system that generates the same PSD as our original NCS. We then
design the optimal dropout compensator for that equivalent system.
The equivalent LTI system is shown in figure 2. This is essentially a
feedback control system in which D(z) is the feedback controller. In
figure 2, we’ve rewritten D(z) as (1−ε)+z−1D0(z) where D0(z) is
proper. Since the dropout compensator F (z) is always strictly proper,
we know D(z) must always have this particular form. The control
system has two white Gaussian zero-mean noise inputs, w and n
whose variances are 1 and E[ỹ2]/(1 − ε), respectively. Note that
the variance of the noise process n is dependent on the variance
of the reconstruction error, ỹ. Obviously, the first question we must
answer is whether or not this particular LTI system is well-posed. In
other words, does there exist an input noise n such that E

[

n2
]

=

E

[

ỹ2
]

/(1− ε)? That question is answered in the affirmative by the
following theorem. The theorem is proven in the appendix.
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Fig. 2. Equivalent System

Theorem 3.1: Consider the LTI system shown in figure 2 with
exogenous inputs w and n where E[w2] = 1. If the closed-loop
system is internally stable and the transfer function Gỹn(z) satisfies
the inequality, ‖Gỹn‖

2
2 < 1 − ε, then there exists a noise signal n

such that E

[

ỹ2
]

= (1− ε)E
[

n2
]

The LTI system whose existence was established in theorem 3.1
is equivalent to the original NCS in figure 1 in the sense that both

systems generate the same power spectral densities. This assertion
is stated in the following theorem whose proof is in the appendix
(section V).

Theorem 3.2: If the system in figure 2 is internally stable and its
transfer function Gỹn satisfies ‖Gỹn‖

2
2 < 1 − ε then the NCS in

figure 1 is mean square stable and both systems generate the same
power spectral densities, Syy(z) and Sỹỹ(z).

From theorem 3.2, we know that dropout compensator synthesis
for the original NCS can be viewed as a controller synthesis problem
for the generalized plant L0(z) shown in figure 2. In this case, the
synthesis problem takes the form

Optimization 3.3: minD0(z)E

[

y2
]

subject to

E

[

n2
]

= (1− ε)E
[

ỹ2
]

, E

[

w2
]

= 1

This particular optimization problem is awkward to solve directly
because the dropout noise n has a variance that’s proportional to the
reconstruction error’s variance E

[

ỹ2
]

. The size of the reconstruction
error variance, of course, is dependent on our choice of D0(z). This
means that both sides of the equality constraint are dependent on
our choice of D0(z), thereby leading to a problem whose form is
inconsistent with many optimization software packages.

In order to solve our synthesis problem, we recast optimization
problem 3.3 in a more standard form. Without loss of generality, we
take ∆ as an additional design parameter that represents a desired
reconstruction error variance, E

[

ỹ2
]

. We also note that the error
signal ỹ can be rewritten as ỹ[n] = εy[n]−uf [n]− (1−ε)n[n]. The
reconstruction error variance therefore can be written as E

[

ỹ2
]

=

E

[

(εy − uf )
2
]

+ (1− ε)2E
[

n2
]

. We may rewrite the equality
E[ỹ2] = ∆ as an inequality constraint without loss of generality.
Because E

[

n2
]

= ∆
1−ε

, the resulting inequality constraint can be
rewritten as E

[

(εy − uf )
2
]

≤ ε∆. If we assume that w and n are
multiplied by the same gain 1

√
∆

, then optimization problem 3.3 is
transformed to

Optimization 3.4: min∆minD0(z)∆ ·E
[

y2
]

subject to

E

[

(εy − uf )
2
]

≤ ε, (5)

E

[

n2[k]
]

=
1

1− ε
, E

[

w2[k]
]

=
1

∆
(6)

This particular characterization of the synthesis problem is in a more
“standard” form that is solved with existing optimization software.

We solved optimization problem 3.4 in two steps. We first note that
the inner optimization problem takes the form of a standard linear-
quadratic Gaussian (LQG) synthesis. We incorporated the constraint
into the performance index as a penalty and solved the uncon-
strained optimization problem for the augmented performance index
E

[

y2 + λ (εy − uf )
2
]

where λ is a specified positive number. The
solution of this optimization problem is a standard LQG controller,
denoted as D∆,λ(z). It can be shown that smaller λ will lead to
smaller E[y2]. This relationship between λ and E[y2] stems from
the fact that λ plays the role of a weighting function in the LQG
performance objective. A small λ, therefore, corresponds to a larger
penalty being assigned to E[y2]. The idea, therefore, is to search for
the smallest λ whose corresponding controller D∆,λ(z) satisfies the
constraint in eq. 6. We denote E

[

y2
]

, under the smallest λ, as p(∆).
This is exactly the optimal value for the inner part of optimization
3.4. This inner optimization problem was solved for a range of fixed
∆, so that p(∆) now becomes a univariate function showing how the
optimum performance E[y2] varies as a function of the reconstruction
error variance ∆. Note that we currently don’t know if p(∆) is a
convex function of ∆. So the point determined by this procedure
may only be locally optimal.

