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Abstract— In this paper, we combine inertial sensing and
sensor network technology to create a pedestrian dead reckoning
system. The core of the system is a lightweight sensor-and-
wireless-embedded device called NavMote that is carried by a
pedestrian. The NavMote gathers information about pedestrian
motion from integrated magnetic compass and accelerometers.
When the NavMote comes within range of a sensor network
(composed of NetMotes), it downloads the compressed data to
the network. The network relays the data via RelayMote to a
information center where the data are processed into an estimate
of the pedestrian trajectory based on a dead reckoning algorithm.
System details including NavMote hardware/software, sensor
network middleware services, and dead reckoning algorithm are
provided. In particular, simple but effective step detection and
step length estimation methods are implemented in order to
reduce computation, memory, and communication requirements
on Motes. Static and dynamic calibrations of compass data are
crucial to compensate the heading errors. The dead reckoning
performance is further enhanced by wireless telemetry and
map matching. Extensive testing results show that satisfactory
tracking performance with relatively long operational time is
achieved. The paper also serves as a brief survey on pedestrian
navigation systems, sensors, and techniques.

Index Terms— Pedestrian navigation system, dead reckoning,
wireless sensor network.

I. INTRODUCTION

The ability to locate the position of the user is an essential
part of many applications: electronic travel aids (ETAs) for
the blind or visually impaired [31], context-aware guidance
systems for exhibition touring [13], spatially-based applica-
tions for a wearable computer [88], public safety services
such as E911 [21], and integrated navigation system for the
dismounted infantry soldier [22], [65].

The problem of positioning in an open environment is
relatively easy - use Global Positioning System (GPS). In this
case, ordinary GPS receivers typically provide 10-30 meters
depending on the number of satellites visible. However, GPS
is limited as a navigation aid by its inability to provide
static heading and its lack of availability when used around
obstructions (terrain or man-made) or in the presence of
jamming. Therefore, it is necessary to develop a positioning
system which can complement GPS in GPS-compromised
areas. The difficulties for pedestrian navigation systems (PNS)
include: the resource and design constraints (size, weight,
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Fig. 1. The pedestrian navigation system concept

power) due to its mobile and man-portable nature; accuracy
and availability in a wide range of operational conditions;
and the restricted choice of technologies due to environment
constraints. For instance, the frequent use of a GPS receiver is
not allowed since this significantly decreases the operational
time of the battery-powered pedestrian navigation devices.

With advances in computation, communication and sensing
capabilities, large scale sensor-based distributed environments
are emerging as a predominant mobile computing infrastruc-
ture [3]. Hundreds or thousands of small, inexpensive and
low-power sensors, such as Berkeley Motes [33], can be
quickly deployed to monitor a vast field. In this work we
combine this mobile infrastructure with inertial sensing to
build a pedestrian navigation system (PNS) that is capable
of working either indoors or outdoors. Fig. 1 illustrates the
system concept. A typical scenario involves the reconstruction
of the space/time path a subject has taken from an initial to a
final location. Our approach relies on the custom-built device,
NavMote, that includes sensors, memory, a processor and RF
communication capabilities. While the NavMote carried by
the subject is out of range of the network, it uses the flash
memory to store the accelerometer and compass data in real-
time. Custom algorithms provide compensation for adverse
sensor orientation and calibration, and for collection with
possible compression of data. When the subject enters again
into radio range of the network, the data captured by NavMote
are extracted automatically via wireless communication and
deposited in the network nodes (NetMotes). These data that
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are distributed within the network are then via multi-hop
transmissions sent to a designated special “relay” or “desti-
nation” mote (RelayMote) for further processing. The Dead
reckoning (DR) algorithm detects occurrence of steps and
calculate distance traveled, and use direction of movement and
distance traveled to generate trajectory points, which are then
appropriately displayed. Trajectory correction by a manual
operation is provided through graphical user interface (GUI),
so that recognition and judgment by human vision based on
map matching can be used.

There are two challenges in our system design: On the
NavMote side, the resource-poor mote prevents using any
computationally expensive algorithms, while size, weight and
cost constraints need to be met. On the network side, a large
amount of data need to be downloaded from the NavMote
to one or more of (unreliable) NetMotes and forwarded to
RelayMote with error-prone wireless channels.

The remaining of this paper is organized as follows. Section
II serves as a brief survey on PNS. Techniques, commonly
used sensors, and various existing systems are reviewed. We
also describe advantages and limitations of various techniques,
and discuss how their limitations can be overcome by combin-
ing or improving techniques. In particular, the recent advent
of wireless networks opens new perspectives for navigation
applications. Based on these observations, our PNS is de-
veloped in Section III. System details including NavMote
hardware/software, sensor network middleware services, and
dead reckoning algorithm are provided. Experimental results
and navigation performance are presented in Section IV.
Finally, Section V concludes the paper.

II. PNS - TECHNIQUES, SENSORS, AND SYSTEMS

Pedestrian navigation systems should be able to tell users
their current position, either absolute within some reference
coordinate system or relative to landmarks known to the sys-
tem. For example, GPS uses an absolute measurement based
approach. On the other hand, dead-reckoning (or odometry) is
a relative measurement approach, whose fundamental idea is
to integrate incremental motion information over time. There
are many competing technologies, which vary greatly as to
their range, physical characteristics, and how their spatial and
temporal accuracy is affected by properties of the environ-
ments in which they are used. The reader is also referred to a
complementary survey [30]. Common design criteria for PNS
dictate that the system should be portable, inexpensive, and of
little hindrance to the natural walking pattern.

A. Systems with Smart Environment

One approach to acquire location information is to make the
environment smart, so that it can supply location information
to users by using a special infrastructure or by enhancing
the existing communications infrastructure. Examples of such
systems include infrared-based systems [87], [96], ultrasonic-
based systems [11], various computer vision systems [45],
physical contact systems [67], and radio frequency (RF) based
systems [69], [72]. On a large scale wide-area cellular network
infrastructure [20], [94], or even on a global scale the GPS

system [41] establish smart environments that provide location
information to users. Triangulation, proximity measuring, and
scene analysis are three major techniques to determine a given
location [32]. Furthermore, some location information can be
derived from communication among users, for instance co-
location, or from any adjacency relationships between them
with a priori knowledge of user’s behavior [46], [47]. Table I
summarizes the properties of the above location technologies
with representative systems. All these systems somehow place
the burden on the infrastructure and, unfortunately, cannot
operate independent of external assets.

