
Control System Performance under Dynamic
Quantization: the scalar case

Michael Lemmon and Qiang Ling

Abstract— This paper derives an upper bound on the
quantization error generated by a scalar quantized feedback
control system. We assume a dynamic quantization policy in
which feedback data is randomly dropped in accordance with
an (m,k)-firm guarantee rule. Our main result identifies the
minimum quantization level required to assure a specified
signal-to-quantization ratio (SQR). We also show that these
performance bounds scale in an exponential manner with
k − m, thereby suggesting that real-time systems enforcing
an (m, k)-firm guarantee rule should seek to keep k as small
as possible.

I. INTRODUCTION

This paper studies the performance of a scalar quantized
feedback control system shown in figure 1. This paper ex-
tends the work in [1] to bound the steady state quantization
error achieved by the feedback system. The encoder/decoder
use a dynamic quantization policy and the encoded data is
dropped by the communication channel in accordance with
the (m, k)-firm guarantee rule. The (m, k)-firm guarantee
rule is a task model in which at least m out of k consecutive
jobs meet their deadlines. This firm real-time constraint has
been used for overload management in real-time control
systems [2].

Most of the previous work in this area has identified
fundamental upper bounds on the minimum number of
quantization levels assuring closed loop stability [3] [4] [5]
[6] [7] [8] [9] [1] [10] [11]. There has been relatively little
work examining system performance [1] [12]. In [1], the
stability of the quantized control system shown in figure 1
was ensured by determining a bound on the quantization
noise. This bound, however, was too loose to be a practical
performance measure. More recently, [12] examined the
performance of scalar statically quantized feedback control
systems with delays.

In this paper we also confine our attention to scalar
quantized feedback systems. For such systems it is relatively
easy to obtain tight bounds on the quantization error.
The main result of this paper is an upper bound on the
quantization error and a study of how this bound scales
with the number of quantization levels, Q, the rate at which
data is dropped, and the open loop system’s pole location.
From this study, we identify the minimum quantization level
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required to assure a specified signal-to-quantization ratio
(SQR).

The remainder of this paper is organized as follows.
Section II introduces the quantized feedback control system
under study. Section III derives an upper bound on the
quantization error of the system in the presence of dropped
feedback measurements. Section IV uses this bound to
determine the minimum quantization level required to en-
force a specified performance level under an (m, k)-firm
guarantee rule. Section V examines the dependence of this
bound on the (m, k)-rule itself. Section VI summarizes the
paper’s conclusions.

II. PROBLEM STATEMENT

Figure 1 is a block diagram of the control system under
study. The plant’s output at time n is a real scalar denoted as
xn. The state process {xn} satisfies the following difference
equation,

xn+1 = axn + un + wn

where a is a real number. If |a| < 1, then the plant is said
to be stable, otherwise it is unstable. The signal {wn} is a
bounded exogenous input such that |wn| < M for all n. The
signal {un} is the control signal generated by the controller
from the feedback signal {x̂n}. In this paper we assume that
un = kx̂n, where k is some scalar control gain. Throughout
this paper we assume that a > 1 and |a + k| < 1.
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Fig. 1. Quantized Feedback Control System

The control system shown in figure 1 is a quantized con-
trol system. In such systems, the plant’s output is quantized
by an encoder, the quantized signal is transmitted over an
unreliable feedback channel, and a decoder at the other end
of the channel reconstructs the feedback measurement. The
encoder maps the plant output, xn, onto one of Q discrete
symbols. The resulting quantized signal is denoted as xq

n.



The signal received by the decoder is denoted as xq
n. Note

that the feedback channel is assumed to be unreliable, which
means that the channel has a finite chance of dropping the
quantized feedback signal. In particular, let {dn} be a binary
random process that we call the dropout process. The signal
received at the decoder is denoted as xq

n and it satisfies the
equation

xq
n =

{

∅ if dn = 1
xq

n if dn = 0

In other words, if dn = 1 (a dropout occurs), then the
symbol received at the decoder is the “empty” symbol. If
dn = 0 (no dropout occurs), then the symbol received at
the decoder is simply the quantized measurement, xq

n. The
received symbol is used by the decoder to reconstruct the
plant’s output. This reconstructed estimate is denoted as x̂n

and it is used by the controller to generate the control signal
un.

