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Stability of Quantized Control Systems

under Dynamic Bit Assignment

Qiang Ling and Michael D. Lemmon

Abstract

In recent years there have been several papers characterizing the minimum number of quantization

levels required to assure closed loop stability. This minimum bit rate is usually achieved through time-

varying quantization policies. Many networks, however, prefer a constant bit rate configuration [1], so it

is useful to characterize the stability of quantized feedback systems under constant bit rate quantization.

This paper first derives a lower bound on the number of quantization levels required for closed loop

stability under constant bit rates. We then introduce a novel dynamic bit allocation policy that achieves

this bound.

I. INTRODUCTION

In recent years there has been a considerable amount of work studying the stability of quantized

feedback control systems [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]. These papers may be classified

into two groups; static and dynamic quantization policies. Static policies [2] [3] [4] [5] presume

that data quantization at time k is only dependent on the data at time k. Such policies are

sometimes said to be memoryless. In dynamic policies [6] [7] [8] [9] [10] [11] data quantization

at time k depends on data at time instants less than or equal to k. The major advantage of

static quantization policies is the simplicity of their coding/decoding schemes. In [2], however,

it was proven that static policies with a finite number of quantization levels cannot achieve

asymptotic stability. A finite number of quantization levels can only achieve practical stability
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(i.e. states converge into a bounded set)[4] [6]. When an infinite number of quantization levels

are available, sufficient bounds for asymptotic stability under static quantization were derived in

[5] using robust stability methods. It was shown in [3] that the least dense static quantizer with

an infinite number of quantization levels is the logarithmic quantizer.

Dynamic policies have been shown to achieve asymptotic stability with a finite number of

quantization levels. These policies presume that the state, x[k] ∈ RN , at time instant k lies inside

a set P [k] called the uncertainty set. If P [k] converges to 0, i.e. every point in P [k] converges

to 0, then the system is asymptotically stable. The basic approach was introduced in [7] [8]. In

these papers the uncertainty set, P [k], is partitioned into MN small rectangles. Denote the small

rectangles as Pi[k] (i = 0, 1, · · · , NM − 1). If x[k] ∈ Pj[k] then the index j is transmitted. This

uncertainty set is then propagated to set P [k + 1] using what we know of the plant’s dynamics.

These papers provided sufficent conditions for the convergence of the sequence, {P [k]}, to zero.

A generalization of the approach in [7] was presented in [9] [10]. Suppose the eigenvalues

of the quantized system are denoted as λi for i = 1, . . . , N and assume P [k] is shaped like

a rectangle. Let the ith side of P [k] be equally partitioned into 2Ri[k] parts, i.e. Ri[k] bits are

assigned to the ith dimension (Ri[k] must be an integer). The total number of bits is R[k] =
∑N

i=1 Ri[k], i.e. there are Q[k] = 2R[k] quantization levels at time k. The approach discussed

in [9] [10] assumes a time-varying bit rate policy in which R[k] varies over time, but has an

average value R = limT→∞
1
T

∑T−1
k=0 R[k]. In [9] [10] it is shown that the quantized system is

asymptotically stabilizable if and only if

R >
N
∑

i=1

max(0, log2 |λi|) (1)

Constant bit rate policies require that Ri[k] = Ri for i = 1, . . . , N and where Ri is independent

of k. In [9] a sufficient condition for asymptotic stability under constant bit rates was given as

R =
N
∑

i=1

Ri >
N
∑

i=1

max (0, dlog2 |λi|e) . (2)

where d·e means dxe = min {n|n > x, n ∈ N}. There can be a significant gap between the

bounds in equations 1 and 2, so it is natural to ask whether there exists a tighter bound than the

one in equation 2 for the constant bit rate case. That is precisely the question addressed in this

note.
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This paper shows that a lower bound on the number of quantization levels required to stabilize

the system is given by the equation

Q = 2R ≥
⌈

N
∏

i=1

max(1, |λi|)
⌉

. (3)

We then introduce a dynamic bit assignment policy that actually achieves this bound. This bit

assignment is done as follows. Suppose P [k] is a parallelogram, there are Q = 2R quantization

levels and Q is an integer. At every step, only the “longest” side of P [k] (in the sense of a

weighted length) is equally partitioned into Q parts; the other sides aren’t partitioned. Because

no side is always the longest, the bit assignments are dynamic rather than static. The paper’s

main contribution proves that the lower bound in equation 3 is realized by this policy.

