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Abstract— This paper studies a system consisting of several
dynamical subsystems (agents) that coordinate their actions by
broadcasting their local state information over a communication
network. It is assumed each agent can only observe its local state
and that the medium-access control (MAC) protocol guarantees
collision free broadcasts. Finally we assume that all agents have
an internal dynamical model of their neighbors, so it is possible
to estimate the neighboring agent’s state between consecutive
broadcasts from that agent. This paper examines open-loop
communication logics that seek to minimize the entire group’s
aggregate state estimation error while minimizing the average
broadcast rate. This paper’s main result shows that open-loop
communication logics requiring periodic broadcasts are optimal
with respect to the aforementioned performance measure.

I. INTRODUCTION

This paper studies a system consisting of multiple discrete-
time dynamical subsystems (also called agents) that must
coordinate their local behaviors in pursuit of a global ob-
jective. Each agent measures its local state and broadcasts
this state to all members of the group with a specified cost
of λ. It is assumed that each agent has a dynamical model
of its neighbors, so it can estimate a neighbor’s local state
in between consecutive broadcasts from that neighbor. A
communication logic is a protocol that each agent uses to
decide when it should broadcast its state information to the
group. We say the communication logic is open-loop if the
broadcast decision is not related to the current state of the
system. We say the communication logic is closed-loop if
the broadcast decision is conditioned on the current state of
the system. This paper examines open-loop communication
logics that are “optimal” in the sense that they minimize
the average error in an agent’s estimate of its neighbor’s
state discounted by a communication cost. The paper’s main
result proves that optimal open-loop logics require agents
to periodically broadcast their state across the group. We
then experimentally compare the performance of this optimal
open-loop logic against a recently proposed optimal closed-
loop logic [1].

In our framework, every agent uses an estimator to predict
its neighbor’s state in between consecutive broadcasts from
that neighbor. Our problem, therefore is similar to that
considered in [2]. As to communication logics examined in
[2], an individual agent decides to broadcast when the local
estimation error exceeds a given threshold. This “threshold-
based” communication logic is closed-loop because the
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broadcast decisions are made on the basis of the estimator’s
performance. Yook [2] investigated the system performance
achievable under this threshold-based logic. The stochastic
threshold-based communication logic is exploited in [3].
In [3], the broadcast decision is a Poisson process whose
rate depends on the estimation error. Both of performance
measures [2], [3], however, were not discounted by the com-
munication cost. An optimized communication logic problem
is presented in [1]. In [1] broadcast decision are made
in a way that optimizes the mean square estimation error
discounted by the communication cost. The optimal closed-
loop decision executes under a deterministic threshold-based
manner, in which the agent broadcasts when the measured
estimation error exceeds a specified level.

The closed-loop logic studied in [1] requires that each
agent be able to measure its local estimation error in real
time. There are, however, many applications where this may
not be possible. One obvious situation occurs in multi-robotic
formation control. In this application, an individual robot
only has local measurements of its position and velocity
relative to a local coordinate frame. The robot’s knowledge
of its error relative to a global coordinate frame must be
obtained from remote sensors observing the robot’s move-
ments relative to its neighbors. In this situation, it may
be impossible for the individual agents to make broadcast
decisions on the basis of their current estimation error, since
they can’t observe that error locally and immediately. In these
applications, it may make more sense to use an open-loop
communication logic.

This paper, therefore, studies “optimal” open-loop com-
munication logics that minimizes the weighted sum of the
estimation error discounted by the broadcast cost. In particu-
lar we find that the optimal open-loop communication logic
requires periodic transmission of an agent’s state. Unlike,
the logic considered in [1], our communication logic does
not broadcast on the basis of the current state estimation
error. Broadcast decisions are solely based on the time since
the last broadcast. A simulation comparison shows that the
difference of the periodic-based logic performance and the
threshold-based logic of [1] can be relatively small.

The remainder of this paper is organized as follows.
Section II formally states the problem. Section III states
and proves the paper’s main result. Section IV presents
simulation results comparing the performance of the pro-
posed periodic communication logic with a threshold-based
communication logic.