The dropout process, {dn}, is assumed to satisfy the
(m, k)-firm guarantee rule. This means that there are at
least m successful transmissions over the feedback path in
k consecutive attempts. So if m and k are given, then dn

satisfies the (m, k)-firm guarantee rule if and only if

k − m ≥
k
∑

i=1

dn+i

for all n. For a {dn} that satisfies the (m, k)-firm guarantee
rule, it will be convenient to define the maximum dropout
rate as

ε = 1 −
m

k
(1)

The encoder and decoder use the dynamic quantization
policy described in [1]. We focus on this particular quantizer
because it is well-known that if wn = 0, then the closed
loop system without dropouts is asymptotically stable if
and only if the number of quantization levels satisfies the
following inequality Q > max(1, |a|).

Under the dynamic quantization policy, the “meaning”
of the quantization symbol is time varying. In particular,
the quantization policy assumes that the true plant output,
xn, at time n lies within the closed interval In = [x`

n, xu
n]

where x`
n and xu

n denote the two endpoints of the interval.
We assume that In is partitioned into Q subintervals of
equal length. The ith subinterval is [x`

n,i, x
u
n,i] where xu

n,i =
x`

n,i+1 for i = 1, . . . , Q − 1. We denote this subinterval as
In,i. If the plant output xn lies within the ith sub-interval
In,i, then the measurement is encoded with the index i and
that index (symbol) is then transmitted to the decoder. If the
transmitted index is successfully received by the decoder
(i.e., dn = 0), then the feedback measurement, x̂n and
endpoints of the interval In+1 = [x`

n+1, x
u
n+1] are updated

according to the formulae

x̂n =
x`

n,i + xu
n,i

2
x`

n+1 = ax`
n,i − M + un

xu
n+1 = axu

n,i + M + un

If the transmitted symbol is dropped (i.e., dn = 1) then the
estimate, x̂n, and endpoints of In+1 are updated according
to the following formulae,

x̂n =
x`

n + xu
n

2
x`

n+1 = ax`
n − M + un

xu
n+1 = axu

n + M + un

This quantization rule is dynamic because each quantization
symbol is associated with an interval that changes over time
according to the update rules given above.

Remark: It is important to note that this dynamic quan-
tization policy requires that the encoder and decoder be
synchronized at time 0. Specifically, this means that they
agree upon the same x` and xu and the system model
(i.e., the system parameter a) prior to starting. Moreover,
there is the implicit assumption here that both encoder and
decoder know when a symbol has been dropped. In practical
terms, this means that the decoder has to acknowledge
(ACK) the receipt of the symbol and it means that the ACK
must be reliably received by the encoder. These are strong,
though somewhat common, assumptions and the practical
implementation of such schemes must be concerned with
developing fault-tolerant methods for enforcing these as-
sumptions.

III. MAIN RESULT

Prior work has established that if Q > max(1, |a|)
then the unforced (wn = 0) system without dropouts will
be asymptotically stable. A straightforward extension of
this prior work [11] shows that the unforced system is
asymptotically stable if and only if

Q ≥
⌈

(max(1, |a|))
1

1−ε

⌉

(2)

where ε is the average dropout rate given in equation 1. In
all of this prior work, however, the underlying assumption
is that there is no input disturbance. This section uses
the techniques in [1] to compute an upper bound on the
quantization error when there is bounded input disturbance
(i.e. |wn| < M for all n). For the scalar system considered
in this paper, the bound is tight in the sense that there
exists a disturbance process {wn} that actually achieves the
bound.

