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Abstract

In recent years there have been several papers characterizing the minimum number of quantization
levels required to assure closed loop stability. This minimum bit rate is usually achieved through time-
varying quantization policies. Many networks, however, prefer a constant bit rate configuration [1], so it
is useful to characterize the stability of quantized feedback systems under constant bit rate quantization.
This paper first derives a lower bound on the number of quantization levels required for closed loop
stability under constant bit rates. We then introduce a novel dynamic bit allocation policy that achieves
this bound.

I. INTRODUCTION

In recent years there has been a considerable amount of work studying the stability of quantized
feedback control systems [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]. These papers may be classified
into two groups; static and dynamic quantization policies. Static policies [2] [3] [4] [5] presume
that data quantization at time % is only dependent on the data at time k. Such policies are
sometimes said to be memoryless. In dynamic policies [6] [7] [8] [9] [10] [11] data quantization
at time k£ depends on data at time instants less than or equal to k£. The major advantage of
static quantization policies is the simplicity of their coding/decoding schemes. In [2], however,
it was proven that static policies with a finite number of quantization levels cannot achieve

asymptotic stability. A finite number of quantization levels can only achieve practical stability
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(i.e. states converge into a bounded set)[4] [6]. When an infinite number of quantization levels
are available, sufficient bounds for asymptotic stability under static quantization were derived in
[5] using robust stability methods. It was shown in [3] that the least dense static quantizer with
an infinite number of quantization levels is the logarithmic quantizer.

Dynamic policies have been shown to achieve asymptotic stability with a finite number of
quantization levels. These policies presume that the state, z[k] € R, at time instant k lies inside
a set P[k] called the uncertainty set. If P[k] converges to 0, i.e. every point in P[k| converges
to 0, then the system is asymptotically stable. The basic approach was introduced in [7] [8]. In
these papers the uncertainty set, P[k], is partitioned into M~ small rectangles. Denote the small
rectangles as Pi[k] (i = 0,1,---, NM —1). If z[k] € P;[k] then the index j is transmitted. This
uncertainty set is then propagated to set P[k + 1] using what we know of the plant’s dynamics.
These papers provided sufficent conditions for the convergence of the sequence, { P[k]}, to zero.

A generalization of the approach in [7] was presented in [9] [10]. Suppose the eigenvalues
of the quantized system are denoted as \; for i = 1,..., N and assume P[k| is shaped like
a rectangle. Let the i side of P[k] be equally partitioned into 2% parts, i.e. R;[k] bits are
assigned to the " dimension (R;[k] must be an integer). The total number of bits is R[k] =

N R;[K], i.e. there are Q[k] = 2kl quantization levels at time k. The approach discussed
in [9] [10] assumes a time-varying bit rate policy in which R[k] varies over time, but has an
average value R = limy_ % S F=3 R[K]. In [9] [10] it is shown that the quantized system is
asymptotically stabilizable if and only if

R> i\f: max (0, log, |Ai]) (1)
i=1
Constant bit rate policies require that R;[k] = R; for i = 1,..., N and where R; is independent

of k. In [9] a sufficient condition for asymptotic stability under constant bit rates was given as

N N
R = Z: R; > Zmax (0, [logy [Ni]]) - 2

where [-] means [z] = min{n|n > z,n € N'}. There can be a significant gap between the
bounds in equations 1 and 2, so it is natural to ask whether there exists a tighter bound than the
one in equation 2 for the constant bit rate case. That is precisely the question addressed in this

note.
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This paper shows that a lower bound on the number of quantization levels required to stabilize
the system is given by the equation
N
Q=2%> {H max(1, |)\Z|)W ) (3)
=1
We then introduce a dynamic bit assignment policy that actually achieves this bound. This bit
assignment is done as follows. Suppose P[k] is a parallelogram, there are @@ = 2% quantization
levels and @ is an integer. At every step, only the “longest” side of P[k] (in the sense of a
weighted length) is equally partitioned into () parts; the other sides aren’t partitioned. Because
no side is always the longest, the bit assignments are dynamic rather than static. The paper’s

main contribution proves that the lower bound in equation 3 is realized by this policy.