II. QUANTIZED FEEDBACK CONTROL SYSTEM

This paper studies a quantized feedback control system with dropouts, which is shown in

figure 1. The plant is a discrete-time linear system whose state equations are
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Fig. 1. Quantized feedback control system











x[k + 1] = Ax[k] + Bu[k]

u[k] = Kxq[k]
(4)

The state x[k] ∈ RN is quantized and encoded into a symbol s[k] from a discrete set {1, 2, · · · , Q}.

Throughout this paper, the terms “quantizer” and “encoder” are used interchangeably. s[k]

is transmitted to the decoder over a communication network. Because the network is non-

deterministic, a portion of the transmitted symbols may be dropped. A dropped symbol is denoted

by receiving φ at the decoder. The decoder uses the received symbols to compute an estimate,
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xq[k], of the plant’s true state, x[k]. The controller uses this estimate, xq[k] to compute the

control signal u[k].

We are interested in the following notion of deterministic stability,

lim
k→∞

‖x[k]‖2 = 0, (5)

for all x[0] ∈ RN where ‖ · ‖2 denotes the Euclidean 2-norm. We study stability under the

following assumptions

1) (A, B) is controllable. A = diag(J1, J2, · · · , Jp) where Ji is an ni × ni real matrix with a

single real eigenvalue λi or a pair of conjugate eigenvalues λi and λi. All eigenvalues λi

are assumed to be unstable, i.e. |λi| > 1.

2) The initial condition x[0] lies in a parallelogram P [0].

3) Transmitted symbols, s[k], are dropped at the rate of ε symbols per transmission. The

precise definition of ε will be found in equation 7. We assume that the encoder and

decoder both know whether a dropout has occurred.

4) Both the encoder and the decoder know the system matrices (A and B), the coding-

decoding policy and the control law. They also agree upon the initial uncertainty set, i.e.

the parallelogram which x[0] lies in.

We take the matrix, A, (assumption 1) to be in its real Jordan canonical form. Since any system

may be reduced to this form through a similarity transformation, we may therefore assume

A = diag(J1, J2, · · · , Jp). When |λi| < 1, the subsystem corresponding to Ji is stable. We can

exclude the stable subsystem and consider only the unstable lower dimensional subsystem. This

paper therefore assumes that |λi| > 1 (i = 1, · · · , p).

Assumption 2 requires that the initial state is known to lie within a specified parallelogram

P [0]. This set may be written as

P [0] = xq[0] + U [0]

where xq[0] is the center of P [0] and U [0] is a parallelogram centered at the origin and defined

in equations 10-11.

Assumption 3 comes from the non-determinism of the network. We introduce a dropout

indicator d[k],

d[k] =











1, the symbol at time k is dropped

0, otherwise
(6)
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We assume that the dropout model satisfies

ε = lim
L→∞

1

L

L
∑

i=1

d[i + k0], (7)

for all k0 ≥ 0 where ε is the “average” dropout rate and the convergence in equation 7 is uniform

with respect to k0.

Assumption 4 requires that the coder and the decoder deal with the same initial uncertainty,

and share the same coding-decoding policy and control law so that the symbol produced by the

encoder can be correctly interpreted by the decoder. This is a strong assumption for it requires

that the encoder and decoder are “synchronized”. Maintaining such synchronization in a fault-

tolerant manner requires further study, but that study is not done in this paper.

III. PRELIMINARY RESULTS

This section introduces notational conventions and outlines a proof for the bound in equation

3. For the matrix A in assumption 1, let

γ(A) =
p
∏

i=1

(max(1, |λi|))ni (8)

We assume all eigenvalues of A are unstable. So γ(A) = |det(A)|, where det(·) is the determinant

of a matrix.