Recall that the dynamic quantizer constructs a sequence
of intervals, {In}, such that xn ∈ In. We then take the
center of this interval as the reconstructed measurement,
x̂n. This means that we can take the quantization error as
half the interval’s length

Ln =
xu

n − x`
n

2



In particular, we’re interested in Ln as n → ∞.
Ln evolves according to the dynamic equation

Ln+1 = ΘnLn + M (3)

where Θn = a if there is a dropout (dn = 1) and Θn = a/Q
if there is no droput (dn = 0). So let’s define the l-step
transition function,

Φ(n, n − l) =

{

Θn−1Θn−2 · · ·Θn−l l ≥ 1
1 l < 1

(4)

Using this definition for Φ in equation 3 allows us to
conclude that

Ln =

n−1
∑

i=0

Φ(n, n − i)M + Φ(n, 0)L0 (5)

We now determine an upper bound on Φ(n, n−i). Clearly
if i = k, then the fact that {dn} satisfies the (m, k)-firm
guarantee rule means that Θi should be a/Q for at least m
times. Since a/Q < a, we can therefore see

Φ(n, n − k) ≤

(

a

Q

)m

ak−m

Note that this bound is tight in the sense that there is
a sequence of dropouts for which equality holds. Now
consider Φ(n, n − i) where i < k. By the (m, k)-firm
guarantee rule we can have at most k −m dropouts in this
situation. We may therefore bound Φ(n, n − i) as

Φ(n, n − i) ≤

{

ak−m( a
Q

)i−(k−m) if k − m < i < k

ai if i < k − m

As before this bound is tight in the sense that there is a
sequence of dropouts for which equality holds. Combining
the cases for i = k and i < k, after some algebra we can
infer that

Φ(n, n − i) ≤

(

ak

Qm

)ik

aimin

(

a

Q

)imax

= φn (6)

where

imin = min(i − ikk, k − m),

imax = max(0, i − ikk − (k − m)),

and ik = b i
k
c, the largest integer that is less than or equal

to i/k.
Applying equation 2 to the above bound (Eq. 6) implies

that

lim
i→∞

Φ(n + i, n) = 0

So we can see that

lim
n→∞

sup Ln = lim
n→∞

(

n−1
∑

i=0

φnM + φ0L0

)

= lim
n→∞

n−1
∑

i=0

φnM

where φn is the upper bound on Φ(n, n − i) defined in
equation 6. We now use the bound in equation 6 to simplify
the preceding geometric series to the form

L = lim
n→∞

sup Ln

=

(

ak−m+1
−1

a−1 +
∑m−1

j=1
aj+k−m

Qj

)

(

1 − ak

Qm

) M (7)

= M
akε

1 − χk

(

a − a−kε

a − 1
+

η − ηk(1−ε)

1 − η

)

(8)

where η = a/Q and χ = a/Q1−ε. The expression in equa-
tion 8 represents a tight upper bound on the quantization
error achieved by this dynamic quantizer under a dropout
sequence satisfying an (m, k)-firm guarantee rule.

IV. QUANTIZATION BOUND

This section establishes a lower bound required on the
quantization level to assure a specified level of performance
under an (m, k)-firm guarantee rule. We begin by rewriting
our bound as

L = C(B1 + B2)

where C is the leading coefficient in equation 8 and B1

and B2 are the two terms in the parantheses. For stability
we require χ < 1, which implies that η is always less than
one.

We now consider the limit as Q → ∞. This corresponds
to the perfect case in which there is no quantization. This
limit is

lim
Q→∞

L = LQ = akεM

(

a − a−kε

a − 1

)

LQ represents the best achievable performance under an
(m, k) rule with no quantization.

