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Abstract— This paper introduces a dynamic bit assignment
policy (DBAP) for quantized feedback control systems without
process or measurement noise. The proposed DBAP is a con-
stant bit rate policy based on a similar policy analyzed in [1]. We
prove that the new policy is optimal for diagonalizable systems
in the sense of minimizing the summed square quantization
error subject to a fixed number of quantization bits. For
simplicity, this paper focuses on 2-dimensional discrete-time
systems with diagonal system matrices. These results may be
extended to more general systems.

I. I NTRODUCTION

Consider the following discrete-time system,

x[k + 1] = Ax[k] + Bu[k] (1)

u[k] = Fxq[k]

where x[k] ∈ <n is the system state at timek, xq[k] ∈
<n is a quantizedversion of that state,u[k] ∈ <m is the
control at timek andA, B, andF are real-valued matrices of
appropriate dimension. With regard to the preceding system,
we make the following assumptions:

1) (A,B) is controllable andF is a stabilizing state
feedback gain matrix.

2) A is diagonalizable and for simplicity we assumeA =
diag(λ1, λ2) whereλi > 1 for i = 1, 2.

3) At every time step the system state,x[k] is quantized
into Q bits (fixed length coding) to generate the
quantized state,xq[k].

The policy used in generating the quantized statexq[k] is
called aquantization policy.

This paper asks and answers the following question;what
is the optimal “performance” achievable under a fixed
number of quantization bits?. In this paper the constant
bit rate policy is characterized by the number of bitsbi[k]
assigned at timek to represent theith component of the
state vectorx[k]. We measure performance with respect to
the summed square quantization error over a finite horizon
of N steps,

PN = sup
x[0]∈xq [0]+U [0]

N∑

k=1

(|e1[k]|2 + |e2[k]|2) (2)

whereU [0] ⊂ <n is a bounded set centered at the origin,
ei[k] is the ith component of the quantization error vector
e[k] = x[k] − xq[k] and the supremum is taken over all

possible initial statesx[0]. This paper constructs a quantiza-
tion policy, named dynamic bit assignment policy (DBAP),
which minimizes the performance measurePN subject to a
fixed number of quantization bits,Q. All proofs are in the
appendix.

II. BACKGROUND

We may categorize quantization policies as either being
memoryless or having memory.Memoryless policiesmap
each bit to a specific subset of the state space such that the
assignment is fixed for all time. The attraction of memoryless
policies is the simplicity of their coding/decoding schemes.
The main drawback of memoryless policies is that they
require an infinite number of quantization bits to ensure
asymptotic stability [2]. Elia and Mitter [3] derived the
lowest quantization density for asymptotic stability with an
infinite number of quantization bits. But with only a finite
number of quantization bits, the best we can guarantee is
ultimate boundedness of the state [4] [5] [6].

Quantization policies with memory (so-calleddynamic
quantization policies) have been shown to achieve asymptotic
stability with a finite number of quantization bits [7]. These
policies generate a sequence,{P [k]}, of uncertainty sets.
It is presumed thatx[k] lies inside the setP [k] at time k.
The next uncertainty set is generated by first partitioning
P [k] into M smaller rectangles which we denote asPi[k]
for i = 1, . . . , M . If x[k] lies in the setPj [k], then the index
j is transmitted to the decoder and this set is propagated
through the plant’s dynamics to obtain the next uncertainty
setP [k + 1]. If this sequence of uncertainty sets converges
to 0, then the system is asymptotically stable. Brockett and
Liberzon [7] established sufficient conditions for asymptotic
stability that were later tightened in [8].

The work in [7] was significantly extended by Tatikonda
in [9] [10]. This work established necessary and sufficient
conditions on general linear systems that characterize the
minimum number of quantization bits required for asymp-
totic stability under time-varying bit rates. Related work
was published in [11] for diagonalizable systems. Similar
bounds on the minimumm number of quantization bits were
also established in [12] for general linear systems in the
stochastic sense. The aforementioned quantization policies
presume time-varying bit rates, which are not desirable in
real networks due to power and bandwidth inefficiency [13].