Il. QUANTIZED FEEDBACK CONTROL SYSTEM

This paper studies a quantized feedback control system with dropouts, which is shown in

figure 1. The plant is a discrete-time linear system whose state equations are

X[(K]
X[k +1] = AXK] + Bu[K] ‘

ulk]

Controller

x9[K]

Encoder/Quantizer

qKl/g Sk 0{1.2,-,Q}

Fig. 1. Quantized feedback control system

zlk+1] = Ax[k] + Bulk] @

ulk] = Kux1[k]|
The state z[k] € R" is quantized and encoded into a symbol s[k] from a discrete set {1,2,---, Q}.
Throughout this paper, the terms “quantizer” and “encoder” are used interchangeably. s[k]
is transmitted to the decoder over a communication network. Because the network is non-
deterministic, a portion of the transmitted symbols may be dropped. A dropped symbol is denoted

by receiving ¢ at the decoder. The decoder uses the received symbols to compute an estimate,
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x9]k], of the plant’s true state, x[k]. The controller uses this estimate, x9[k| to compute the
control signal u[k].

We are interested in the following notion of deterministic stability,

Jim [2[k][l> =0, (5)
for all z[0] € R™ where || - ||» denotes the Euclidean 2-norm. We study stability under the
following assumptions

1) (A, B) is controllable. A = diag(Jy, Ja, - - -, J,) Where J; is an n; x n; real matrix with a

single real eigenvalue )\; or a pair of conjugate eigenvalues \; and ),. All eigenvalues ),
are assumed to be unstable, i.e. |\;| > 1.

2) The initial condition z[0] lies in a parallelogram P[0].

3) Transmitted symbols, s[k|, are dropped at the rate of ¢ symbols per transmission. The
precise definition of ¢ will be found in equation 7. We assume that the encoder and
decoder both know whether a dropout has occurred.

4) Both the encoder and the decoder know the system matrices (A and B), the coding-
decoding policy and the control law. They also agree upon the initial uncertainty set, i.e.
the parallelogram which z[0] lies in.

We take the matrix, A, (assumption 1) to be in its real Jordan canonical form. Since any system
may be reduced to this form through a similarity transformation, we may therefore assume
A = diag(J1, Jo,-- -, Jp). When |\;| < 1, the subsystem corresponding to J; is stable. We can
exclude the stable subsystem and consider only the unstable lower dimensional subsystem. This
paper therefore assumes that |\;| > 1 (i =1,---,p).

Assumption 2 requires that the initial state is known to lie within a specified parallelogram

PI0]. This set may be written as

P[0] = z9]0] + U|0]
where z?]0] is the center of P[0] and U[0] is a parallelogram centered at the origin and defined
in equations 10-11.
Assumption 3 comes from the non-determinism of the network. We introduce a dropout
indicator d[k],

1, the symbol at time % is dropped
dlk] = (6)
0, otherwise
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We assume that the dropout model satisfies

1 L
e = Jim = Y dli+ ), %
=1

L—oo
for all &y > 0 where ¢ is the “average” dropout rate and the convergence in equation 7 is uniform
with respect to k.

Assumption 4 requires that the coder and the decoder deal with the same initial uncertainty,
and share the same coding-decoding policy and control law so that the symbol produced by the
encoder can be correctly interpreted by the decoder. This is a strong assumption for it requires
that the encoder and decoder are “synchronized”. Maintaining such synchronization in a fault-

tolerant manner requires further study, but that study is not done in this paper.

I1l. PRELIMINARY RESULTS

This section introduces notational conventions and outlines a proof for the bound in equation

3. For the matrix A in assumption 1, let
p
y(A) = [T (max(1, [x:]))™ (8)
i=1
We assume all eigenvalues of A are unstable. So v(A) = |det(A)|, where det(-) is the determinant
of a matrix.
The state x[k] at time k is quantized with respect to a parallelogram representing the quanti-

zation “uncertainty”. These uncertainty sets are represented as
P[k] = z9[k] + UlK] 9)

where x4[k] € RY is the center of P[k] and U[k] is a parallelogram with its center at the

origin. The parallelogram U|k] is formally represented by a set of vectors {v; ;[k| € R™ } where

t=1,...,pand j = 1,...,n; The “side” of the parallelogram associated with the ith Jordan
block in A is denoted as the convex hull
Si[k] = Co {U v = Z(:I:i)v”[k:]} (10)
j=1

The entire parallelogram, U|[k|, may therefore be expressed as the Cartesian product of the sides,
Si|k]. In other words