II. PROBLEM STATEMENT

Consider a set of N interconnected discrete-time feedback
control systems in which the ith subsystem’s state, xi,
satisfies the following difference equation,

xi[k + 1] = Axi[k] + B

N−1
∑

j=0,j 6=i

x̂
(i)
j [k] + wi[k] (1)

where xi[k] is in <n and xi[0] = 0. A and B are matrices
of appropriate dimension. wi[k] is a zero-mean white noise
process with variance σ2 and E

[

wi[k]wT
i [k]

]

= σ2
aI (σa =

σ
n
). The ith agent’s estimate of the jth agent’s state is denoted

as x̂
(i)
j .

Let uj [k] ∈ {0, 1} denote agent j’s decision at time k to
broadcast its state xj [k] to all other agents in the system. In
particular, we let uj [k] = 1 if agent j broadcasts its state
and let it be zero otherwise. Assuming that x̂

(i)
j [0] = xj [0],

then the ith agent’s state estimate for neighbor j satisfies the
following difference equation

x̂
(i)
j [k + 1] = Ax̂

(i)
j [k] + B

N−1
∑

`=0,`6=j

x̂
(i)
` [k] (2)

if the jth agent’s control decision is to stay quiet (uj [k] = 0).
If the jth agent broadcasts its state (uj [k] = 1) then the
ith agent’s estimate of agent j’s state satisfies the difference
equation

x̂
(i)
j [k + 1] = Ax

(i)
j [k] + B

N−1
∑

`=0,`6=j

x̂
(i)
` [k] (3)

The ith agent’s error in estimating the jth agent’s state is
denoted as

x̃
(i)
j [k] = xj [k] − x̂

(i)
j [k]

Since the ith agent only has ability to observe its own state
xi, the estimation error x̃

(i)
j is not available at the ith agent.

In order to predict the estimation error at the ith agent, the
jth agent imitates the estimation processes in equation (2)
and (3) like,

x̂
(j)
j [k + 1] = Ax̂

(j)
j [k] + B

N−1
∑

`=0,`6=j

x̂
(j)
` [k] (4)

and,

x̂
(j)
j [k + 1] = Axj [k] + B

N−1
∑

`=0,`6=j

x̂
(j)
` [k] (5)

The jth agent uses the knowledge of the estimation error
x̃

(j)
j [k] = xj [k] − x̂

(j)
j [k] to make the broadcast decision

uj [k].
Subtracting the estimator equation (eqn’s 4 and 5) from

the true state equation (1) yields the following equation for
the state estimation error, x̃

(j)
j ,

x̃
(j)
j [k + 1] =

{

Ax̃
(j)
j [k] + wj [k] if uj [k] = 0

wj [k] if uj [k] = 1
(6)

It is assumed that the jth agent imitates the estimator at the
ith agent well without any error. So it is said that x̃

(j)
j = x̃

(i)
j .

Let {uj [k]} denote the sequence of broadcast decisions
made by the jth agent and consider the finite-horizon cost
functional,

J [uj |T ] =

E

[

∑T−1
k=0

(

x̃
(i)
j [k]T x̃

(i)
j [k](1 − uj [k]) + uj [k]λ

)]

where λ is the stage cost for broadcasting across the network,
T is the horizon’s length, uj = {uj [k]}T−1

k=0 . Our problem is
to find the communication decisions uj that minimize the
cost functional J [uj |T ] for a given T

III. MAIN RESULT

In the open loop communication logics, uj [k] is inde-
pendent of the current value of estimation error x̃

(i)
j [k].

Therefore, we consider the finite-horizon cost functional,

J [uj |T ] =

T
∑

k=0

(

(1 − uj [k])P̃j [k] + λuj [k]
)

(7)

where,

P̃j [k] = E
[

(x̃j [k])T−1(x̃j [k])
]

(8)

is the variance of the estimation error at time k. We drop
the (i) superscript on the variance of estimation error x̃

(i)
j [k]

because each agent has the identical estimator for the agent
j.