B. Systems with Unstructured Environment

We cannot always rely on modifying environments to fit the
needs of PNS. For example, in a military application it is not
possible to prepare the battlefield beforehand. Alternatively,
local sensor based methods working in their own right can
support tetherless position in unstructured environment. This
is in contrast to smart environment as it rather smartens up
mobile devices than their usage environments. In this context,
the positioning task is often performed by exploiting a set of
wearable sensors which include sensors such as accelerometer,
gyroscope, electronic compass, barometer, fluorescent light
detector, camera, temperature sensor, etc. In the following,
commonly used wearable sensors will be discussed in detail
to give a clear view of their roles in various systems. In each
discussion, emphasis is placed on each sensor’s functionality
and error characteristics. Care should also be taken of the
sensors’ placement on the subject.

1) Accelerometer: Accelerometers and gyroscopes, also
called inertial sensors, are used to measure the rate of accel-
eration and rotation, respectively. A survey of commercially
available accelerometers and gyroscopes, together with inno-
vative applications, is presented in [95]. The Field Robotics
Center at Carnegie Mellon University also provides a list of
commercial sensors [26]. Measurements are integrated twice
(or once, for gyroscopes) to yield position. Inertial sensors thus
have the advantage that they are self-contained, that is, they
do not need external references. Moreover, the output rate of
inertial sensors could be much faster than GPS. The principal
application shortfall of inertia sensors is that the integration of
the accelerometer’s (or gyroscope’s) drift and noise results in
errors that would accumulate quickly [55]. A theoretical study
of the errors caused by the noise in accelerometer is given in
[93]. Recommendations are made regarding the calibration of
accelerometers prior to their use. Methods such as Kalman
filtering are employed to reduce errors due to the random bias
drift [10], [25].

Dead-reckoning (DR) relying on inertial navigation has
become the de facto back up method to generate position
in the absence of GPS signals. Together with gyroscopes
which are an intrinsic part of such inertial navigation sys-
tems (INS), accelerometers are now being considered for the
function of measuring velocity, one of the requirements of DR.
Recent progress in the development of integrated MicroElectro
Mechanical Systems (MEMS) using surface micromachining
technology are now enabling new form factors and price points
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Trial/Product Technique Accuracy Weakness Strength

Active Badge [96] Diffuse infrared cellular
proximity Room size

Sunlight and fluorescent light inter-
fere with infrared, dead spots, po-
tential compromises to user privacy

Ease of deployment

Active Bat [11] Ultrasound time-of-fight
lateration 3cm in 3D

Required celling senor grid, a
tightly controlled and centralized
architecture, hard to maintain

Target orientation information, si-
multaneously usable by a number of
different applications

EasyLiving [45] Vision, triangulation Variable
Expensive camera, processing de-
manding, line-of-sight problem

Unencumbered user, intelligent en-
vironment (cataloging room con-
tents, detecting unbadged occu-
pants)

Smart Floor [67]
Physical contact prox-
imity

Spacing of pres-
sure sensors

Not scale, high incremental cost Unencumbered user

RADAR [72]
802.11 RF scene analy-
sis and triangulation 3-4.3m

Performance degradation due to
noisy license-free band and multi-
path fading, wireless NICs required

Use an existing 802.11 network

TurePosition [94]
Uplink Time Difference
of Arrival (U-TDOA) 100m-300m

Expensive infrastructure, multi-path
problem, mobile phone needed

Consistent performance in various
environments

GPS Pathfinder
Pocket [71]

Radio time-of-flight lat-
eration

2-5m after differ-
ential correction

Not indoors or urban canyon, high
power consumption, expensive in-
frastructure

Absolute accuracy

TABLE I

SOME POSITIONING TRACKING SYSTEMS BASED ON SMART ENVIRONMENTS

for this function [85]. Accelerometers find a wide spectrum of
applications in mobile robot or land-vehicle navigation [1],
[10], [97]. Test results for mobile robot navigation, however,
have been generally poor due to extensive drift and the poor
signal-to-noise ratio at lower accelerations [14]. To obtain
acceptable performance, accelerometers with bias accuracies
several orders of magnitude better than what is commonly
available today are required. Besides, accelerometers are sensi-
tive to uneven ground because any disturbance from a perfectly
horizontal position will cause the sensor to detect a component
of the gravitational acceleration. The situation is a lot worse
for distance measurement in pedestrian navigation when an
accelerometer is attached to the subject’s body. As the axis
of the accelerometer pitches, rolls, and yaws during walk,
the measurement acceleration are heavily affected by the
gravitational acceleration.

One way to mitigate the drift problem is to take advantage of
the fact of zero velocity updates with each footfall between leg
swings [22], [79]. The integration of inertial measurement is
only performed during the swing of legs and the velocity errors
can be reset with each step since the true velocity must be zero
if the INS is known to be stationary. To obtain maximum ben-
efit from the zero velocity updates the inertial measurements
should be as close to the ground as possible, perhaps in the sole
or the heel of the boot (where the velocity is not influenced by
body sway). Local ground noise and coupling of foot motion
to the inertial sensors must be minimized and time at zero state
should also be maximized. The experimental results show that
very accurate distance estimation can be obtained, at the cost
of extensive computation, careful system calibration, and extra
hardware requirements such as long wiring between foot unit
and module carried elsewhere on the body.

To calculate the walked distance, an alternative approach is
to totally avoid integration of measurements, but rather make
use of walk dynamics contained in the accelerometer signals
such as frequency, maximum/minimum amplitude etc. In this
case, the inertial sensors may be located in a waist pack. When
people walk, there is vertical movement of the body with each

step. An intuitive way to measure distance walked is to use
vertical axis acceleration signal to determine how many steps
have been taken, and then multiply the number of steps taken
by the average step length. A common algorithm for step
counting uses some manner of peak detection. Unfortunately
using a fixed value for stride length will always result in a low
accuracy system. One important feature of human’s walking
pattern is a good correlation between the step length and the
step frequency. Specifically, a linear relationship between step
size and walking speed is apparent, although this relationship
breaks down as a person transitions from walking to jogging
or running [60]. By simple algebraic manipulation one can
express step size in terms of step frequency, which is easily
computed from the step detections. A number of step models
[48], [51], [52] are based on this biological characteristics.
For a detailed account of step length estimation models and
error analysis of the step length estimate, see [56]. Particularly,
walking speed strongly influences the amplitudes of the accel-
eration signal. Therefore, the step length can be approximated
with minimum latency by using a simple formula [2]:

step length ≈ 4
√

Amax − Amin × K (1)

where Amax (or Amin) is the maximum (or minimum) ver-
tical acceleration in a single stride and K is a constant.
The assumption is that the leg is a lever of fixed length
while the foot is on the ground. In this model, a differential
acceleration measurement results in less sensitive to drift.
More importantly, it is much easier to implement online
calibration algorithms for a one-parameter model than for a
multi-parameter model, c.f. [48], [51], [52], [56]. Although
the parameter K is user specific, our test results show that it
does not vary too much from person to person. In the case
of the accelerometer attached on a subject’s ankle, a formula
similar to (1) is derived in [43].