The state x[k] at time k is quantized with respect to a parallelogram representing the quanti-

zation “uncertainty”. These uncertainty sets are represented as

P [k] = xq[k] + U [k] (9)

where xq[k] ∈ RN is the center of P [k] and U [k] is a parallelogram with its center at the

origin. The parallelogram U [k] is formally represented by a set of vectors {vi,j[k] ∈ Rni} where

i = 1, . . . , p and j = 1, . . . , ni. The “side” of the parallelogram associated with the ith Jordan

block in A is denoted as the convex hull

Si[k] = Co







v : v =
ni
∑

j=1

(±1

2
)vi,j[k]







(10)

The entire parallelogram, U [k], may therefore be expressed as the Cartesian product of the sides,

Si[k]. In other words

U [k] =
p
∏

i=1

Si[k] (11)
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The volume of U is defined as vol(U) =
∫

x∈U 1 · dx The “size” of U [k] is measured by its

diameter dmax(U [k]). The diameter of U is defined as

dmax(U) = sup
x,y∈U

‖x − y‖2 (12)

where ‖ · ‖2 denotes Euclidean 2-norm of a vector. The quantization error is defined as e[k] =

x[k] − xq[k]. By equation 9, we know e[k] ∈ U [k]. When a quantization policy is used, we

will generate a sequence of uncertainty sets, {U [k]}. The following lemma asserts that the

convergence of the diameter of U [k] is equivalent to the asymptotic stability of the system.

Lemma 3.1: The system in equation 4 is asymptotically stable if and only if the sequence of

uncertainty sets, {U [k]}, satisfies

lim
k→∞

dmax(U [k]) = 0. (13)

Lemma 3.1 can be proven in a manner analogous to that found in Lemma 3.5.1 of [10].

A lower bound on the number of quantization levels required to stabilize the feedback control

system is stated below in theorem 3.2. We only sketch the proof of this theorem as the proof’s

method directly follows that used in [11].

Theorem 3.2: Under assumptions 1 - 4, if the quantized feedback system in equation 4 can

be asymptotically stabilized, then the number of quantization levels, Q, satisfies

Q ≥
⌈

γ(A)
1

1−ε

⌉

(14)

Sketch of Proof: The volume of U [k] (in the worst case) is updated by

vol(U [k + 1])











≥ |det(A)|
Q

vol(U [k]), d[k] = 0

= |det(A)|vol(U [k]), d[k] = 1

Because of asymptotic stability, lemma 3.1 implies vol(U [k]) → 0 as k → ∞. This volume

limit, together with the dropout rate of ε, yields

|det(A)|
Q1−ε

< 1 (15)

Because γ(A) = |det(A)| and Q is an integer, we obtain the lower bound in equation 14. ♦

IV. MAIN RESULTS

This section presents the dynamic bit assignment policy (algorithm 4.1) and states a theorem

(theorem 4.1) asserting that the lower bound is achieved by this bit assignment policy.
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The following algorithm dynamically quantizes the state x[k] for the feedback system in

equation 4 under assumptions 1- 4. The algorithm updates a parallelogram, P [k] containing

the state at time k. This parallelogram, P [k], is characterized by, xq[k], the center of the

parallelogram, and U [k], the uncertainy set. The uncertainty set U [k] is formed from a set

of vectors {vi,j[k] ∈ Rni} ( i = 1, . . . , p and j = 1, . . . , ni) according to equations 10-11. The

uncertainty set U (I,J)[k] is a modification of U [k] that is formed from the vectors
{

v′
i,j[k]

}

where

v′
i,j = vi,j if (i, j) 6= (I, J) and v′

i,j = vi,j/Q if (i, j) = (I, J). The basic variables updated by

this algorithm are therefore the collection of vectors {vi,j[k]} and xq[k]. The quantized signal

that is sent between the encoder and decoder at time k is denoted at s[k]. This quantized signal

is equal to one of Q discrete symbols. The following algorithm consists of two tasks that are

executed concurrently, the encoder and decoder tasks. Each task’s first step starts its execution

at the same time instant.

Algorithm 4.1: Dynamic Bit Assignment:

Encoder/Decoder initialization:

Initialize xq[0] and {vi,j[0]} so that x[0] ∈ xq[0] + U [0] and set k = 0.

Encoder Task:

1) Select the indices (I, J) by

(I, J) = arg max
i,j

‖Jivi,j[k]‖2 .

2) Quantize the state x[k] by setting s[k] = s if and only if

x[k] ∈ xq[k] + x(I,J)
s + U (I,J)[k]

where

x(I,J)
s =

[

0 · · · 0 vT 0 · · · 0

]T

(16)

and v = −Q+(2s−1)
2Q

vI,J [k] for s = 1, . . . , Q.