A necessary and sufficient condition for asymptotic stability
under constant bit rates was established in [1].

The proofs in all of the aforecited works use constructive
methods to guarantee asymptotic convergence of the noise-
free quantized linear system. By constructive, we mean that
these proofs construct a specific dynamic quantization policy
that achieves the specified quantization bound. These policies
vary considerably in their bit assignment policies. LetQ
denote the number of bits to be assigned and letbi[k] denote
the number of bits that a quantization policy uses to encode
the ith commponent of the statex[k]. There are a number
of bit assignment policies in the open literature that we refer
to as being eitherstatic, periodic, switching or dynamic.
Static bit assignment policieschoosebi[k] = bi (i = 1, 2).
It is proven [9] [10] thatlimk→∞ Li[k] = 0 if and only
if bi > log2(λi) (i = 1, 2) where λi are the unstable
eigenvalues of a noise-free system. A special static policy
with b1[k] = b2[k] = b is considered in [7] [8].Periodic bit
assignment policieschoosebi[k] such thatbi[k] = bi[k+ lT ]
for all integersk andl whereT is theperiod. The average bit
rate for such policies is defined asbi = 1

T

∑T−1
k=0 bk[k] and

in [10] it is shown thatbi can approachlog2(λi) arbitrarily
closely thereby ensuring thatLi[k] converges exponentially
to 0. A periodic policy for output quantization is considered
in [14].

Switching bit assignment policiesassign allQ bits to either
b1[k] or b2[k] depending uponP [k][1]. It is proven in [1] that
Li[k] converges exponentially to zero if and only ifQ >∑2

i=1 log2(λi).
While all of the above bit assignment strategies ensure

asymptotic stability, these strategies are not equal. These
policies differ in their convergence rates and ultimately in the
performance they exhibit. This then brings us to the problem
considered in this paper; namely“What bit assignment policy
assures asymptotic stability while optimizing some specified
measure of the control system’s performance?”. The main
result in this paper shows that a variation on the dynamic bit
assignment policy used in [1] is indeed optimal in the sense
of minimizing the summed square quantization error.

III. D YNAMIC BIT ASSIGNMENTPOLICY

This paper studies a quantized feedback control system
with dropouts, which is shown in figure 1. The plant is a
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Fig. 1. Quantized feedback control system

discrete-time linear system whose state equations are shown

in equation 1. The statex[k] ∈ <n is quantized and encoded
into a symbols[k] from a discrete set{0, 1, · · · , 2Q − 1}.
Throughout this paper, the terms “quantizer” and “encoder”
are used interchangeably.s[k] is transmitted to the decoder
over a communication network. We assume the network has
one step delay. So the symbol received by the decoder,s′[k],
is a one-step delayed version ofs[k], i.e.s′[k] = s[k−1]. The
decoder uses the received symbols to compute an estimate,
xq[k], of the plant’s true state,x[k]. The controller uses this
estimate,xq[k] to compute the control signalu[k].

The quantization method used in this paper originates in
the uncertainty set evolution method introduced in [7] and
[9]. This approach presumes that the encoder and decoder
agree that the state lies within the set

x[k] ∈ xq[k] + U [k], ∀k ≥ 0. (3)

In this paper we restrict our attention to a two dimensional
system so that the uncertainty set may be characterized as

U [k] = rect(L1[k], L2[k])
= [−L1[k], L1[k]]× [−L2[k], L2[k]].