In addition to being used for velocity/distance measurement,
accelerometers also measure the degree of tilt or inclination.
The acceleration sensors have DC response and therefore can
accurately measure the gravitational G-force. When the sensor
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is static or quasi-static, the accelerometers will indicate the roll
and pitch of the device. This information is useful in azimuth
calculation using electronic compass readings as illustrated
below.

2) Gyroscope: Micromachined gyroscopes measure yaw or
angular rate by picking-up a signal generated by an electro-
mechanical oscillating mass as it deviates from its plane of
oscillation under the Coriolis force effect when submitted
to a rotation about an axis perpendicular to the plane of
oscillation. Gyroscopes are sourceless and relatively immune
to environmental disturbances and have been widely accepted
in automotive, aerospace, defense, medical, and industrial
applications [59]. The foremost problem with gyroscopes is
errors mainly caused by bias drift and noise; in low-cost
gyroscopes, measurement errors integrate into heading errors
at a rate of 15-100◦/h. Powerful signal processing and filtering
are necessary to cancel drift and artifact in the signal. Excellent
discussions of the nature of error sources can be found
in [1]. A thorough treatment of all types of gyroscopes is
given in [23], while theoretical and experimental evaluation
of gyroscopes for mobile robots are provided in [10], [15].
Compared with accelerometer, gyroscope has relatively higher
cost, larger size, more sensitive to temperature and shock,
making it less favorable for pedestrian navigation.

Few systems use a gyroscope directly to calculate the
distance traveled by the subject. Miyazaki integrated a 0.5Hz
high-pass filtered piezoelectric rate gyroscope to the leg and
determined hip flexion extension angle and step length by
using a simple step model [63]. However, this method con-
siders thigh and shank as a unique segment and the error
reaches ±15% with subject-dependent calibration. A method
based on wavelet transform is proposed in [6] to compute
the values of step parameters from the angular velocity of
lower limbs. The estimation error for velocity and step length
is around 7%, but the method is computationally expensive
and hard to implement on a micro-processor. In [79], the
gyroscope attached to toe is used to compensate for the
rotation of the accelerometer: the estimated angular velocity
of the foot is integrated to estimate its pitch angle. More often,
gyroscope is located at subject’s waist and used to determined
the body orientation. Since gyroscope’s operation principle is
completely different from that of compass, it thus plays a
major role in the filtering of the azimuth. In case of a magnetic
disturbance and no turn, the gyroscope remains still while
the compass indicates a turn. If both sensors, comparing the
respective azimuth rate of change, do not indicate a turn at
the same time, then no turn is considered, and a magnetic
disturbance is detected. At this stage, only the gyroscope
output is used to compute the azimuth of displacement. If both
data are coherent, they can be merged through a Kalman filter
[43], [49]. Zero velocity updates are also needed from time to
time in order to avoid any divergence caused by integration of
gyroscope’s measurements.

3) Electronic Compass: Heading in DR navigation solution
is normally obtained from a magnetic compass. Using the
earth’s magnetic field, electronic compasses based on magnetic
sensors provide heading information without requiring any
modification of the environment. The earth’s magnetic field

X (forward)

Y
(right)

Z (down)

Hearth

Hx

Hz

Hy

α = Heading or Azimuth
= Inclination angle

α
δ

δ

2 2 2
x y zH H H= + +

Fig. 2. Earth’s field in (X, Y, Z) coordinates

 

Fig. 3. Compass tilt referenced to the Earth’s horizontal plane (figure taken
from [18])

has a component parallel to the earth’s surface that always
points toward magnetic north. It is this component that is used
to determine compass direction. The angle of the magnetic
field to the surface of the earth is called inclination angle
(see Fig. 2). Since the direction of true north and magnetic
north can deviate significantly from each other, the proper
declination angle needs to be added or subtracted to correct
for true north. Declination is defined as angle from true north
to magnetic north. Declination data for locations world wide
can be found at NGDC [66]. Therefore finding a compass
heading, or azimuth, is a two step process: First, determine
the Hx and Hy horizontal components of the earth’s magnetic
field; and second, correct for true north using declination data.
Compasses are generally implemented with magnetoresistive
(MR) sensor, a Hall effect sensor, or a set of orthogonal coils
referred to as a “fluxgate.” Compared to fluxgate sensors, MR
technology offers a much more cost effective solution. Due to
their higher sensitivity, MR sensors are also superior to Hall
elements in pedestrian navigation.

The determination of the horizontal component of the Earth
magnetic field requires implicitly the knowledge of the hor-
izontal or vertical plane. This is commonly done by sensing
the gravity vector at rest using accelerometers. To compute
then the azimuth of walk, one has to constantly compute the
attitude of the sensor in order to correct the measured magnetic
values, a scheme often called tilt compensation (See Fig. 3).
The X , Y , Z magnetic readings can be transformed to the
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horizontal plane (Hx, Hy) by applying the rotation equations:

Hx = X cosφ + Y sin θ sin φ − Z cos θ sin φ (2)

Hy = Y cos θ + Z sin θ (3)

It turns out that the azimuth error depends on the inclination
angle, the pitch angle, and the azimuth itself, which can be
written as [49]

∆α = −∆θ · tan δ · cosα − ∆φ · tan δ · sinα (4)

where ∆α is the azimuth error, δ the inclination angle, and
φ the pitch angle. This relation explains that the error in
determining the attitude angles affects directly the azimuth
and its effect strongly depends on the azimuth itself. For mid-
latitude (tan δ ≈ 2), a one degree error in tilt can cause nearly
two degrees of heading error. A more complete error model
is provided in [57].

Independently to these errors, the earth field at the compass
may be superimposed by other magnetic fields or distorted by
nearby ferrous materials. An efficient compensation of such
effects is required in order to achieve reliable azimuth readings
[90]. Only errors caused by deterministic interference sources
can be compensated. Basically, the deterministic interference
can be categorized as two types - hard iron and soft iron
effects. Hard iron effects are caused by magnetized objects,
which are at a fixed position with respect to compass. For
example, some type of batteries are strongly magnetized,
therefore their closeness to the compass should be avoided.
Soft iron effects occur due to distortion of the earth field by
ferrous materials. Even the presence of human body distorts
the magnetic field around the compass. To compensate these
effects, a rigorous approach would require the determination of
12 parameters at known elevations, not feasible for pedestrian
navigation application. A simplified approach consisting of
determining only the corrections in the horizontal plane is
more convenient [18]. The four parameters are two scale
factors (Xsf , Ysf ) and two offset values (Xoff , Yoff ). The
(H̄x, H̄y) values used to compute the azimuth are:

H̄x = Xsf ∗ Hx + Xoff

H̄y = Ysf ∗ Hy + Yoff (5)

Azimuth = atan2(H̄y, H̄x) (6)

where (Hx, Hy) are tilt-corrected magnetic values. The atan2()
function computes the principal value of the arc tangent of
H̄y/H̄x, using the signs of both arguments to determine the
quadrant of the return value.