Let the sequence {ki}
M
i=1 denote the time instants when

agent j transmits its state, where 0 ≤ ki ≤ T − 1 for i =
1, . . . ,M . Denote the interval between ki and ki+1 as the
estimator’s ith stage and let the stage cost be defined as

Ci(mi) = λ +

mi−2
∑

d=0

P̃j [ki + d] (9)

where mi = ki+1 − ki is the interval between consecutive
transmissions. The total cost over the horizon [0, T −1] may
therefore be written as

J [uj |T ] =

M
∑

i=1

Ci(mi) (10)

Our sequence of control decisions, {uj [k]}T−1
k=0 may therefore

be characterized by the sequence {mi}
M
i=1. The following

lemma provides a useful expression for the stage cost.
Lemma 3.1: The stage cost Ci(mi) in equation (9) is

Ci(mi) = λ + σ2
a

mi−2
∑

r=0

(mi − 1 − r)Qr (11)

where Qr = trace
[

(Ar)T (Ar)
]

.
Proof: The following proof drops the superscript, (i),

on the estimation error for notational convenience. For 0 ≤



d ≤ mi − 2, the estimation error variance may be rewritten
as

P̃j [ki + d]

= E

[

(x̃j [ki + d])T (x̃j [ki + d])

]

= E

[

‖Ax̃j [ki + d − 1] + wj [ki + d − 1]]‖
2

]

=
d
∑

r=0

E

[

‖Ar
wj [ki + d − r]‖

2

]

=
d
∑

r=0

E
[

trace
(

(Ar)T (Ar)wjw
T
j

)]

=
d
∑

r=0

trace
(

(Ar)T (Ar)E
[

wjw
T
j

])

= σ2
a

d
∑

r=0

Qr

Substituting the above expression for P̃j [ki+d] into equation
(9) yields,

Ci(mi) = λ +

mi−2
∑

d=0

P̃j [ki + d]

= λ + σ2
a

mi−2
∑

d=0

d
∑

r=0

Qr

= λ + σ2
a

mi−2
∑

r=0

(mi − 1 − r)Qr

which completes the proof.
The following theorem shows there exists an optimal m∗

that minimizes the average stage cost Ci(mi)/mi.
Theorem 3.2: If we let Ci(mi)

mi

denote the average stage
cost associated with a given interval mi, then there exists a
unique interval m∗ such that,

Ci(m
∗)

m∗
≤

Ci(mi)

mi

for all mi 6= m∗.
Proof: From lemma 3.1, we know that Ci(mi)

mi

≤
Ci(mi+1)

mi+1 if and only if

(mi + 1)

(

λ + σ2
a

mi−2
∑

r=0

(mi − 1 − r)Qr

)

≤ mi

(

λ + σ2
a

mi−1
∑

r=0

(mi − r)Qr

)

which can be rewritten as

λ ≤ σ2
a

mi−1
∑

r=0

(r + 1)Qr (12)

So Ci(mi)
mi

≤ Ci(mi+1)
mi+1 if and only mi satisfies inequality

(12).

In a similar way, lemma 3.1 shows that Ci(mi)
mi

≤
Ci(mi−1)

mi−1 if and only if

(mi − 1)

(

λ + σ2
a

mi−2
∑

r=0

(mi − 1 − r)Qr

)

≤ (mi)

(

λ + σ2
a

mi−3
∑

r=0

(mi − 2 − r)Qr

)

which can be rewritten as

λ ≥ σ2
a

mi−2
∑

r=0

(r + 1)Qr (13)

So Ci(mi)
mi

≤ Ci(mi−1)
mi−1 if and only if mi satisfies inequality

(13).
Let m∗ denote any integer that satisfies both inequality

(12) and (13). Does such an integer exist and if so, is it
unique? To answer this question let Mλ and Mλ denote the
set of all m that satisfy equations (12) and (13), respectively.
In other words,

Mλ =

{

m |λ ≤ σ2
a

m−1
∑

r=0

(r + 1)Qr

}

Mλ =

{

m |λ ≥ σ2
a

m−2
∑

r=0

(r + 1)Qr

}

We let m = max Mλ and m = min Mλ. We shall prove
that m∗ = m = m.