Ulk] =TT Silk (12)
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The volume of U is defined as vol(U) = [, 1 - dx The “size” of Ulk] is measured by its
diameter d,.x(U[k]). The diameter of U is defined as

max(U) = sup ||z —yll2 (12)

z,yelU
where || - ||> denotes Euclidean 2-norm of a vector. The quantization error is defined as e[k] =
x[k] — 2?[k]. By equation 9, we know e[k] € U[k]. When a quantization policy is used, we
will generate a sequence of uncertainty sets, {U[k]|}. The following lemma asserts that the
convergence of the diameter of U[k] is equivalent to the asymptotic stability of the system.
Lemma 3.1: The system in equation 4 is asymptotically stable if and only if the sequence of

uncertainty sets, {U|[k|}, satisfies

Jim d(U[K]) = 0. (13)
Lemma 3.1 can be proven in a manner analogous to that found in Lemma 3.5.1 of [10].

A lower bound on the number of quantization levels required to stabilize the feedback control
system is stated below in theorem 3.2. We only sketch the proof of this theorem as the proof’s
method directly follows that used in [11].

Theorem 3.2: Under assumptions 1 - 4, if the quantized feedback system in equation 4 can

be asymptotically stabilized, then the number of quantization levels, @, satisfies

Q> [v(A)7F] (14)
Sketch of Proof: The volume of U[k] (in the worst case) is updated by
> Alvol(Uk]),  dlk]

vol(UTk + 1)) { =
= |det(A)[vol(U[k]), d]k]

0
1

Because of asymptotic stability, lemma 3.1 implies vol(U[k]) — 0 as k — oo. This volume
limit, together with the dropout rate of ¢, yields
|det(A)]

Ql—e

Because y(A) = |det(A)| and @ is an integer, we obtain the lower bound in equation 14.

<1 (15)

IV. MAIN RESULTS

This section presents the dynamic bit assignment policy (algorithm 4.1) and states a theorem

(theorem 4.1) asserting that the lower bound is achieved by this bit assignment policy.
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The following algorithm dynamically quantizes the state x[k] for the feedback system in
equation 4 under assumptions 1- 4. The algorithm updates a parallelogram, P[k] containing
the state at time k. This parallelogram, P[k], is characterized by, x?[k], the center of the
parallelogram, and U[k], the uncertainy set. The uncertainty set U[k] is formed from a set
of vectors {v; ;[k] € R"} (i=1,...,pand j = 1,...,n;) according to equations 10-11. The
uncertainty set U/-”)[k] is a modification of U[k] that is formed from the vectors {vg,j [k:]} where
v ;= vy if (4, 7) # (I, J) and v; ; = v; ;/Q if (i,5) = (I, J). The basic variables updated by
this algorithm are therefore the collection of vectors {v; ;[k]} and z?[k]. The quantized signal
that is sent between the encoder and decoder at time £ is denoted at s[k]. This quantized signal
is equal to one of @) discrete symbols. The following algorithm consists of two tasks that are
executed concurrently, the encoder and decoder tasks. Each task’s first step starts its execution
at the same time instant.

Algorithm 4.1: Dynamic Bit Assignment:
Encoder/Decoder initialization:
Initialize z9]0] and {v; ;[0]} so that z[0] € z?[0] + U[0] and set k& = 0.
Encoder Task:

1) Select the indices (7, J) by

(1,J) = arg max [ Jivi (K]l -
2) Quantize the state x[k] by setting s[k] = s if and only if
z[k] € 29[k] 4+ 207 4 UD k]
where
2 =10 ... 0T 0 - 0 (16)

and v = 2Dy, k] for s =1,...,Q.

3) Transmit the quantized symbol s[k] and wait for acknowledgement

4) Update the variables
’Ui’j[k‘—i—l] = JZ"UZ‘,]'[]C]

2k +1] = (A+ BK)x[k]
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5) If decoder ack received:

1
ULJ[]{?—I—l] = @ULJ[]{?—FH
2k +1] = 2k + 1] + Azly)
where xg,;‘]]) is defined in equation 16.
6) Update time, k& := k£ + 1 and return to step 1.
Decoder Task:
1) Update the variables
’Ui’j[k? —+ 1] = Jivi,j []{7]
2k +1 = (A+ BK)x[k]
2) Wait for quantized data, s[k], from encoder.
3) If data received:
1
UI7J[]€+1] = @ULJ[]{?—FH
2k +1] = 2tk + 1] + Azly)

where z{;/) is defined in equation 16. Then send ack back to the encoder.