In this equationL1[k] and L2[k] are non-negative and they
represent the half-length of the sides of the rectangular set
U [k]. We define thequantization errorase[k] = x[k]−xq[k].
Just prior to timek we know that e[k] ∈ U [k] where
we refer to U [k] as the uncertainty setat time k. We
then partition both sides ofU [k]. The first side,L1[k], is
partitioned into2b1[k] equal parts and the second side,L2[k],
is partitioned into2b2[k] equal parts. We impose a constant
bit rate constraint on our bit assignment which requires that

b1[k] + b2[k] = Q (4)

for all k. After a new measurement of the statex[k] is made,
then the encoder knows that

x[k] ∈ xq
s[k][k] + Us[k][k]

wherexq
s[k][k] is the center of the smaller subset and

Us[k][k] = rect
(

L1[k]
2b1[k]

,
L2[k]
2b2[k]

)

The index,s[k], for this smaller subset is transmitted across
the channel and the decoder reconstructs the state at time
k + 1 using the equations





x[k + 1] ∈ xq[k + 1] + U [k + 1]
U [k + 1] = rect(L1[k + 1], L2[k + 1])
xq[k + 1] = Axq

s[k][k] + BFxq[k]
L1[k + 1] = λ1

2b1[k] L1[k]
L2[k + 1] = λ2

2b2[k] L2[k]

(5)

The choice forbi[k] (i = 1, 2) represents abit assignment
policy. With the requirement thatb1[k] + b2[k] = Q, we’re
confining our attention to constant bit rate quantization
schemes. The motivation for doing this is that many com-
munication systems work best under a constant bit rate [13].
There may be many bit assignment policies that satisfy the
necessary and sufficient conditions for asymptotic stability



in [1]. We’re interested in constructing a bit assignment
policy that is optimal with respect to a specified measure
of the feedback control system’s performance. In this paper
we choose the performance measure in equation 2 where
the supremum is taken over allx[0] ∈ xq[0] + U [0]. Note
that by definition,|ei[k]| ≤ Li[k] for i = 1, 2 and for any
x[0]. This inequality becomes equality for the specificx[0],
e.g.x[0] = xq[0] + [L1[0], L2[0]]T , that maximizes the sum∑N

k=1 e2
1[k]+e2

2[k], which means thatPN in equation 2 may
be rewritten as

PN =
N∑

k=1

(L2
1[k] + L2

2[k]) (6)

For a given number of quantization bits,Q, the objective
is to find bi[k] (i = 1, 2) that minimize thePN given in
equation 6.

This paper proposes a variation on the switching dynamic
policy found in [1] that we calldynamic bit assignment policy
or DBAP. DBAP is a recursive algorithm that generatesbi[k]
as follows.

Algorithm 3.1: Dynamic Bit Assignment Policy

1) Initialize b1[k] = 0 andb2[k] = 0,
and setL1 = λ1L1[k] andL2 = λ2L2[k].

2) For q = 1 to Q
I = argmaxi∈{1,2}Li.
bI [k] := bI [k] + 1 andLI = LI/2.

The following lemma provides a closed form characteri-
zation ofb2[k] generated by DBAP. The other bit assigment
is b1[k] = Q− b2[k] under our constant bit rate constraint.

Lemma 3.1:Under DBAP,

b2[k] =





0, 1
2Q+1 λ1L1[k] ≥ λ2L2[k]

Q, 1
2−Q−1 λ1L1[k] ≤ λ2L2[k][

1
2

(
Q− log2

(
λ1L1[k]
λ2L2[k]

))]
, otherwise

(7)

where[·] is the downward rounding function in which[1.5] =
1.

IV. OPTIMAL DYNAMIC BIT ASSIGNMENT

This section characterizes the bit assignment policy that
minimizes the performance index,PN , in equation 6. Our
optimization problem is formally stated as follows,

min{b1[k],b2[k]}N−1
k=0

∑N
k=1(L

2
1[k] + L2

2[k])
subject to b1[k] + b2[k] = Q,

(8)

where b1[k], b2[k] ∈ N . Let b = {b1[j], b2[j]}N−1
j=0 denote

the optimal solution to this problem. We will determine this
solution by first considering a sequence of simpler problem
and then show that the solutions to these simpler problems
also solve the original problem and furthermore that they are
generated by the proposed DBAP.