3) Transmit the quantized symbol s[k] and wait for acknowledgement

4) Update the variables

vi,j[k + 1] = Jivi,j[k]

xq[k + 1] = (A + BK)xq[k]
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5) If decoder ack received:

vI,J [k + 1] :=
1

Q
vI,J [k + 1]

xq[k + 1] := xq[k + 1] + Ax
(I,J)
s[k]

where x
(I,J)
s[k] is defined in equation 16.

6) Update time, k := k + 1 and return to step 1.

Decoder Task:

1) Update the variables

vi,j[k + 1] = Jivi,j[k]

xq[k + 1] = (A + BK)xq[k]

2) Wait for quantized data, s[k], from encoder.

3) If data received:

vI,J [k + 1] :=
1

Q
vI,J [k + 1]

xq[k + 1] := xq[k + 1] + Ax
(I,J)
s[k]

where x
(I,J)
s[k] is defined in equation 16. Then send ack back to the encoder.

4) Update time index, k := k + 1, and return to step 1.

Remark: This algorithm assumes the variables {vi,j[k]} and xq[k] are “synchronized” at the

beginning of the kth time interval. Furthermore, we assume the “ack” from decoder to the

encoder is reliably transmitted.

Remark: The decision in step 1 of the encoder algorithm is made on the uncertainty set at

time k + 1, rather than k. This was motivated by preliminary studies which showed that using

the kth uncertainty set may perform poorly when some of the λi are large.

Theorem 4.1: Let Q =
⌈

γ(A)
1

1−ε

⌉

. The feedback system in equation 4 is asymptotically stable

under the quantizer in algorithm 4.1. Furthermore for any ∆η > 0, there exists a finite λ∆η > 0

such that

dmax(U [k]) ≤ λ∆η (η + ∆η)k/N (17)

where η = γ(A)
Q1−ε

In order to improve readability, we move the proof of theorem 4.1 to the appendix, section VI.
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Remark: We now compare the two sufficient stability conditions in equations 2 and 3. For

convenience, we rewrite these two conditions as

Q = 2R ≥
N
∏

i=1

2dlog2(|λi|)e (18)

Q ≥ d
N
∏

i=1

|λi|e (19)

Considering the ceiling operations above, we know that the bound in equation 19 is equal to or

smaller than that in equation 18. We use the following example to illustrate this difference more

clearly. Let A =







1.8 0

0 1.1





. The bound in equation 2 is Q ≥ 4. The bound in equation 14 is

Q ≥ 2. So the latter bound is better.

We offer an intuitive explanation for this difference. The quantization policy in [10] deals

seperately with the two subsystems

x1[k + 1] = 1.8x1[k] + b1u[k] (20)

x2[k + 1] = 1.1x2[k] + b2u[k] (21)

Every subsystem is unstable and therefore needs at least 2 quantization levels. So by equation

2, we need at least 2 × 2 = 4 quantization levels. Although the two subsystems are unstable,

however, it can be seen that they are not too unstable. If we assign 2 quantization levels to

every subsystem, there exists excess stability margin because 1.8
2

< 1 and 1.1
2

< 1. This paper’s

dynamic bit assignment policy considers the two subsystems as a whole. It should be possible to

combine the two stability margins together so that fewer quantization levels are required. This

is precisely the case in this example. Figure 2 shows the reponse of the quantized system under

our dynamic bit assignment method in which only 1 bit is used to quantize the feedback. The

plot clearly shows that this system converges to zero. The “chatter” in this plot arises from the

fact that the algorithm quantizes only one component of the state at a time.

V. CONCLUSIONS

This paper derived a lower bound on the minimum number of quantization levels required to

stabilize a closed loop system. This bound is a minor extension on a previous bound in [10].

We also proposed a dynamic bit assignment policy that achieves this lower bound. The major

contribution of this paper lies with the proposed quantization policy.
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VI. APPENDIX

The following lemma follows from basic algebra, so its proof is omitted.
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Lemma 6.1: Let Ji be as defined in assumption 1. For any non-zero vi ∈ Rni ,

lim
k→∞

‖Jk+1
i vi‖2

‖Jk
i vi‖2

= |λi|
By algorithm 4.1, we know vi,j[k] is a scaled version of Jk

i vi,j[0]. Therefore lemma 6.1 guarantees

that for any ε0 > 0, there exists K1 such that

(1 − ε0)|λi| ≤
‖Jivi,j[k]‖2

‖vi,j[k]‖2

≤ (1 + ε0)|λi|, (22)

for k ≥ K1 and any i and j.