As an example, consider a feedback control system with unstable
loop function L(z) = z+0.8

z2+z+1.7
. We used the above approach to
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design an optimal dropout compensator for this plant. We refer
to this as the LQG dropout compensator. We compared the LQG
compensator’s performance against 4 popular heuristics. The first
heuristic set F (z) = 0 and corresponds to zeroing the control signal
when a dropout occurs. The second heuristic was F (z) = z−1

which is equivalent to reusing the last feedback measurement when
a dropout occurs. The third heuristic (“reconstuction compensator”)
uses an F (z) that minimizes the reconstruction error ∆. The fourth
heuristic (Free-ρ) used a Kalman filter in series with a linear quadratic
regulator (LQR). The Kalman gain was chosen to minimize the
estimation error in the presence of droputs. The LQR’s objective was
tuned to minimize the output signal power for the given Kalman filter.
The output power achieved by all dropout compensators is plotted as
a function of the average dropout rate ε in figure 3. The figure shows
that the reconstruction estimator and LQG compensation schemes
clearly outperform the other three heuristics. The LQG compensator
actually does a little better than the reconstruction compensator and
surprisingly its minimum value does not occur for ε = 0. This is
because the LQG compensator is a better regulator than the default
loop function L(z).
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Fig. 3. Performance comparisons under different dropout compensators

As mentioned in the introduction of this section, the two terms
in equation 2 suggest that the optimal dropout compensator does
not always attempt to minimize the reconstruction error. This fact
is illustrated in figure 4. This figure plots the optimum performance
level, p(∆), achieved for reconstruction errors in the range 0 < ∆ <
0.8 assuming ε = 0.1. Note that this function is not a monotone
increasing function of ∆. It has a definite global minimum that
appears to occur for a reconstruction error variance, ∆, of about
0.38. This result confirms our earlier suspicion that optimal dropout
compensation should not always try to minimize the reconstruction
error.
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IV. CONCLUSIONS

This paper derived a closed form expression for the power spectral
density of a single-input single-output networked control system with
i.i.d. dropouts. The assumptions on independent dropouts may be
dropped if one uses jump linear system methods [4]. The expression
consists of two terms that can be viewed as closed-loop transfer
functions that shape the impact that exogenous input disturbances
and dropout noise have on the control system’s output signal. We
noted that these two terms are complementary in nature, thereby
suggesting that optimal dropout compensation schemes should not
attempt to perfectly reconstruct the dropped measurements as such
reconstructions may increase closed loop system sensitivity to input
disturbances. We presented a method for synthesizing the optimal
dropout compensator.

V. APPENDIX: PROOF

Proof of Theorem 2.3: Let h and f denote the impulse response
functions for L(z) and F (z), respectively. Let w denote the exoge-
nous disturbance signal. The signals, y, ȳ, and ŷ represent the loop
function’s output signal, the control signal re-injected into the plant,
and the dropout compensator’s output signal, respectively. These three
signals are related through the convolution equations,

{

y = h ∗ (y + w)
ŷ = f ∗ y

(7)

We first compute the power cross-spectral densities Syw(z), Syw(z)
and Sŷw(z) relating these output signals to the input w. From
equation 7, we get

{

Syw(z) = L(z) (Syw(z) + Sww(z))
Sŷw(z) = F (z)Syw(z)

(8)

For any m, the correlation Ryw may be written as

Ryw[m] = E [y[n+m]w[n]]

= E [y[n+m]w[n]|d[n+m] = 0]P (d[n+m] = 0)

+ E [y[n+m]w[n]|d[n+m] = 1]P (d[n+m] = 1)

Because L(z) and F (z) are strictly proper, we know that y[n] and
ŷ[n] are independent of current and future dropouts, so that the last
equation can be rewritten as

Ryw[m] = E [y[n+m]w[n]]P (d[n+m] = 0)

+E [ŷ[n+m]w[n]]P (d[n+m] = 1)

= (1− ε)Ryw[m] + εRŷw[m]

We then take the double-sided z-transform of the above equation to
obtain

Syw(z) = (1− ε)Syw(z) + εSŷw(z) (9)

Combining equations 8 and 9 generates the following expressions for
the cross-spectral densities,











Syw(z) = D(z)L(z)
1−D(z)L(z)

Sww(z)

Syw(z) = L(z)
1−D(z)L(z)

Sww(z)

Sŷw(z) = D(z)L(z)F (z)
1−D(z)L(z)

Sww(z)