Consider the following sequence of minimization prob-
lems indexed byk for k = 1, . . . , N .

min{b1[j],b2[j]}k−1
j=0

(L2
1[k] + L2

2[k])
subject to b1[j] + b2[j] = Q,

(9)

where b1[j], b2[j] ∈ N . The solution to thekth subprob-
lem will be denoted asb(k) = {b(k)

1 [j], b(k)
2 [j]}k−1

j=0 . The
following lemma establishes the basic relationship between
subproblems 9 and the original problem 8. In the following
lemma, we sayb(k−1) ⊂ b(k) if and only if b

(k−1)
i [j] =

b
(k)
i [j] for j < k − 1. Essentially this means thatb(k−1) is

a prefix ofb(k).
Lemma 4.1:If {b(k)}N

k=1 solves the sequence of subprob-
lems 9 such thatb(k−1) ⊂ b(k) for k = 2, . . . , N , thenb(N)

solves the original problem 8.
Rather than directly solving subproblem 9, we consider a

relaxedproblem of the form

mins1[k],s2[k]

(
λk

1
2s1[k] L1[0]

)2

+
(

λk
2

2s2[k] L2[0]
)2

subject to s1[k] + s2[k] = kQ
(10)

where s1[k], s2[k] ∈ N . In these relaxed problems, we
interpret si[k] as the number of bits used to represent the
ith component of the state up to timek. In other words, we
let si[k] =

∑k−1
j=0 bi[j]. Let s(k) = {s1[k], s2[k]} denote the

solution to thekth relaxed subproblem. Note thatLi[k] =
λk

i

2si[k] Li[0] (i = 1, 2) by eq. 5. So subproblems 9 and 10 have
the same performance index. In subproblems 10, the constant
bit rate constraint (equation 4) implies that the summed
numbers of bits satisfy,

s1[k] + s2[k] = kQ (11)

So this problem relaxes problem 9 by only minimizing the
cost index with respect to the bit sum, rather than the
individual history of assigned bits. The following lemma
states the solution for problem 10.

Lemma 4.2:The solution to thekth problem in equation
10 is

s1[k] = kQ− s2[k] (12)

s2[k] =





0,
λk

1
2kQ+1 L1[0] ≥ λk

2L2[0]
kQ,

λk
1

2−kQ−1 L1[0] ≤ λk
2L2[0][

1
2

(
kQ− log2

(
λk

1L1[0]

λk
2L2[0]

))]
, otherwise

(13)

It is important to note a similarity between equation 13
in lemma 4.2 and the characterization of the bit assignment
generated by DBAP in equation 7 in lemma 3.1. The follow-
ing theorem formalizes this relationship by asserting that the
sequence of summed bits,s(k), generated by DBAP indeed
solve the relaxed problem 10 while enforcing the additional
reqirements thatb1[k] + b2[k] = Q andsi[k] =

∑k−1
i=1 bi[k].

These additional constraints are precisely those that were
relaxed in going from problem 9 to 10, so DBAP also solves
the original sequence of subproblems in equation 9.

Lemma 4.3:Let bi[k] denote the bit sequence generated
by the proposed DBAP. If we let

si[k] =
k−1∑

j=0

bi[j], i = 1, 2

then s(k) = {s1[k], s2[k]} also solves thekth relaxed
minimization problem in equation 10.



Based on Lemmas 4.1, 4.2 and 4.3, we establish the
optimality of our proposed DBAP for noise-free quantized
linear systems.

Theorem 4.4:Dynammic bit assignment (DBAP) gener-
ates a bit assignment that solves optimization 8.