If we begin quantizing data then we expect L to get larger
than LQ. In reviewing equation 8, we see that the term B1 is
independent of Q and the second term, B2, depends heavily
on Q. Furthermore, we see that B2 goes to zero as Q → ∞.
Quantizing the data may therefore be seen as as introducing
additional “noise” whose size is determined by the B2 term.
In particular, let’s define γ as the signal-to-quantization
ratio (SQR) defined as

γ =
B1

B2
=

a − a−kε

a − 1

1 − η

η − ηk(1−ε)

If we choose Q so that γ is greater than a specified γ0, then

L ≤
1

1 − χk
LQ(1 + γ0)

Let’s determine the range of quantization levels ensuring
that the above inequality holds.

In particular, we can see that γ > γ0 if

a − a−kε

a − 1
> γ0

η

1 − η



Since η = a/Q, we can readily solve for Q to obtain

Q > a

(

1 + γ0
a − 1

a − a−kε

)

= Qmin

The righthand term in this inequality represents the min-
imum quantization level required to achieve the specified
performance level in which γ > γ0. We’ll denote this
quantization level as Qmin.

This bound implies that if we have a specified perfor-
mance level parameterized by γ0 (signal-to-quantization
noise level), then there is no real reason to quantize above
Qmin. Figure 2 plots Qmin as a function of the unstable
pole location a. This plot assumes ε = 0 (the worst case
bound) and varies γ0, the specified signal-to-quantization
level. Note that for γ0 on the order of 1 (which implies
quantization noise is on the same level as the actual ideal
performance, we see that relatively few bits are needed.
As we increase, γ0, the number of bits also increases in a
manner that is proportional to γ0.
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Fig. 2. Qmin versus pole location

V. QUANTIZED PERFORMANCE UNDER (m, k) FIRM

GUARANTEES

Let’s now consider how our performance varies with k
(window size) and ε = 1 − m/k (dropout rate) associated
with a particular (m, k)-firm guarantee rule. We know that
if Q > Qmin, then the performance satisfies the inequality

L ≤
LQ

1 − χk
(1 + γ0)

So to study the dependence on k and ε, we really only
need to study how the term LQ

1−χk varies with k and ε. This
particular term may be rewritten as

LQ

1 − χk
=

akε+1 − 1

a − 1

1

1 − χk

(assuming M = 1). The second term 1/(1−χk) has a weak
dependence on k since χ < 1. The major sensitivity of this
term is given by the numerator term akε+1. For unstable
a (|a| > 1), we see that this grows exponentially with the
size of kε. In other words, the primary variable of interest
in the (m, k)-rule that effects performance is the product

of k (window size) and ε dropout rate. This term is equal
to k − m which represents the largest number of possible
consecutive dropouts that might occur in a window of size
k. This particular consecutive sequence represents the worst
possible growth on the uncertainty that can occur, so it is not
surprising that our performance bound is strongly effected
by this.

The fact that performance degrades with the exponent kε
suggests that we should keep k small and ε small. This
has important consequence for real-time control. The m/k
ratio can be construed as a utilization rate. Figure 3 plots
the achievable performance of a real-time control system
that quantizes at the Qmin level associated with γ0 = 10
for various k window sizes between 2 and 5. We plot this
performance for various utilization levels between 50 and
90 percent. Note that the performance of a system with
k = 5 and 60 percent utilization is less than a similar
system that assume k = 2 and has a 50 percent utilization,
thereby reinforcing the intuition that smaller k windows
should enable better performance at lower utilization levels.
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Fig. 3. Performance versus window size for various utilization rates

VI. CONCLUSIONS

This paper has studied the performance of a scalar
quantized control system under an (m, k)-firm guarantee
rule. The principal finding of this paper is a minimum
quantization level, Qmin required to assure a specified level
of performance. The second finding is that the primary
variable degrading system performance under the (m, k)-
rule is kε where k is the window size and ε is the maximum
dropout rate. This last observation suggests that real-time
system engineers should design their systems to minimize
k as much as possible.

Our findings are clearly limited by focusing on scalar
feedback systems. We are currently studying methods for
extending this paper’s findings to multivariable quantized
feedback systems using the dynamic bit assignment algo-
rithm in [11].
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