For non-deterministic error signals, package material that
has a good shield effectiveness for all magnetic interferences,
but permeable to the earth magnetic filed is desirable. The
fact that the lower frequencies are harder to shield means
that, in the end, the earth field gets through the shield. The
performance of various materials with different frequencies
and source locations are summarized in the shielding effective-
ness tables [68], [98]. Steel was found to be the appropriate
material since it has a good behavior over a wide range of
frequencies. For example, for a 6mm thick steel and an outside
magnetic field of 30Hz, the magnetic interference inside the

shield is 149 times lower [58]. On the other hand, basic pre-
filtering technique yet simple proves to be a very effective
compensation scheme for random disturbances [74]. Other
compensation methods depend on measurements from other
sensors or systems, such as gyroscope [35], [49], [89] or GPS
[36], [38].

4) Barometer: The continuous knowledge of the altitude
opens possibilities for a 3-dimensional positioning. In pedes-
trian navigation, altitude changes when taking slopes, stairs,
or elevators with changes in the air pressure, which can
be measured by the barometer attached to the human body.
Determination of altitude changes using barometers, however,
is complicated due to the following facts. First, the natural
air pressure changes with the weather or building conditions.
Second, as the air pressure changes slightly during the vertical
movement (0.1mb ≈ 1m), the output of the barometer needs
to be amplified exceedingly. Thus the sensor resolution or
electrical noise may cause oscillations between two altitudes,
even on flat ground. Third, the vibration of human body could
also change the output of the barometer.

In [79], a band pass filter (BPF) is constructed to reject
slowly varying components and noisy components in barom-
eter signal. The vertical movement is derived by integrat-
ing the output of the BPF and calibrating it using a mean
value of seven subjects. The estimation error is within 11%.
The improvement of the sensor resolution is possible by
detecting the situations (slopes, stairs, or elevators), followed
by an appropriate pressure treatment [49]. If a barometric
reference station is available, differential barometry is also
viable. Several tests have shown that precision better than
50 centimeters in absolute altitude can be maintained up to
several kilometers from the reference station, even in changing
weather conditions [50].

5) Vision Sensor: Vision sensors (cameras) have been suc-
cessfully used in the past to provide motion estimates between
consecutive image frames in mobile robot and aeronautical
applications, see, e.g., [4], [75], [76]. Some of common com-
puter vision algorithms include mesh-based modeling, neuro-
fuzzy classification, simple shape fitting, feature extraction
based tracking and shape-volume approximation. Most of
these algorithms are computationally demanding and are thus
unable to deliver high quality motion capture data in real-time
using current processing power. Vision algorithms also suffer
from a lack of robustness. Camera rotations or image noise
can cause vision tracking failures or instabilities.

The operation principle for a visual odometer (incremental
stereo ego-motion), which uses stereo vision system to cor-
relate common features in two images, is briefly described
below. Features of images obtained from left and right cam-
eras are detected and matched. With the known geometry
between cameras, the positions of the features relative to the
cameras can be calculated. Hence, the displacement (distance
and direction) of the cameras can be estimated from the
difference in position of the tracked features in successive
frames. For pedestrian navigation, the major shortcoming of
this technology is that when the cameras are attached to the
walking subject, rather than a wheeled robot or a helicopter,
the shaking and rotations of the cameras can considerably
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degrade the performance of feature tracking [37].
In addition, cameras find a wide spectrum of applications

in augmented reality, context awareness and navigation system
for the blind. They have been used to track orientation [100];
to recognize locations [7], [77]; to detect obstacle [64], kerbs
and steps [80], and zebra crossing [40], [81]. Images can also
be transmitted back to the human operator at the navigation
service center [28].

6) Other Sensors: Newer inertial devices with compact,
lower precision sensors have become available in recent years.
This group of instruments, called motion sensors, is six to eight
times less costly than a standard INS. Given their weak stand-
alone accuracy and poor run-to-run stability, such devices are
not usable as sole navigation systems. Even the integration
of a motion sensor into a navigation system as a supporting
device requires the development of non-traditional approaches
and algorithms [17].

Other sensors might be useful in pedestrian navigation
applications including light sensors, microphones, humidity
and temperature sensors, pressure sensors, chemical sensors,
ultraviolet sensors, etc. Fluorescent light sensors that work by
extracting the 60Hz component of the signal from a photodi-
ode aimed at ceiling are useful in indoor environment. While
utility workers find that chemical sensors could save lives, the
blind appreciate road information provided by microphones.
Users under different situations thus find a unique set of
sensors that best meet their needs.

C. No Sole Solution

From the above discussion, it is clear that that no single
tracking technology by itself appears to offer a complete
solution to pedestrian navigation. Given the wide range of
strengths and weaknesses that different navigation technolo-
gies have in different circumstances, one approach has been to
combine a set of complementary technologies in ways that the
advantage of one technology compensates the drawback of the
other to provide acceptable performance. The most common
practice is to integrate GPS with DR using a Kalman filter
to control navigation error growth [19], [27], [36], [48], [73],
[84]. The optimal setting of the filter parameters is not trivial
and often requires intensive testing and investigations of the
system preferably in predefined surroundings, i.e., reference
trajectories for the pedestrian are needed. Intelligent methods
to decide when to do data fusion would also be useful.

Various other methods have been attempted to improve the
navigation performance beyond that of DR. Unusual motions
such as sidestepping are handled in [50], [84] by analyzing
the pattern of the acceleration signals. In addition, mechanics
of walking completely changes once the slope is becoming
greater than 10%. The step model which is good for level
work is no longer valid when walking on a slope or a
stairway. The ability to distinguish various activities of a
subject (sitting, level/downhill/uphill walking, jogging, etc.)
[5], [51], [82], [91] helps to develop adaptive step length
estimation methods. Knowledge about the environment and
the constraints that it imposes on navigation can serve as an
important source of information to correct for inaccuracies

in the system. This concept is known as map matching. The
difficulty here is how to reconcile inaccurate locational data
with an inaccurate map. See [99] and references therein.
Moreover, the position information must be transmitted via a
properly working communication channel, especially in health
care related applications [53], [86]. An appropriate communi-
cations function is thus desirable for PNS. The ultimate goal
is for PNS to support robust and accurate tracking in arbitrary
environments and conditions: indoors, outdoors, anywhere the
user wants to go.

In the end, it is worth mentioning another type of posi-
tioning systems with different considerations: electronic travel
aids (ETA’s) systems. ETA’s are not concerned with globally
directing the user toward a desired target but rather with local
obstacle avoidance. In this case, commonly used technologies
include, inter alia, optical triangulation [12], ultrasonic rang-
ing [78], auditory localization [42], mobile robotics technology
[83], and active beacon positioning [61].