Example: The plant with system matrices

A =
[

1.1 0
0 1.8

]
, B =

[
1
1

]

Let the feedback gain matrix beF = [1.7,−4.6] and let
Q = 2. By static bit assignment policy [8] [10],

b1[k] = 1, b2[k] = 1 (14)

From figure 2 it is clear that DBAP had better performance
that the static bit assignment policy.
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Fig. 2. Performance of a quantized system

V. A PPENDIX

The following proofs use the following notation to repre-
sent the ratio ofL1[k] andL2[k].

γ[k] =
L1[k]
L2[k]

(15)

A. Proof of Lemma 3.1

We prove this lemma by using mathematical induction on
Q.

WhenQ = 1, Lemma 3.1 trivially holds.
Suppose Lemma 3.1 holds forQ = Q1. We try to prove

it also holds forQ = Q1 + 1. By the assumption, we know

b2[k](Q1, L1[k], L2[k])

=





0, 1
2Q1+1 λ1L1[k] ≥ λ2L2[k]

Q1,
1

2−Q1−1 λ1L1[k] ≤ λ2L2[k][
1
2

(
Q1 − log2

(
λ1L1[k]
λ2L2[k]

))]
, otherwise

(16)

where the inclusion of argumentsQ1, L1[k] andL2[k] is to
emphasize the dependence ofb2[k] on Q1, L1[k] andL2[k].

Now we computeb2[k](Q1 + 1, L1[k], L2[k]). Based on
γ[k], there are3 kinds of decisions onb2[k].

a) γ[k] ≥ λ2
λ1

2(Q1+1)+1: Following the procedure in
algorithm 3.1, we find outb2[k] = 0, which satisfies eq. 7,
i.e. Lemma 3.1 holds for that case.

b) γ[k] ≤ λ2
λ1

2−(Q1+1)−1: Following the procedure in
algorithm 3.1, we find outb2[k] = Q1 + 1, which satisfies
eq. 7, i.e. Lemma 3.1 holds for that case.

c) λ2
λ1

2−(Q1+1)−1 < γ[k] < λ2
λ1

2(Q1+1)+1: The case
can be further categorized into two sub-cases,λ1L1[k] ≥
λ2L2[k] andλ1L1[k] < λ2L2[k].

If λ1L1[k] ≥ λ2L2[k], the first bit will be assigned to
L1[k] by algorithm 3.1. So

b2[k] (Q1 + 1, L1[k], L2[k])

= b2[k]
(

Q1,
L1[k]

2
, L2[k]

)
(17)

By γ[k] < λ2
λ1

2(Q1+1)+1 andλ1L1[k] ≥ λ2L2[k], we get

2−Q1−1 < 2−1 <
λ1

L1[k]
2

λ2L2[k]
< 2Q1+1 (18)

By the assumption that Lemma 3.1 holds forQ = Q1, we
get

b2[k](Q1,
L1[k]

2
, L2[k])

=

[
1
2

(
Q1 − log2

(
λ1

L1[k]
2

λ2L2[k]

))]

=
[
1
2

(
(Q1 + 1)− log2

(
λ1L1[k]
λ2L2[k]

))]
(19)

Substituting eq. 19 into eq. 17 yields

b2[k](Q1 + 1, L1[k], L2[k])

=
[
1
2

(
(Q1 + 1)− log2

(
λ1L1[k]
λ2L2[k]

))]

The above expression onb2[k] agrees with eq. 7. So Lemma
3.1 holds for that sub-case.

If λ1L1[k] < λ2L2[k], the first bit will be assigned to
L2[k] by algorithm 3.1. So

b2[k] (Q1 + 1, L1[k], L2[k])

= 1 + b2[k]
(

Q1, L1[k],
L2[k]

2

)

We can computeb2[k]
(
Q1, L1[k], L2[k]

2

)
in a similar man-

ner to show that the achieved expression onb2[k](Q1 +
1, L1[k], L2[k]) satisfies eq. 7.