(10)

where D(z) = 1−ε
1−εF (z)

.
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The convolutions in equation 7 also generate the following equa-
tions

Syy(z) = L(z−1) (Syy(z) + Syw(z)) (11)

Syy(z) = L(z)L(z−1) (Syy(z) + Syw(z)

+Syw(z
−1) + Sww(z)

)

(12)

Sŷŷ(z) = F (z)F (z−1)Syy(z) (13)

Sŷy(z) = F (z)Syy(z) (14)

Syŷ(z) = F (z−1)Syy(z) (15)

There are six unknown spectral densities in the above equations.
There are the three spectral densities, Syy , Sŷŷ , and Syy . There
are also three cross-spectral densities Syy , Syŷ , and Sŷy . There are,
however, only 5 equations given above. Since there are six unknowns
and only five equations, we must find another independent equation.
The signal y is not related to y and ŷ through a simple convolution
because y switches between these two signals.

In order to properly model the correlation of such switching sig-
nals, it is convenient to define single-sided power spectral densities.

S+xy(z) =

∞
∑

m=1

Rxy[m]z−m, S−xy(z) =

−1
∑

m=−∞

Rxy[m]z−m

The above definitions imply






Sxy(z) = S+xy(z) + S−xy(z) +Rxy[0]
S−xy(z) = S+yx(z

−1)
Syy(z) = S+

yy
(z) + S+

yy
(z−1) +Ryy[0]

(16)

The sixth equation will be obtained by deriving an expression for
Syy(z). We first note that for m > 0,

Ryy[m] = E [y[n+m]y[n]]

= E [y[n+m]y[n]|d[n+m] = 0] Pr(d[n+m] = 0)

+ E [y[n+m]y[n]|d[n+m] = 1] Pr(d[n+m] = 1)

Because L(z) and F (z) are strictly proper, we know that

Ryy = E [y[n+m]y[n]]Pr(d[n+m] = 0)

+E [ŷ[n+m]y[n]]Pr(d[n+m] = 1)

= (1− ε)Ryy[m] + εRŷy[m]

which immediately implies that

S+yy(z) = (1− ε)S+yy(z) + εS+ŷy(z)

From the PSD identities in equation 16, we know that

S+yy(z) = Syy(z)− S−yy(z)− Syy[0] (17)

A similar technique is used for m < 0 to obtain

S−yy(z) = (1− ε)S−yy(z) + εS−yŷ(z) (18)

Substituting eq. 18 into eq. 17 yields

S+yy(z) = Syy(z)− (1− ε)S−yy(z)− εS−yŷ(z)− Syy[0] (19)

Similarly we can obtain

S+ŷy(z) = Sŷy(z)− (1− ε)S−ŷy(z)− εS−ŷŷ(z)− Sŷy[0] (20)

We now substitute equations 19 and 20 into equation 17 to obtain

S+yy(z) = (1− ε)Syy(z) + εSŷy(z)− (1− ε)2S−yy(z)

−ε2S−ŷŷ(z)− ε(1− ε)S−yŷ(z)

−ε(1− ε)S−ŷy(z)− (1− ε)Ryy[0]

−εRŷy[0] (21)

Substituting eq. 21 into the third identity in equation 16 yields

Syy(z) = (1− ε)
(

Syy(z) + Syy(z
−1)
)

+ε
(

Sŷy(z) + Sŷy(z
−1)
)

−(1− ε)2
(

S−yy(z) + S−yy(z
−1)
)

−ε2
(

S−ŷŷ(z) + S−ŷŷ(z
−1)
)

−ε(1− ε)
(

S−yŷ(z) + S−ŷy(z
−1)
)

−ε(1− ε)
(

S−yŷ(z
−1) + S−ŷy(z)

)

−2(1− ε)Ryy[0]− 2εRŷy[0] +Ryy[0]

We can apply the properties of single sided PSD in eq. 16 to cancel
the sum of single sided PSDs in the above equation to obtain our
final expression

Syy(z) = (1− ε)
(

Syy(z) + Syy(z
−1)
)

+ε
(

Sŷy(z) + Sŷy(z
−1)
)

− (1− ε)2Syy(z)

−ε2Sŷŷ(z)− ε(1− ε)Syŷ(z)

−ε(1− ε)Sŷy(z) + (1− ε)∆ (22)

where

∆ =

(

−2
ε

1− ε
Rŷy[0] +

1

1− ε
Ryy[0] +

ε2

1− ε
Rŷŷ[0]

−2Ryy[0] + (1− ε)Ryy[0] + εRyŷ[0] + εRŷy[0]) .