4) Update time index, k£ := k + 1, and return to step 1.

Remark: This algorithm assumes the variables {v; ;[k|} and z9[k] are “synchronized” at the
beginning of the kth time interval. Furthermore, we assume the “ack” from decoder to the
encoder is reliably transmitted.

Remark: The decision in step 1 of the encoder algorithm is made on the uncertainty set at
time k + 1, rather than k. This was motivated by preliminary studies which showed that using
the kth uncertainty set may perform poorly when some of the \; are large.

Theorem 4.1 LetQ = [W(A)fsw . The feedback system in equation 4 is asymptotically stable
under the quantizer in algorithm 4.1. Furthermore for any An > 0, there exists a finite Ax,, > 0
such that

(U [K]) < Ay (1 + Ap)™™ (17)

¥(A)
Qlfs

In order to improve readability, we move the proof of theorem 4.1 to the appendix, section VI.

where n =
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Remark: We now compare the two sufficient stability conditions in equations 2 and 3. For

convenience, we rewrite these two conditions as

QZQR > IJ_VIQUOgQ(P\im (18)
=1
N

Q > [ITInN (19)
=1

Considering the ceiling operations above, we know that the bound in equation 19 is equal to or

smaller than that in equation 18. We use the following example to illustrate this difference more

1.8 0
clearly. Let A = . The bound in equation 2 is @ > 4. The bound in equation 14 is

0 1.1
Q) > 2. So the latter bound is better.

We offer an intuitive explanation for this difference. The quantization policy in [10] deals

seperately with the two subsystems

Every subsystem is unstable and therefore needs at least 2 quantization levels. So by equation
2, we need at least 2 x 2 = 4 quantization levels. Although the two subsystems are unstable,
however, it can be seen that they are not too unstable. If we assign 2 quantization levels to
every subsystem, there exists excess stability margin because % < 1 and % < 1. This paper’s
dynamic bit assignment policy considers the two subsystems as a whole. It should be possible to
combine the two stability margins together so that fewer quantization levels are required. This
is precisely the case in this example. Figure 2 shows the reponse of the quantized system under
our dynamic bit assignment method in which only 1 bit is used to quantize the feedback. The
plot clearly shows that this system converges to zero. The “chatter” in this plot arises from the

fact that the algorithm quantizes only one component of the state at a time.

V. CONCLUSIONS

This paper derived a lower bound on the minimum number of quantization levels required to
stabilize a closed loop system. This bound is a minor extension on a previous bound in [10].
We also proposed a dynamic bit assignment policy that achieves this lower bound. The major

contribution of this paper lies with the proposed quantization policy.
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VI. APPENDIX

The following lemma follows from basic algebra, so its proof is omitted.
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Lemma 6.1: Let J; be as defined in assumption 1. For any non-zero v; € R™,

175 0]
lim —————= = |\
e, - M

By algorithm 4.1, we know v; ;[k] is a scaled version of .J¥v; ;[0]. Therefore lemma 6.1 guarantees

that for any 9 > 0, there exists K such that
| Jivi ;K] ll2

1 —eg)|N| < < (1 il 22
( 50)‘ ‘ = ||Uz',j[k“|2 —( +€0)‘ | ( )
for k > K; and any i and j.
Define the average dropout rate as
1l 1
g Z d[k + 1] (23)

Since g, — € as [ — oo, we know that for any d, > 0, there exists A/ > 0 such that
€—00 <&k <€+ do, (24)

forall [ > M and all k.

We prove that the uncertainty set U[k]| converges to zero by first showing that the “volume”
of this set (as defined by the product of side lengths p[k] = [T}, IT;Z, |lvi;[k]||2) converges
exponentially to zero.