Because Lemma 3.1 holds for both sub-cases, it holds for
λ2
λ1

2−(Q1+1)−1 < γ[k] < λ2
λ1

2(Q1+1)+1.
Because Lemma 3.1 holds for all three cases onγ[k],

Lemma 3.1 holds forQ = Q1 + 1. Together with the
assumption that Lemma 3.1 holds forQ = Q1 and the fact
that Lemma holds forQ = 1, we know Lemma 3.1 holds
for all Q ≥ 1. ♦

B. Proof of Lemma 4.1

We useP ∗ andP (k)∗ to denote the optimal performance of
problem 8 and thekth subproblem in equation 9 respectively.



It is straightforward to see that

min
{b1[k],b2[k]}N−1

k=0

N∑

k=1

(L2
1[k] + L2

2[k])

≥
N∑

k=1

min
{b1[j],b2[j]}N−1

j=0

(L2
1[k] + L2

2[k]) (20)

=
N∑

k=1

min
{b1[j],b2[j]}k−1

j=0

(L2
1[k] + L2

2[k]) (21)

The equality in eq. 21 comes from the fact thatL1[k] and
L2[k] are independent of{L1[j], L2[j]}N−1

j=k due to the causal
updating rule in eq. 5. Note that allmin operations in the
above equations are performed under the constraint ofb1[j]+
b2[j] = Q (j = 0, · · · , N − 1). Considering the definitions
of P ∗ andP (k)∗, eq. 20 and 21 can be rewritten into

P ∗ ≥
N∑

k=1

P (k)∗ (22)

As stated in Lemma 4.1,b(k−1) ⊂ b(k) (k = 2, · · · , N ). So
the performance of thekth problem in eq. 9 underb(N) is

L2
1[k] + L2

2[k] = P (k)∗ (23)

Summing eq. 23 fork = 1, · · · , N yields

N∑

k=1

L2
1[k] + L2

2[k] =
N∑

k=1

P (k)∗ (24)

Becauseb(N) satisfies the constraint of problem 8, i.e.
b
(N)
1 [k]+b

(N)
2 [k] = Q (k = 0, · · · , N−1), b(N) is a feasible

solution to problem 8. By eq. 24, the performance of problem
8 underb(N) is

∑N
k=1 P (k)∗. By the optimality ofP ∗, we

obtain

P ∗ ≤
N∑

k=1

P (k)∗ (25)

Combining eq. 22 and 25 yields

P ∗ =
N∑

k=1

P (k)∗ (26)

By the feasibility ofb(N) and eq. 24 and 26, we knowb(N)

solves the original problem 8.♦
C. Proof of Lemma 4.2

The performance index in problem 10 is the summation of

two terms,
(

λk
1

2s1[k] L1[0]
)2

(= L2
1[k]) and

(
λk

2
2s2[k] L2[0]

)2

(=
L2

2[k]). We know the product of the two terms is independent
of s1[k], s2[k] due to the constraints1[k] + s2[k] = kQ.

L2
1[k]L2

2[k] =
(

λk
1λk

2

2kQ
L1[0]L2[0]

)2

(27)

This structure reminds us the following lemma.
Lemma 5.1:If x, y > 0 andxy = β, then

x + y = 2
√

βg(| log2(x/y)|) (28)

whereg(α) = 0.5
(√

2α + 1√
2α

)
.

The proof of Lemma 5.1 is straightforward and omitted here.
By its definition, we knowg(α) is strictly increasing for

α ≥ 0. Apply this lemma toL2
1[k] + L2

2[k] with eq. 27
considered, we get

L2
1[k] + L2

2[k] = 2Cg(2| log2(L1[k]/L2[k])|) (29)

whereC = λk
1λk

2
2kQ L1[0]L2[0]. In order to minimizeL2

1[k] +
L2

2[k], we have to minimize| log2(L1[k]/L2[k])|, i.e. keeping
L1[k] andL2[k] as balanced as possible. By the expression

of Li[k] = λk
i

2si[k] Li[0] (i = 1, 2), we know

log2(L1[k]/L2[k])

= log2

(
λk

1L1[0]
λk

2L2[0]