Equations 11-15 and 22 represent 6 independent equations that we
can then solve them for the 6 PSD’s. In particular, solving for Syy(z)
yields the first PSD in the theorem. Because ỹ[n] = y[n]− y[n], we
know that

Sỹỹ(z) = Syy(z) + Syy(z)− Syy(z)− Syy(z)

which simplifies to the second PSD in the theorem. A simpler, more
meaningful, expression for ∆ can be computed. The previously used
techniques show that Ryy[0] = εRŷy[0]+(1−ε)Ryy[0]. We then use
this relation to simplify our expression for ∆ to the form ∆ = Rỹỹ[0]
where ỹ = y − y. Because Rỹỹ[0] = 1

2π

∫ π

−π
Sỹỹ(e

jω)dω, we
can further reduce this expression to that stated in the theorem.
When ε > 0, then we know that ∆ = Rỹỹ[0] > 0 and
1
2π

∫ π

−π

∣

∣

∣

L(ejω)(D(ejω)−1)

1−D(ejω)L(ejω)

∣

∣

∣

2

Sww(e
jω)dω > 0. The existence of a

positive solution to equation 4 implies uniqueness. ♦
Proof of Theorem 3.1: Because the system is internally stable,

a computation of E

[

ỹ2
]

for the LTI system shows that E

[

ỹ2
]

=

‖Gỹw‖
2
2 + ‖Gỹn‖

2
2E[n2]. Let ∆ = E[n2](1− ε) = E[ỹ2], then the

preceding equation takes the form, ∆ = ‖Gỹw‖
2
2 + ‖Gỹn‖

2
2
∆
1−ε

which has a non-negative solution when the theorem’s inequality
constraint is satisfied. ♦

Proof of Theorem 3.2: The state space model of the equivalent
system in figure 2 is

{

xe[k + 1] = Aexe[k] +Bww[k] +Bnn[k]
y[k] = Cyxe[k]
ỹ[k] = Cỹxe[k]− (1− ε)n[k]

(23)

where Bw =

[

Bh

0

]

, Bn = (1 − ε)

[

Bh

Bf

]

, Cy =
[

Ch 0
]

,

Cỹ = ε
[

Ch −Cf
]

, and Ae = (1− ε)A0 + εA1. The matrices
A0, A1, Bh, Bf , Ch and Cf are defined in section II.

We first establish that internal stability of the LTI system implies
mean square stability of the original NCS. By assumption the LTI
system is internally stable, which means that ‖Gỹn‖

2
2 = CỹWnC

2
ỹ+

(1 − ε)2 where Wn satisfies the Lyapunov equation AeWnA
T
e +

BnB
T
n = Wn. Moreover, because all eigenvalues of Ae lie within
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the unit circle, we also know there exists a unique P0 > 0 that
satisfies the Lyapunov equation AeP0A

T
e + I = P0.

Combining the assumption that ‖Gỹn‖
2
2 < 1−ε with the Lyapunov

equation for Wn yields CỹWnC
T
ỹ < ε(1− ε). Because this is strict

inequality, we know there exists a small positive real number γ such
that Cỹ (Wn + γP0)C

T
ỹ < ε(1− ε). We now define the symmetric

matrix P by the equation P = Wn + γP0. Based on the matrix
definitions given above, we know that for any symmetric matrix P

((1− ε)A0PAT
0 + εA1PAT

1 )−AePAT
e

=
1

ε(1− ε)
BnCỹPCT

ỹ B
T
n (24)

In particular, we set P equal to the matrix P defined in the preceding
paragraph. For this particular P we know that CỹPCT

ỹ < ε(1− ε),
so that equation 24 becomes,

(1− ε)A0PAT
0 + εA1PAT

1 ≤ AePAT
e +BnB

T
n

= (AeWnA
T
e +BnB

T
n ) + γAeP0A

T
e

= Wn + γ(P0 − I) < Wn + γP0 = P

Therefore there exists a P > 0 such that (1 − ε)A0PAT
0 +

εA1PAT
1 < P . We now construct a free jump linear system with the

transposed system matrix, AT [k], of the original NCS in equation 1.
We construct a candidate Lyapunov function V [k] = xT [k]Px[k].
Because the switching is i.i.d. in the jump linear system, we use
the above equation to show that E [V [k + 1]] < E [V [k]] for all k.
This implies that the transposed system is mean square stable and
by theorem 2.1 we know that the matrix AT

[2] = (1− ε)AT
0 ⊗AT

0 +

εAT
1 ⊗AT

1 has all its eigenvalues within the unit circle. This implies
that A[2] is stable and we again use theorem 2.1 to infer the stability
of the original NCS. We now show that both systems generate the
same power spectral densities. Since the equivalent system is stable,
it will generate WSS signals y and ỹ. From theorem 3.1, we know
that . Computing the PSD’s for the equivalent system and using the
fact (theorem 3.1) that E[n]2 = E[ỹ2]/(1− ε), we can easily show
that both systems generate the same PSD’s. ♦
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