We can easily show that m ≥ m. Let’s suppose m 6= m, so
there exists c > 0 such that m−m = c. There are then three
possibilities for the average cost at these two values of m.
We have that Ci(m)

m
=

Ci(m)
m

or Ci(m)
m

>
Ci(m)

m
or Ci(m)

m
<

Ci(m)
m

. The last two cases cannot occur. The inequality in
the third case, for example implies that inequality (13) is
satisfied which means that m ∈ Mλ. But m = max Mλ and
m > m, which means there is an element of Mλ which is
greater than m. This contradicts the maximal nature of m
and so the third case can’t occur. A similar argument can be
used to dispose of the second case.

If the first case is true then we know that Ci(m)
m

=
Ci(m)

m
= Ci(m)

m
for any m ≤ m ≤ m. In particular, let’s

consider m = m − 1 In this case we see that

(m − 1)

(

λ + σ2
a

m−2
∑

r=0

(m − 1 − r)Qr

)

= m

(

λ + σ2
a

m−3
∑

r=0

(m − 2 − r)Qr

)

This equation can be rewritten as

λ = σ2
a

(

m−3
∑

r=0

mQr + (m − 1)Qm−2

−

m−3
∑

r=0

(m − 1 − r)Qr

)



which can, in turn, be simplified to

λ = σ2
a

(

m−3
∑

r=0

(1 + r)Qr + (m − 1)Qm−2

)

= σ2
a

m−2
∑

r=0

(1 + r)Qr

Note that this equality implies that m − 1 is an element of
the set Mλ. Since m−1 < m, then clearly m cannot be the
minimal element of Mλ. So we have a contradiction and we
know that m = m = m∗.

The following theorem states that a periodic communica-
tion logic minimizes the finite-horizon cost. In the following
statement, we drop the j subscript on the communication
logic uj for notational simplicity.

Theorem 3.3: The problem’s cost functional, J [uj |T ] is
minimized by a communication logic that periodically trans-
mits the agent state information. The optimal period, m∗,
satisfies inequalities (12) and (13).

Proof: Let u denote a sequence of transmission de-
cisions consisting of M transmissions. Let mi denote the
ith transmission interval for u. Let u∗ denote a sequence of
transmission decisions consisting of M ′ transmissions. Let
m∗

i denote the ith transmission interval for u∗. Further as-
sume that m∗

i = m∗ for all i where m∗ satisfies inequalities
(12) and (13).

The cost achieved under u may be written as

J [u |T ] =
M
∑

i=1

Ci(mi)

mi

mi

From theorem 3.2 we know that Ci(mi)
mi

≥ Ci(m
∗)

m∗
so our

preceding expression for the cost may be written as

J [u |T ] ≥
M
∑

i=1

Ci(m
∗)

m∗
mi

=
Ci(m

∗)

m∗

M
∑

i=1

mi = T
Ci(m

∗)

m∗

Note that the last expression is the cost achieved under u∗.
So we can conclude that J [u |T ] ≥ J [u∗ |T ], which implies
that the periodic logic is optimal.

IV. SIMULATION RESULTS

This section presents simulation results comparing the
performance of a simple system under three different com-
munication logics. The first logic is the periodic protocol
studied above. The second logic is a random logic in which
the agent transmits with a probability p at each time instant.
The third logic is the optimal threshold logic proposed in
[1].

The results shown in figure 1 are for a scalar system in
which A = 0.95, with a process noise variance σ2 = 6,
and a communication cost λ = 100. Theorem 3.2 was used
to compute the period of our periodic communication logic.
This period was found to be m∗ = 7. Figure 1 plots the
average cost J

T
versus the observed probability that an agent

transmits. This probability was obtained by simply dividing
the number of transmissions over the total time. For our
periodic logic using m∗ = 7, this means the minimum cost
should occur at a transmission probability of 0.142. Figure
1 indeed shows that the minimum cost is achieved by our
proposed periodic logic and that this occurs at the predicted
probability level. The proposed periodic logic performed
slightly better than the random logic and performed slightly
worse than the threshold-based logic.
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Fig. 1. Average cost in different communication policies

It is not unexpected that the optimal open-loop communi-
cation logic has worse performance than the optimal closed-
loop logic. There are many applications, however, where
a closed-loop logic cannot be used because the individual
agent cannot directly measure its state estimation error. In
these situations the open-loop periodic logic is a practical
alternative whose performance levels (in this example at
least) are only slightly worse than the closed-loop logics
achieved performance.
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