)
− (s1[k]− s2[k])

= log2

(
λk

1L1[0]
λk

2L2[0]

)
− kQ + 2s2[k]

The second equality shown above comes from the constraint
s1[k] + s2[k] = kQ. s2[k] is an integer between0 andQk.
The minimization of| log2(L1[k]/L2[k])| may be formally
expressed as

mins2[k]

∣∣∣log2

(
λk

1L1[0]

λk
2L2[0]

)
− kQ + 2s2[k])

∣∣∣
s.t. s2[k] ∈ {0, 1, · · · , kQ}

(30)

It is straightforward to show that the solution to optimization
30 is exactly eq. 13. By the strictly increasing property of
g(α) (α ≥ 0) and eq. 29, we knows2[k] in eq. 13, together
with s1[k] in eq. 12, solves problem 10.♦
D. Proof of Lemma 4.3

{b1[k], b2[k]}N−1
k=0 is generated by DBAP andsi[k] is

defined as

si[k] =
k−1∑

j=0

bi[j], i = 1, 2 (31)

We will prove Lemma 4.3 by showing thats2[k] defined
in eq. 31 satisfies eq. 13. This result will be established by
using mathematial induction onk.

Whenk = 1, s2[k] = b2[k− 1] by the definition ofs2[k].
Eq. 13 (fors2[k]) and 7 (forb2[k − 1]) are really the same.
So Lemma 4.3 holds fork = 1.

Supposes2[k − 1] satisfies eq. 13. We will proves2[k]
also satisfies eq. 13.

By eq. 13, the decision ons2[k] is categorized into three
cases based onγ[0] = L1[0]

L2[0]
.

1) γ[0] ≥ λk
2

λk
1
2kQ+1: Under this situation, we get

λk−1
1

2(k−1)Q+1
L1[0] ≥ λk−1

2 L2[0]
2Qλ2

λ1

> λk−1
2 L2[0]

where the last inequality comes from2
Qλ2
λ1

> 1. By assump-
tion, s[k − 1] satisfies eq. 13. So

s2[k − 1] = 0 (32)



Then we obtain

L1[k − 1] =
λk−1

1

2(k−1)Q
L1[0] (33)

L2[k − 1] = λk−1
2 L2[0] (34)

We can verify that λ1
2Q+1 L1[k− 1] ≥ λ2L2[k− 1]. Therefore

DBAP yieldsb2[k − 1] = 0 and

s2[k] = s2[k − 1] + b2[k − 1] = 0 (35)

The above result ons2[k] satisfies eq. 13.
2) γ[0] ≤ λk

2
λk

1
2−kQ−1: We can similarly proves[k]

satisfies eq. 13 as we did for the caseγ[0] ≥ λk
2

λk
1
2kQ+1.

3) λk
2

λk
1
2−kQ−1 < γ[0] <

λk
2

λk
1
2kQ+1: First we prove it is

impossible that

λ1

2Q+1
L1[k − 1] ≥ λ2L2[k − 1] (36)

Suppose eq. 36 holds. Substituting the expressions ofL1[k−
1] (L1[k − 1] = λk−1

1
2s1[k−1] L1[0]) andL2[k − 1] (L2[k − 1] =

λk−1
2

2s2[k−1] L2[0]) into eq. 36 yields

γ[0] =
L1[0]
L2[0]

≥ λk
2

λk
1

2Q+1+s1[k−1]−s2[k−1] (37)

Combining the requirementγ[0] <
λk

2
λk

1
2kQ+1 with the above

bound produces

Q + 1 + s1[k − 1]− s2[k − 1] < kQ + 1 (38)

Considerings1[k − 1] + s2[k − 1] = (k − 1)Q, we get

s2[k − 1] > 0 (39)

i.e. sideL2 gets at least one bit among the total of(k−1)Q
ones. Suppose sideL2 gets the first bit atk = k1 (k1 ≤
k − 1). By algorithm 3.1, the decision onb1[j] and b2[j]
aims to balanceL1[j + 1] andL2[j + 1], which guarantees
that

L1[j]
L2[j]

≤ 2, ∀j ≥ k1 (40)

The above equation certainly holds forj = k − 1, i.e.