D. New Perspectives

With the advancement of MEMS technologies, wireless
networks consisting of tiny sensor devices hold the promise of
revolutionizing sensing in a wide range of application domains
because of their flexibility, low cost and ease of deployment
[3]. Among the most common such devices today are Berkeley
motes (manufactured by Crossbow), which integrate compu-
tation, communication, and sensing into a single small device
[33]. Their peer-to-peer networks can scale to thousands of
devices, from which can emerge advanced behavior. The motes
run on an operating system called TinyOS [92], which fosters
an event-based execution model and supports flexible com-
ponent modules. The constrained computation power, battery
power, storage capacity and communication bandwidth of the
tiny devices, however, pose challenging problems in the design
and deployment of such systems.

One exciting application provided by wireless sensor net-
works is distributed detection and tracking of moving objects.
The central idea is to utilize decentralized processing within
the network to build a better picture of what is going on
(locally), before reporting the results (centrally). This notion,
which relies on collaboration among sensors, reduces false
alarms and avoids sending all the sensor measurements back to
a centralized processing unit [62]. In [34], accurate personnel
and vehicle tracking has been achieved using wireless MSTAR
sensors. Magnetometer sensors and micro-power impulse radar
(MIR) sensors are used to detect, classify, and track various
types of objects in a variety of applications. In [16], emphasis
is placed on location-aware data routing to conserve system
resources, such as energy and bandwidth. In our project, the
wireless sensor network is used in a unique way for pedestrian
navigation, mainly as a communication network.

Akyildiz et al. [3] envision that, in future, wireless sensor
networks will be an integral part of our live, more so than
the present-day personal computers. In addition, the accurate
position of users will be known via PNS. These characteristics
of future mobile environments will enable the development of
location-aware and, more generally, context-sensitive applica-
tions.
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III. THE NAVMOTE-SYSTEM DESCRIPTION

A. Overview and Objective

The system involves a Dead Reckoning Module (DR Mod-
ule), self-organizing wireless ad-hoc networks (sensor mote
network) and an information center with map database. The
DR Module consists of the Leica Geosystems DMC-SX three
axes accelerometer and magnetic compass (Leica Vectronix
AG [54]) married to a generic wireless controller board, with
the radio, the processing and the power storage all integrated.
The controller board for DR Module and network nodes
both use the open-source Berkeley Motes with the TinyOS
(operating system) [92]. The NetMote network plays a critical
role in NavMote calibration, trajectory data collection and
exfiltration. The information center is responsible for trajectory
generating and displaying, map matching, and other purposes.

The specific objective is to demonstrate the effectiveness of
architecture shown in Fig. 1 and the feasibility of building a
NavMote (hardware/software) that cooperates with the sensor
network using mote network middleware. The power of the
network comes in the ability of NavMote to communicate
with any NetMote that may come within range. If the network
became commercially popular, it could grow organically. It
is this vision shared by the system design where we bring
wireless sensors into our everyday life. Note that the present
application differentiates itself from the traditional sensor
network applications in several ways; see [24] for a detailed
discussion.

A side remark is that the system is mainly used to track
or monitor user’s position with potential security applications
rather than to provide high-level interactive travel aids (For
such systems, interested reader is referred to [8], [29]). In
particular, the NavMote does not maintain any kind of rough
position estimate while is out of contact with the network.
Once the information center computes the accurate pedestrian
trajectory, the information will not be relayed back to the
NavMote. If necessary, the NavMote can be reset for a new
tracking task via wireless telemetry starting from a new initial
position known to the information center. This design is by no
means restrictive since positioning is the core functionality of
any navigation systems [53] and the system can be augmented
so that the user can know its own position.
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Fig. 5. NavMote hardware

B. Technical Approach

1) NavMote Hardware/Software: NavMote uses a special
mobile sensor mote to collect data, process these data which
are automatically downloaded to the mote network when in
proximity. Fig. 5 shows three building blocks of NavMote:
Leica Digital Magnetic Compass, interface board, and a Berke-
ley mote. Stereolithagraphy is used to manufacture the housing
case. Separated from these components is a 9V battery which
is placed in a pocket of the subject. The resulting design
allows substantial cost saving as well as the flexibility to
change components without considerable redesign efforts. The
NavMote is compact as shown in Fig. 6. With a weight of 100
grams (not including battery), NavMote is unobtrusive when
fixed to the middle of the waist of the subject. In the sequel,
x, y, z axises denote forward, right, down directions of the
NavMote, respectively.

The core of NavMote is the Leica Digital Magnetic Com-
pass (DMC-SX), which consists of three MEMS accelerom-
eters and three magnetometers (MR), producing an azimuth
accuracy of 0.5◦ (2 sigma); 3D-accelerometer range of 2g; 3D-
magnetometer range ±100 micro Tesla, typical resolution 0.01
micro. The DMC weighs less than 28 grams, and measures
31 × 33 × 13.5 millimeters. It incorporates amplification,
signal conditioning, temperature compensation and internal
voltage regulation, all in a small package. The DMC outputs
accelerations and magnetic field in three directions, to compute
the azimuth, bank and elevation. The accelerations are also
used to detect step events. The DMC functions at 5 volts and
the mote at 3 volts. The devices’ operating period depends
on sensor use, power-saving mode, and so on. At present the
NavMote works with a Lithium 9-volt battery for about 6 hours
continuously.

The NavMote incorporates a Berkeley mote to provide
processing power, temporary storage and communications to
the network [33]. Its central processor is an Atmel AT-
MEGA128L 8-bit processor running at 7.3728 MHz. This
microcontroller has 128 KB of programmable flash memory
and 512KB of external flash memory. The mote also provides
radio communication at 433 MHz. The radio has 8 channels
and is capable of transmitting data at a rate of 38.4 KBaud
with a range of 1000ft (the radio transmission range may be
affected by ground absorption effects). The interface board has
a 4MB flash memory, a circular buffer and other miscellaneous
components. A 51 pin connector is used to interface with the
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Fig. 6. Inside view of NavMote

mote. Sensor data (tri-axial magnetic and tri-axial acceleration)
are stored in 4Mbytes flash memory which allows an operation
time of 1.7 hours with a sampling frequency of 30Hz. A circu-
lar buffer structures and task driven write and read processes
minimize blocking of other interrupt driven processes.

The NavMote works on its own when away from the
NetMotes. If any NetMote is within range, the NavMote can
exchange information with it. For example, (pre-processed)
sensor data can download from the NavMote to a NetMote.
This NetMote, on the other hand, can transmit calibration
data to NavMote. Preliminary data processing is performed
onboard the NavMote just before sending data to the network.
The FIFO buffer stores the last 8 samples as data come
out. At every sampling, the data of the buffer are analyzed
for detection of extremum points (maximum or minimum
detection) of the z-axis acceleration signal. If an extremum
is detected then the data over the buffer are averaged and
transmitted (for all 8 measurements.) Transmission of data
associated with extremum points greatly reduces the amount
of data that needs to be downloaded to the network. This
also results in great energy saving since the energy cost of
transmitting a single bit is in the order of three magnitudes
more expensive than executing a single instruction [70]. A
detailed description of the trajectory reconstruction algorithm
is given in Subsection III-B.3).