Lemma 6.2: Assume @ > M(A)l_iﬂ and let n =
pan and K3 such that for all k£ > K

Q1 L. For any An > 0, there exist constants

plk] < pag(n + An)* (25)

Proof: For any small numbers ¢, dy, there exists K3 and M such that equation 22 and 24

hold. So we limit our attention to £ > K5 and [ > M. From time k£ to & + [ — 1, there are
(1 —&,x)l sucessfully quantized measurements. So

plk+1] = Q(leleHHle” 1[l2-

i=1j=

Equations 22 and 24 let us bound plk + ] as

Note that if Q > [v(A)Y/(1=9)], then n < 1. Choose K3 and M large enough to make &g
and o, arbitrarily small. We can couple this choice with the fact that » < 1 to infer that

Q?f(?,)ga(l +¢e0) < min(1,n+ An). If we let

—M—-Ks3
pAn — (maX(p[K3]7 e 7Z)[_[{3 + M — 1])) (Ql’y,(?,)(;o (1 —|— go)N) ,
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then plk] < pa, (n+ An)* for k > K. &
For the preceding lemma to imply that U[k] goes to zero, we must establish that each side
of the parallelgram gets quantized an infinite number of times. In particular let 7; ; denote the

time instants when side v; ; was successfully quantized. In other words,
T,;=A{k: Iy =1, J, = j,dlk] =0}

Define 7o, = {(i,j) : card(7;;) = oo} where card([) is the cardinality of set /. The following
lemma shows that card(7; ;) = oo,

Lemma 6.3: If v; ;{0] # 0, then card(7} ;) = oo

Proof: This lemma is proven by contradiction. Suppose vy ;0] # 0 but card(77,;) < oo, then
there exists a large number K, such that K, > K, and such that the side v; ; is never quanitzed
after time K. The update rule for v; ; in our algorithm requires v; j[k + 1] = Jrvy 4[k] for all
k > K, + 1. Applying lemma 6.1 to this equation yields ||J;vr s[k]|l2 > co((1 — €o)|Ar|)*— 5=
for all & > K, where ¢ = | Jv; s[K.]l]2. By choosing ¢, small enough, we can guarantee
(1 —€)|N;| > 1 for all ¢ = 1,...,p, which implies that ||./;v; s[k]| is bounded below by a
monotone increasing function of k.

Now consider any other side v; ; where (i,7) # (I, J) and card(7;;) = oo. Define K, ; =
min{k |k € T} ;, k > K,}. In other words, K ; is the first time instant after /', when side v, ;

is quantized again. From our algorithm, we know that
o[ Ky + 1ll2 = éHJiUz‘,j[Ki,ij > éHJIUI,J[Ku]H? = ¢q (26)
where ¢ = ¢o/Q # 0. For k > K, ; + 1, if v; ;[k] is not successfully quantized, then
[vii[k + 1][l2 = ([ Jivi[F]ll2 = (1 = €0)[ Al [|vig [K] ]| (27)
If v; ;[k] is successfully quantized then
Jossli+ Ul = G hvss 8l = g5 Mo Bl = cq (28)

Combining equations 26, 27, and 28, in addition to (1—e()| ;| > 1, guarantees ||v; j[k]||2 > c¢ for
all k > K; ;+1. Now define the product of part of the side lengths as p'[k] = [1(; jyez.. ||vij[K]l|2
and let K = max; jer.. K;; + 1 By equation 28 we know that for & > K

p'k] > cg/ (29)
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where N’ = card(7,,). Equation 29 is an eventual lower bound on p'[k].
We may repeat the procedure used in lemma 6.2 to obtain an upper bound on p’[k] of the

form

Pk < vy (0 + An')F (30)

where A7’ > 0 is any chosen tolerance, p),,, is a constant, and n' = %H(id)gm |Ai| < gz(fl < 1.
We choose Arn’ small enough so that " + An’ < 1. Thus limy_., p’[k] = 0, which contradicts
the eventual lower bound in equation 29. $

This note assumes that v; ;[0] # 0 for all 4, j. So lemma 6.3 guarantees card(7; ;) = oo for

all 4, 7. Thus there must exist K, > K; such that
card (ﬂ,j N [Kl, KQ]) Z M (31)

for all i, j, where [K, K5] is the set of integers from K to K». In the following discussion, we
assume k > K, and we let (4o, jo) = argmin, ; || Jiv; ;[K]||,. We define

l(ig, jo, M, k) = min{m : card ([k —m,k — 1N T}, ;) = M} (32)

where (ig, jo, M, k) is the shortest length of time prior to time instant & in which the side v;, ;,
was quantized exactly M times.

The following lemma establishes the “fairness” of the algorithm by showing that (i, jo, M, k)
is uniformly bounded with respect to i, jo, and k.