L1[k − 1]
L2[k − 1]

≤ 2 (41)

Thus
λ1L1[k − 1]
λ2L2[k − 1]

≤ 2
λ1

λ2
(42)

< 2Q+1 (43)

The above result contradicts eq. 36 ! So eq. 36 isimpossible.
Second we can similarly prove it is alsoimpossible that

λ1

2−Q−1
L1[k − 1] ≤ λ2L2[k − 1] (44)

Based on the impossibility of eq. 36 and 44 and the
decision rule in eq. 7, we get

b2[k − 1] =
[
1
2

(
Q− log2

(
λ1L1[k − 1]
λ2L2[k − 1]

))]
(45)

Substituting the expressions ofL1[k− 1] andL2[k− 1] into
the above equation yields

b2[k − 1] =


1

2


Q− log2


λ1

λ
k−1
1

2s1[k−1] L1[0]

λ2
λ

k−1
2

2s2[k−1] L2[0]










=
[
1
2 (Q + s1[k − 1]− s2[k − 1]

− log2

(
λk

1L1[0]

λk
2L2[0]

))]

By the identitys1[k− 1] = (k− 1)Q− s2[k− 1], the above
result can be simplified into

b2[k − 1]
=

[
0.5

(
kQ− log2

(
λk

1L1[0]

λk
2L2[0]

))]
− s2[k − 1]

Considering the definition ofs2[k] in eq. 31, we obtain

s2[k] = s2[k − 1] + b2[k − 1]

=
[
1
2

(
kQ− log2

(
λk

1L1[0]
λk

2L2[0]

))]

Therefores2[k] satisfies eq. 13.
In summary,s2[0] satisfies eq. 13. Ifs2[k−1] satisfies eq.

13, thens2[k] also satisfies equation 13. So by mathematical
induction method, we can guarantee thats2[k] satisfies eq.
13 for all k and the proof is complete.♦
E. Proof of Theorem 4.4

Denote the optimal performance of problems 8, 9 and
10 asP ∗, P (k)∗ and P

(k)∗
s respectively. By the relaxation

relationship among them,P ∗, P (k)∗ and P
(k)∗
s satisfy the

following equations.

P ∗ ≥
N∑

k=1

P (k)∗ (46)

P (k)∗ ≥ P (k)∗
s (47)

We will prove the equalities in eq. 46 and 47 hold.
By Lemmas 4.2 and 4.3, we know the solution to problem

10, s(k), satisfies

si[k] =
k−1∑

j=0

b
(k)
i [j], i = 1, 2 (48)

where b(k) = {b(k)
1 [j], b(k)

2 [j]}k−1
j=0 is generated by DBAP.

Of courseb(k) satisfies the constraintb(k)
1 [j] + b

(k)
2 [j] = Q

(j = 0, · · · , k−1). Sob(k) is a feasible solution to problem 9.
The performance of problem 9 underb(k) is P

(k)∗
s because

problems 9 and 10 have the same performance index and
the optimal performance of problem 10,P

(k)∗
s , is achieved

by si[k] given in eq. 48. Therefore the equality in eq. 47
holds. The solution to problem 9 isb(k) which is generated
by DBAP.

By DBAP algorithm in 3.1, we knowb(k)
i [j] (i = 1, 2) is

totally determined by the initial condition,L1[0] andL2[0],
and the timej. b

(k)
i [j] is independent ofk. So

b(k−1) ⊂ b(k), k = 2, · · · , N (49)



By Lemma 4.1, the equality in eq. 46 holds and the solution
to problem 8 isb(N). Becauseb(N) is generated by DBAP,
DBAP is the optimal policy.♦
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