2) NetMote Network Middleware Services: The NavMote
downloads its trajectory data to a network of stationary Net-
Motes where they are logged in each NetMote’s EEPROM.
The NetMotes then stream those logged data to the RelayMote

where they can be accessed by the user to reconstruct the
subject’s trajectory. The software supporting the application’s
use of the communication network is called middleware.
Essentially, middleware is software that lies between the
application and operating system services, providing a high-
level abstraction of network communication that can be easily
used by the application services.

The software supporting the pedestrian navigation applica-
tion is written using TinyOS/NesC. The software is organized
into a stack (see Fig. 7) consisting of three layers; the
application, middleware and operating system or O/S layers.
There are three primary application services. These services
are itemized below.

• Coordinator: This service manages the interaction of the
other application services.

• Dump: This service downloads trajectory data from the
NavMote to the NetMote’s EEPROM.

• Exfile: This is service streams data in a NetMote’s
EEPROM to the network’s RelayMote (base station).

There are five primary middleware services. These services are
itemized below.

• Ping: NavMote uses this service to determine if they are
in the vicinity of a NetMote.

• Backbone: This service builds and maintains a robust
minimum hop spanning tree from all NetMotes to the
RelayMote.

• Clock Synchronization: This service maintains a global
clock variable across all nodes in the network.

• Localization: This service initializes and maintains a
variable representing the NetMote’s physical position.

• Telemetry: This service periodically sends packets down
the network’s backbone to the RelayMote. The telemetry
packets contain information about the network’s current
configuration. This service is used by the RelayMote to
build a picture of the entire network.

The O/S services are software components interfacing directly
to the mote’s physical resources such as the UART, radio, sen-
sors, clock, random number generator, and EEPROM (logger).

The services in the middleware layer are responsible for
setting up and maintaining the network infrastructure required
to recover data from the NavMote in a flexible and reliable
fashion. As soon as a NetMote is reset, it starts up these mid-
dleware services in a specific order. The Clock Synchronization
and Localization services are started first in order to initialize
the mote’s clock and location variables. Once these services
have stabilized, a signal is issued which starts the Backbone
service. This service automatically builds a minimum hop
spanning tree from all NetMotes to the RelayMote. The service
is designed to detect changes in link quality that would
adversely effect the network connectivity. Upon detecting such
changes, the backbone service reconfigures it’s spanning tree
to restore network connectivity. Finally, once the backbone
service has stabilized, it issues a signal which starts the
telemetry service. The telemetry service simply sends packets
to the RelayMote that provide the user with a global view of
the network’s connectivity.

The NavMote uses the Ping service to find the network.
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Fig. 7. Software stack consists of three layers

Upon finding the network, it uses the application layer’s Dump
service to download the trajectory data to the network. The
dump service works in an opportunistic manner, dumping
as much data as possible to the nearest available NetMote’s
EEPROM. The download then switches to another download
should the original dump stream be interrupted. Having mul-
tiple NetMotes store the NavMotes data is desirable since a
single NetMote may not have enough EEPROM to store all of
the trajectory data and the subject may be moving from being
close to one NetMote to being closer to a different NetMote.

The Exfile service is used to transmit data logged in the
NetMote’s EEPROM to the RelayMote. The coordinator on
the NetMote ensures that the Dump and Exfile service operate
in a mutually exclusive manner. In this way, the Exfile service
does not begin until the download from the NavMote has
stopped. Upon starting, the Exfile service begins reading data
stored in EEPROM and storing it in a 128 line buffer. Once this
buffer is full, the service issues a request-to-send (RTS) to the
next-hop on the backbone’s spanning tree. All nodes (except
the sender and next-hop) hearing the RTS are immediately set
to a dormant state, thereby establishing a basic service cell
(BSC) in which the sender and next-hop can communicate
with little interference from other NetMotes. Upon receiving
a clear-to-send (CTS) from the next-hop, the Exfile service
begins transmitting the buffered data, line by line, to the next-
hop. Each transmitted line is explicitly acknowledged (ACK)
by the next-hop. Should the sender miss an ACK or the next-
hop miss an expected message, then they issue a clear (CLR)
message that resets the basic service cell so it is ready for the
next RTS message.

The Exfile service essentially streams data from all Net-
Motes with logged data to the RelayMote. Observed transmis-
sion rates using the MICA2 motes have been about 400 lines
(16 data bytes per line) per minute per link. The trajectory data
transmitted by the Exfile service follows the same spanning
tree used by the Telemetry service packets. The final destina-
tion for both message streams is the RelayMote. Upon being
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Fig. 8. NetConsole GUI

caught by the RelayMote, the packets are forwarded over the
RelayMote’s UART to a PC that is running a Java graphical
user interface (GUI) called NetConsole. This GUI is shown in
Fig. 8. The GUI displays telemetry packets that are forwarded
to the RelayMote from the network. The data contained in
these packets allow the GUI to display the NetMote and
NavMote position and neighborhoods. The data also allows the
GUI to display the routes and connectivity between NetMotes.
Finally, the NetConsole dumps the decoded data packets to a
file for subsequent post-processing.

To help monitor operations of the whole network, a listener
is also necessary. The listener does not interfere with network
operations, but rather eavesdrops on data packets that are sent
from NavMote to NetMotes and dumps the decoded packets to
a file. The file contains raw data that the NavMote downloaded
to the network and can be compared with the file received at
RelayMote for diagnostic purpose. The Listener also displays
the NetMote location (coded in SerialID) and provides controls
to restart the NetMotes and to adjust their radio power.

Although the sensor mote network is used mainly as a
communication network in our project, the framework allows
an easy extension. The network middleware also provides a
method for in situ calibration of the Berkeley sensors. Sensor
mote network localization services can be used to provide
“absolute” position fixes that can be transmitted to NavMote.
These absolution position fixes can then be smoothed with raw
data to provide auto-calibration of the NavMote while it is in
the sensor field.

3) Wireless Assisted Dead Reckoning Algorithm: Our ap-
proach to DR is to use the acceleration signal pattern to
detect the step occurrences and use the magnetic compass to
provide continuous azimuth information. Based on a simplified
kinematic model of a person’s gait, the walked distance is
provided by summing up the size of each step over the step
count. Static and dynamic calibrations are essential for com-
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Fig. 10. Raw acceleration signal (solid) vs. FIR-filtered acceleration signal
(dashed)

pensating azimuth error caused by body offset and walking.
DR is further combined with wireless telemetry and map
matching to improve navigation performance. Currently, the
sensor network only provides initial position fix to NavMote
and map matching is not automated but executed by human
operator. Fig. 9 illustrates the signal flow of the algorithm.