Define the average dropout rate as

εl,k =
1

l

l−1
∑

i=0

d[k + i] (23)

Since εl,k → ε as l → ∞, we know that for any δ0 > 0, there exists M > 0 such that

ε − δ0 ≤ εl,k ≤ ε + δ0, (24)

for all l ≥ M and all k.

We prove that the uncertainty set U [k] converges to zero by first showing that the “volume”

of this set (as defined by the product of side lengths p[k] =
∏p

i=1

∏ni
j=1 ‖vi,j[k]‖2) converges

exponentially to zero.

Lemma 6.2: Assume Q ≥ dγ(A)
1

1−ε e and let η = γ(A)
Q1−ε . For any ∆η > 0, there exist constants

p∆η and K3 such that for all k ≥ K3

p[k] ≤ p∆η(η + ∆η)k (25)

Proof: For any small numbers ε0, δ0, there exists K3 and M such that equation 22 and 24

hold. So we limit our attention to k ≥ K3 and l ≥ M . From time k to k + l − 1, there are

(1 − εl,k)l sucessfully quantized measurements. So

p[k + l] =
1

Q(1−εl,k)l

p
∏

i=1

ni
∏

j=1

‖J l
ivi,j[k]‖2.

Equations 22 and 24 let us bound p[k + l] as

p[k + l] ≤
(

γ(A)

Q1−ε−δ0
(1 + ε0)

N

)l

p[k]

Note that if Q ≥ dγ(A)1/(1−ε)e, then η < 1. Choose K3 and M large enough to make ε0

and δ0 arbitrarily small. We can couple this choice with the fact that η < 1 to infer that
γ(A)

Q1−ε−δ0
(1 + ε0)

N < min(1, η + ∆η). If we let

p∆η = (max(p[K3], · · · , p[K3 + M − 1]))
(

γ(A)
Q1−ε−δ0

(1 + ε0)
N
)−M−K3

,
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then p[k] ≤ p∆η (η + ∆η)k for k ≥ K3. ♦
For the preceding lemma to imply that U [k] goes to zero, we must establish that each side

of the parallelgram gets quantized an infinite number of times. In particular let Ti,j denote the

time instants when side vi,j was successfully quantized. In other words,

Ti,j = {k : Ik = i, Jk = j, d[k] = 0}

Define T∞ = {(i, j) : card(Ti,j) = ∞} where card(I) is the cardinality of set I . The following

lemma shows that card(Ti,j) = ∞,

Lemma 6.3: If vi,j[0] 6= 0, then card(Ti,j) = ∞
Proof: This lemma is proven by contradiction. Suppose vI,J [0] 6= 0 but card(TI,J) < ∞, then

there exists a large number Ku such that Ku ≥ K1 and such that the side vI,J is never quanitzed

after time Ku. The update rule for vI,J in our algorithm requires vI,J [k + 1] = JIvI,J [k] for all

k ≥ Ku + 1. Applying lemma 6.1 to this equation yields ‖JIvI,J [k]‖2 ≥ c0((1 − ε0)|λI|)k−Ku

for all k ≥ Ku where c0 = ‖JIvI,J [Ku]‖2. By choosing ε0 small enough, we can guarantee

(1 − ε0)|λi| > 1 for all i = 1, . . . , p, which implies that ‖JIvI,J [k]‖ is bounded below by a

monotone increasing function of k.