Lemma 6.4. There exists a constant [,, such that for £k > K,

l(i07j07M7 k) S ZM (33)

Proof: Throughout this proof, we denote I(iq, jo, M, k) as [. Let’s first consider (i, j) # (io, jo)-

Let /; ; denote the number of times side v; ; was successfully quantized in the interval [k—1, k—1].
Then the update equations in our algorithm imply that

1 - -

Jivi j k] = %Jf(me[k —1]) (34)

By inequality 22, we obtain

(L+ =)l Nil)!

| Jivi (K]l < Ots

Jivi Tk —1] H2 (35)
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When (i, j) = (40, J0), we know that side v;, j, was updated exactly M times during [k —

I, k — 1]. So the algorithm’s update equations imply that

1 -
Jiovio,jo [k] = wjz'lo (Jiovio,jo [k - l]) (36)

Using inequality 22 in equation 36 yields

7
(=Pl 7ot~ T e

| JioVig.jo [F][l2 > oM

From the definitions of (i, jo) and I, we also know that

JiovioJo [k - Z]H2 >

Jivg Tk — 1] H2 (38)

| JioVig.go K]l < || Jivij (K] |2 (39)

Inserting equations 35, 37 and 38 into equation 39, yields,
7 1 7 1
((1 = €0)[Aig]) o = ((1+ o) |Ai) o (40)
There are at most /(e + dy) dropouts during [k — I, k — 1]. So [; ; satisfies the inequality,

(4,9)#(i0,30)
Multiply inequality 40 over all (7, j) not equal to (ig, jo) and use equation 41 to obtain

]
_ ) 1
(1 - €0>|>\io|)l(N—1) SN S ((1 + o)Vt H P\J) 1
@ (i,4)#(i0,4o) Ql(1—e=d0)—M

The above inequality may be solved with respect to [ to show that [ < I;, where

[ = MNIn(Q)
‘0 (N-1) 1n(;jg ) +N In(| A, \)—i—ln(%?;; ) —601n(Q)

Letting /), = max;, [;, gives the desired bound. <
The following lemma establishes that the sides are balanced in the sense that the ratio
|Viy 1 [E]]|2/||Vig.50 K] |2 is uniformly bounded for all i1, ji, 2, jo, and k > K.

Lemma 6.5: For k > K5 and all 7y, j;,1-, and js, there exists a finite constant » such that

ke
[[viy ju [K]ll2 < (42)
o ALY P
Proof: For any iy, 15, j;, and j,, equation 22 implies that
e Klllz [ iyvi g K]l @)

> 9
103z, [K]ll2 = (| Jiavis 5[] |2
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where a = =+ 20 WAy i 317

Following the arguments used in the preceding lemma, we know that

|Jvsglklll B (1 4 o) ik = Tl

v slflle = B (1 — )il ol = Tl

l 7
a [ A (1+50) <
“ <|Aio|> =) =7

Y B <1+eo)lM
=< (rff?i‘w) o)

and [, is the bound in lemma 6.4.

where

At time k£ we know ||.J;,v;, ;o [K]||2 is the smallest among ||J;v; ;[£]|2, SO

||‘]i1vi1,j1 [k] ”2 0
||Jizvi2,j2[k“|2 -

for all iq,1-, 71, and j,. Let r = roa to obtain the desired bound. <>

(44)

Proof of theorem 4.1: This theorem follows from the direct application of lemmas 6.5 and
6.2. Let Ky = max(K,, K3). At the beginning, we will limit our attention to & > K, so that

lemmas 6.5 and 6.2 are true. Lemma 6.5 shows that 7”“” ﬂ:}HQ
7'2 2

Choose v;, j, to be the longest side, to obtain W < r which we may rewrite as
2,7

< r, for all 1, J1, t2, and J2.

1
[osk]ll2 = ~ max vl (45)
The above relationship, the definition of p[k|, and lemma 6.2 yield

max vy, o [k]ll2 < 7 /Bagn™ (46)

Ulk] is a parallelogram with sides v, ;[k]. The triangle inequality implies

P n;

o (U[K]) < D23 Mlvilk]ll2 < N max [fom, o[k

i=17=1

2|=

Substituting equation 46 into the above bound on d,.x(U[k]) yields duax(U[k]) < Ao(n+ An)™
where Ay = N1 {/pa,. By choosing

Aay = max ( max (dmaa (Um]) (n + An)~F) Jo)

me[l,Ko—1

we can guarantee that equation 17 holds for all k.
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