Both the step count and the step length estimation require
an accurate and robust step detection method. In the following,
we show that the step can be reliably detected using only az ,
the acceleration signal in z-axis. Due to complicated walking
dynamics, the raw signal az has double or triple peaks in
every step as shown in Fig. 10. Since the normal walking has
a natural frequency no more than 3Hz, it turns out that a low-
pass FIR filter (or simply, a moving average) can be applied
to smooth az . The filter output az is calculated as

az(t) =
1
8

t∑

i=t−7

az(i) (7)

where t is the sampling time. (In general, it is recom-
mended that the user limit bandwidth to the lowest frequency
needed by the application to maximize the resolution and
dynamic range of the accelerometer.) Fig. 10 demonstrates
that “pseudo” peaks are almost removed from az , resulting
in a much smoother signal az . Now the extreme values of
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Fig. 11. False detections by simply checking the sign of first-order
(backward) difference of az

Subject A B C
Leg Length 0.94 1.06 1.08

K (Nominal Value) 0.50 0.55 0.57

TABLE II

THE CONSTANT FACTOR K FOR THREE DIFFERENT SUBJECTS

az can be found by using a conventional extremum detection
algorithm. Fig. 11 shows extremum points detected by simply
checking the sign of the first-order (backward) difference of
the signal az , i.e., sgn{az(t)− az(t− 1)}. The detection rule
is that if the sign changes from positive to negative, az has a
local maximum; if the sign changes from negative to positive,
az has a local minimum. This rule is chosen to facilitate real-
time extremum detection. Only those extremum data points
are recorded, resulting in a factor of 7 of data reduction. (The
sampling frequency is 30Hz but only 4 extremum points are
recorded in every second assuming a step frequency of 2Hz.)
False detections are often observed based on this rule, but they
can be avoided by checking additional conditions such as

• Whether the maximum/ minimum acceleration are
above/below the threshold values;

• Whether the time since the last maximum/ minimum
detection is greater than some minimum period;

• Whether the maximum and minimum detection alternate.

If above conditions are true, then the system increases the
step count and record maximum and minimum acceleration
amplitudes.

After the extremum points are detected, the step length
is calculated using (1). This technique has been shown to
measure distance walked to within ±3% for the same subject
and ±8% across a variety of subjects of different leg lengths
(See Tables II, III, IV). Close coupling of the accelerometer
to the body is important to maintain accuracy. Note that
the biased distance estimation in Table IV is caused by the
artificial track surface, which generally results in 5 percent
higher shock wave amplitude than walking on the asphalt
surface.
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Case Number Estimated Distance (m) Error 1 (m) Error 2 (m) Error 3 (m)
(no calibration) (with tilt calibration) (with total calibration)

1 102.8 20.2 5.2 2.5
2 101.6 20.5 5.5 2.9
3 102.4 20.8 5.3 2.7
4 101.6 8.4 1.4 1.2
5 102.4 9.3 1.8 0.8
6 103.0 11.1 2.0 0.7
7 102.5 9.9 5.2 2.3
8 102.2 9.3 1.7 0.9
9 102.3 10.4 1.0 1.6
10 102.1 9.0 0.7 1.9
11 100.1 2.7 12.2 0.5
12 103.0 3.2 9.7 0.9
13 102.3 3.3 9.5 0.9
14 100.7 4.8 10.3 2.5
15 102.6 5.3 11.2 3.0
16 103.0 5.6 11.8 3.3
17 101.6 4.4 10.5 2.0
18 102.4 5.6 11.8 3.3
19 102.3 4.8 11.1 2.4
20 102.2 5.3 10.8 3.0

Mean 102.2 6.8◦ 2.1◦ 1.1◦
STD 0.7 2.1◦ 1.0◦ 0.5◦

TABLE IV

THE ESTIMATED WALKING DISTANCES AND ERRORS (EAST/WEST COMPONENT) WHEN THE SAME SUBJECT WALKED NORMALLY TOWARD

SOUTH/NORTH FOR 100 METERS AT A OLYMPIC STADIUM (WITH K = 0.5)

Subject Normal Slow Fast
A (K = 0.50) 75.3 74.2 73.5
B (K = 0.55) 75.5 74.6 73.3
C (K = 0.57) 74.9 76.0 72.8

TABLE III

USING THE SAME K TO ESTIMATE THE DISTANCE WITH DIFFERENT

WALKING PATTERNS (75M STRAIGHT WALKING ON CEMENT SIDEWALK)

The experimental results demonstrate that the factor K can
be set to be constant for the same subject without a large
accuracy penalty. GPS or wireless sensor networks with the
localization capability can be combined with (1) to obtain
more accurate step length estimation. The same K can also be
used for normal, slow and fast walking on different surfaces.
Fig. 12 reports how the amplitudes of filtered acceleration
signal āz change as the subject changes his pace from slow
walking to fast walking. As expected, the step length differs
on different paces (Fig. 13). Generally, a shorter distance is
obtained for fast walking and a larger variance is obtained on
soft surfaces such as the grassland. The errors mainly result
from the violation of the assumption that the leg has fixed
length. An adaptive algorithm that “learn” the user’s walking
characteristics could improve the accuracy significantly.

The main source of error in DR comes from the errors in
azimuth determination. Low-pass filtering (moving-averaging)
of compass data proves to be very effective in removing
random disturbances, as shown in Figs. 14 and 15. In addition,
dynamic (tilt) and static calibrations are needed to compensate
for compass errors:

• Dynamic (tilt) calibration: Dynamic calibration is neces-
sary to compensate the individual errors caused by walk-
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Fig. 12. The amplitudes of āz change as the subject changes his pace

ing. Low-pass filtering the acceleration signals eliminates
the typical oscillations in walking. The filtered accelera-
tion signals are also used to estimate the pitch and roll
angle of the NavMote. The pitch and roll angles provide
the attitude values to find the horizontal projection plane.
The steps to compute tilt-compensated magnetic values
(Hx, Hy) are as follows:

1) Moving-average raw compass readings (X, Y, Z) to
get (X̄, Ȳ , Z̄);

2) Moving-average raw acceleration signals
(ax, ay, az) to get ā = (āx, āy, āz);

3) Compute wx = āx/|ā|, wy = āy/|ā|, wx = āz/|ā|;
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4) Compute

Hz = wx · X̄ + wy · Ȳ + wz · Z̄,

Hy = wy · Z̄ − wz · Ȳ ,

Hx = X̄ − wx · Hz ;

• Static calibration: When a two-axis magnetic sensor is
rotated in the horizontal plane with no disturbances, the
output plot of Hx vs. Hy will form a circle centered at the
origin (0,0). However, even the human body can distort
the circle, resulting in, e.g., a ellipsoid not centered at the
origin as plotted in Fig. 16. The plot data are collected
while the subject is walking in a small circle. The method
proposed in [18] is used with slight modification to
determine the offset and scale factor values in (5).