Now consider any other side vi,j where (i, j) 6= (I, J) and card(Ti,j) = ∞. Define Ki,j =

min {k | k ∈ Ti,j, k ≥ Ku}. In other words, Ki,j is the first time instant after Ku when side vi,j

is quantized again. From our algorithm, we know that

‖vi,j[Ki,j + 1]‖2 =
1

Q
‖Jivi,j[Ki,j]‖2 ≥

1

Q
‖JIvI,J [Ku]‖2 = cQ (26)

where cQ = c0/Q 6= 0. For k ≥ Ki,j + 1, if vi,j[k] is not successfully quantized, then

‖vi,j[k + 1]‖2 = ‖Jivi,j[k]‖2 ≥ (1 − ε0)|λi|‖vi,j[k]‖2 (27)

If vi,j[k] is successfully quantized then

‖vi,j[k + 1]‖2 =
1

Q
‖Jivi,j[k]‖2 ≥

1

Q
‖JIvI,J [Ku]‖2 = cQ (28)

Combining equations 26, 27, and 28, in addition to (1−ε0)|λi| > 1, guarantees ‖vi,j[k]‖2 ≥ cQ for

all k ≥ Ki,j +1. Now define the product of part of the side lengths as p′[k] =
∏

(i,j)∈T∞ ‖vi,j[k]‖2

and let K = max(i,j)∈T∞ Ki,j + 1 By equation 28 we know that for k ≥ K

p′[k] ≥ cN ′

Q (29)

December 30, 2004 DRAFT



13

where N ′ = card(T∞). Equation 29 is an eventual lower bound on p′[k].

We may repeat the procedure used in lemma 6.2 to obtain an upper bound on p′[k] of the

form

p′[k] ≤ p′δη′(η′ + ∆η′)k (30)

where ∆η′ > 0 is any chosen tolerance, p′
∆η′ is a constant, and η′ = 1

Q

∏

(i,j)∈T∞ |λi| < γ(A)
Q1−ε < 1.

We choose ∆η′ small enough so that η′ + ∆η′ < 1. Thus limk→∞ p′[k] = 0, which contradicts

the eventual lower bound in equation 29. ♦
This note assumes that vi,j[0] 6= 0 for all i, j. So lemma 6.3 guarantees card(Ti,j) = ∞ for

all i, j. Thus there must exist K2 > K1 such that

card (Ti,j ∩ [K1, K2]) ≥ M (31)

for all i, j, where [K1, K2] is the set of integers from K1 to K2. In the following discussion, we

assume k ≥ K2 and we let (i0, j0) = arg mini,j ‖Jivi,j[k]‖2. We define

l(i0, j0, M, k) = min {m : card ([k − m, k − 1] ∩ Ti0,j0) = M} (32)

where l(i0, j0, M, k) is the shortest length of time prior to time instant k in which the side vi0,j0

was quantized exactly M times.

The following lemma establishes the “fairness” of the algorithm by showing that l(i0, j0, M, k)

is uniformly bounded with respect to i0, j0, and k.

Lemma 6.4: There exists a constant lM such that for k ≥ K2

l(i0, j0, M, k) ≤ lM . (33)

Proof: Throughout this proof, we denote l(i0, j0, M, k) as l. Let’s first consider (i, j) 6= (i0, j0).

Let li,j denote the number of times side vi,j was successfully quantized in the interval [k−l, k−1].

Then the update equations in our algorithm imply that

Jivi,j[k] =
1

Qli,j
J l

i(Jivi,j[k − l]) (34)

By inequality 22, we obtain

‖Jivi,j[k]‖2 ≤
((1 + ε0)|λi|)l

Qli,j

∥

∥

∥Jivi,j[k − l]
∥

∥

∥

2
(35)

December 30, 2004 DRAFT



14

When (i, j) = (i0, j0), we know that side vi0,j0 was updated exactly M times during [k −
l, k − 1]. So the algorithm’s update equations imply that

Ji0vi0,j0[k] =
1

QM
J l

i0

(

Ji0vi0,j0[k − l]
)

(36)

Using inequality 22 in equation 36 yields

‖Ji0vi0,j0[k]‖2 ≥ ((1 − ε0)|λi0|)l

QM
‖Ji0vi0,j0[k − l]‖2 (37)

From the definitions of (i0, j0) and l, we also know that

∥

∥

∥Ji0vi0,j0[k − l]
∥

∥

∥

2
≥

∥

∥

∥Jivi,j[k − l]
∥

∥

∥

2
(38)

‖Ji0vi0,j0[k]‖2 ≤ ‖Jivi,j[k]‖2 (39)

Inserting equations 35, 37 and 38 into equation 39, yields,

((1 − ε0)|λi0|)l 1

QM
≤ ((1 + ε0)|λi|)l 1

Qli,j
(40)

There are at most l(ε + δ0) dropouts during [k − l, k − 1]. So li,j satisfies the inequality,

∑

(i,j)6=(i0,j0)

li,j ≥ l − l(ε + δ0) − M = (1 − ε − δ0)l − M (41)

Multiply inequality 40 over all (i, j) not equal to (i0, j0) and use equation 41 to obtain

((1 − ε0)|λi0 |)l(N−1) 1

Q(N−1)M
≤


(1 + ε0)
N−1

∏

(i,j)6=(i0,j0)

|λi|




l
1

Ql(1−ε−δ0)−M

The above inequality may be solved with respect to l to show that l ≤ li0 where

li0 = MN ln(Q)

(N−1) ln

(

1−ε0
1+ε0

)

+N ln(|λi0
|)+ln

(

Q1−ε

γ(A)

)

−δ0 ln(Q)

Letting lM = maxi0 li0 gives the desired bound. ♦
The following lemma establishes that the sides are balanced in the sense that the ratio

‖vi1,j1[k]‖2/‖vi2,j2[k]‖2 is uniformly bounded for all i1, j1, i2, j2, and k ≥ K2.

Lemma 6.5: For k ≥ K2 and all i1, j1, i2, and j2, there exists a finite constant r such that

‖vi1,j1[k]‖2

‖vi2,j2[k]‖2
≤ r. (42)

Proof: For any i1, i2, j1, and j2, equation 22 implies that

‖vi1,j1[k]‖2

‖vi2,j2[k]‖2
≤ α

‖Ji1vi1,j1[k]‖2

‖Ji2vi2,j2[k]‖2
, (43)
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where α = 1+ε0

1−ε0
maxi1,i2

|λi1
|

|λi2
|
.

Following the arguments used in the preceding lemma, we know that

‖Jivi,j[k]‖2

‖Ji0vi0,j0[k]‖2

≤
|λi|l

Qli,j
(1 + ε0)

l‖Jivi,j[k − l]‖2

|λi0
|l

QM (1 − ε0)l‖Ji0vi0,j0[k − l]‖2

≤ QM

(

|λi|
|λi0 |

)l (
1 + ε0

1 − ε0

)l

≤ r0

where

r0 = QM

(

max
i1,i2

|λi1|
|λi2|

)lM (

1 + ε0

1 − ε0

)lM

,

and lM is the bound in lemma 6.4.

At time k we know ‖Ji0vi0,j0[k]‖2 is the smallest among ‖Jivi,j[k]‖2, so

‖Ji1vi1,j1[k]‖2

‖Ji2vi2,j2[k]‖2

≤ r0, (44)

for all i1, i2, j1, and j2. Let r = r0α to obtain the desired bound. ♦
Proof of theorem 4.1: This theorem follows from the direct application of lemmas 6.5 and

6.2. Let K0 = max(K2, K3). At the beginning, we will limit our attention to k ≥ K0 so that

lemmas 6.5 and 6.2 are true. Lemma 6.5 shows that ‖vi1,j1
[k]‖2

‖vi2,j2
[k]‖2

≤ r, for all i1, j1, i2, and j2.

Choose vi1,j1 to be the longest side, to obtain maxm,n ‖vm,n [k]‖2

‖vi,j [k]‖2
≤ r which we may rewrite as

‖vi,j[k]‖2 ≥
1

r
max
m,n

‖vm,n[k]‖2 (45)

The above relationship, the definition of p[k], and lemma 6.2 yield

max
m,n

‖vm,n[k]‖2 ≤ r N
√

p∆ηη
k
N (46)

U [k] is a parallelogram with sides vi,j[k]. The triangle inequality implies

dmax(U [k]) ≤
P
∑

i=1

ni
∑

j=1

‖vi,j[k]‖2 ≤ N max
m,n

‖vm,n[k]‖2

Substituting equation 46 into the above bound on dmax(U [k]) yields dmax(U [k]) ≤ λ0(η +∆η)
k
N

where λ0 = Nr N
√

p∆η. By choosing

λ∆η = max

(

max
m∈[1,K0−1]

(

dmax (U [m]) (η + ∆η)−
m
N

)

, λ0

)

we can guarantee that equation 17 holds for all k. ♦

December 30, 2004 DRAFT