Xsf = max {1, (Hy.95 − Hy.05)/(Hx.95 − Hx.05)}
Xsf = max {1, (Hx.95 − Hx.05)/(Hy.95 − Hy.05)}

Xoff = 0.8 · [(Hx.95 − Hx.05)/2 − Hx.05 ] · Xsf

Yoff = 0.8 · [(Hy.95 − Hy.05)/2 − Hy.05 ] · Ysf

where Hx.95 and Hx.05 (Hy.95 and Hy.05) are the 95th
percentile and the 5th percentile of Hx (Hy) obtained
in calibration experiments, respectively. The factor 0.8
is introduced to avoid over-compensation. Finally, the
azimuth is calculated according to (6). The declination
angle should also be applied to adjust magnetic north to
true north.

The effect of total calibration (dynamic and static calibra-
tion) has been shown in Table IV. A heading error of 1.1 ◦ is
obtained after total calibration, compared to a heading error
of 6.8◦ without any calibration. Fig. 17 depicts the effects of
the different calibration phases.

With step length and heading estimation in hand, the entire
trajectory is reconstructed by piecing the segments together
and then displayed against a “map” of the region. In the
implementation, step detection is done on NavMote and other
computations are done at the workstation connected to the
RelayMote. At this stage, the map-matching is not automated
but done by human operator using prior information to match



13

−30 −20 −10 0 10 20 30 40

−25

−20

−15

−10

−5

0

5

10

15

20

25

30

East (m)

N
or

th
 (

m
)

No Calib
Tilt Calib
Total Calib

Fig. 17. Effects of azimuth calibration

 

Fig. 18. A test in outdoor and indoor environments

pieces of estimated trajectory to certain features in the maps,
such as wall boundaries and building entrance for indoor
environment, and satellite photos in outdoor environment. The
adjustable parameters are starting positions, the step size factor
K , and the compass offset values (Xoff , Yoff ). A detailed
discussion of map matching algorithms is out of the scope of
this paper. We refer reader to [99].

IV. NAVMOTE-FIELD EXPERIMENTS

The system was examined in both indoor and outdoor
environments. Experimental results show that the navigation
performance is satisfactory provided that the indoor environ-
ment is not hostile to the NavMote in terms of magnetic
disturbances. Fig. 18 shows a trajectory with an “odd” hook:
the subject went inside a room in Debartolo Hall (University of
Notre Dame). One of the attractive features of the gait model
(1) is that it works for frequently changing walking patterns.
Fig. 19 shows that a subject went through three doors in a
building. Three notches, generated by stopping to open doors,
can be easily identified from the figure. The last two events
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Fig. 19. A subject went through three doors in a building. Three notches
(stepsize = 0) is generated by stopping to open doors.
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Fig. 20. The repetitions of the same trajectory in an Olympic stadium

separate themselves by less than 5 seconds. It will be difficult
for step frequency-based step length models, e.g., the one in
[39], [48], to correctly estimate step length between such two
events since accurate step frequency can cannot be obtained
at this time.

One experiment took place in an Olympic stadium. A
subject circled the 400m track three times. As shown in
Fig. 20, the end to end (starting point to ending point)
error is around 10m for a trajectory of 1200m (0.8% of the
total distance). The operation time for this experiment is 14
minutes, demonstrating the reproducibility of the tracking error
for a short operation time.

The system was also tested in swamp terrain. The subjects
took 5-minute and 3-minute walks through the test course.
When the subjects returned in the vicinity of the sensor mote
network the data were automatically exfiltrated by the network.
Data received by the RelayMote were processed to generate
the subject’s trajectory. The trajectory is plotted against an
aerial view of the area, as shown in Fig. 21 and Fig. 22.
The offset and scale factor boxes were provided via GUI, so
that a human operator could manipulate these values to get
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Fig. 21. A 5-minute walk in swamp terrain

 

Fig. 22. A 3-minute walk in swamp terrain: the letters ND are clearly seen

enhanced tracking performance using human knowledge on
the environment.

V. CONCLUSIONS

In this paper, we describe the development of a pedes-
trian navigation system that uses three-axes accelerometer
and magnetic compass (Leica Geosystems) and the Berkeley
motes. Implementing such an innovative commercial-off-the-
shelf (COTS) approach is a direct alternative to traditional
methods of project development. In the following, we sum-
marize the system from a functional point of view.

NavMote Software implements:

• Compensation for adverse sensor orientation, calibration,
filtering;

• Collection of data from sensors and storage on a non-
volatile memory;

• Retrieval of data from memory, processing and transmis-
sion;

• Detection of the sensor mote network and data download;

• Pre-processing of raw sensor data before data download.

Sensor mote network services provide

• Synchronization: establishes global time reference;
• Backbone generation: establishes min-hop routes to the

RelayMote;
• Streaming service: streams large blocks of data from the

NetMotes to RelayMote;
• Download service: streams large blocks of data from the

NavMote to the NetMotes.

Trajectory Post-Processing implements

• Java programs on PC connected to RelayMote;
• Reassembly of data packet;
• Compensation for missing data;
• Reconstruction of complete trajectory;
• Display of trajectory over area map.

Satisfactory system performance is obtained:

• Distance Accuracy: ±3% for same subject;
• Heading Accuracy: 1◦;
• Download time (NavMote to NetMotes): 3-minute data

file = 3 minutes download time;
• Exfiltration time (NetMotes to RelayMote): 3-minute data

file = 1 minute exfile time;
• Size: Currently limited by the sensor and battery sizes

Although the system performed very well, there is plenty
of room for improvement. Whereas outdoor environments
typically pose only a few problems to the developed DR
algorithm, indoor passages may be more critical. This is
mainly due to the method of heading determination relying on
magnetic azimuth measurement. One way to solve the problem
is to integrate GPS/gyroscope with the magnetic compass. In
addition, download and exfiltration time need to be reduced
via improvements in NavMote hardware and software, and in
network middleware.

In a subsequent design, an additional processor (Slave)
is placed on the interface board on the original NavMote
(Master). Master takes in charge of networking tasks and Slave
performs sensor acquisition algorithm, the memory manage-
ment, and the data processing. Master and Slave communicates
with each other using custom synchronous serial interface.
Differential data compression is implemented which increases
speed of download and exfiltation and extend operational time
up to 16 hours. For a 3-minute walk, 45 seconds download
time from NavMote to network and 25 seconds exfiltation time
to RelayMote are typical.

A number of practical challenges remain, including network
security, privacy, authentication, mobility management, and
provisioning of key services [9]. We believe however that our
development offers a vision of future mobile environments
that may emerge once ubiquitous wireless coverage becomes
available.
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