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Performance-Rate Functions for Dynamically
Quantized Feedback Systems

Michael D. Lemmon and Rong Sun

Abstract— This paper studies the performance of dynami-
cally quantized feedback systems. In particular, we examine
the relationship between the minimum summed squared quan-
tization error and the rate at which feedback measurements are
quantized. The closed loop system’s performance (as measured
by the summed squared bit rate) can vary greatly for a given
bit rate, depending on how the quantization bits are allocated.
This paper derives the bit assignment policy that minimizes the
summed squared quantization level achievable under a constant
bit rate. The proof of the bit assignment’s optimality allows us
to identify a “performance-rate” function that expresses the
best achievable performance as a function of the bit rate.

I. INTRODUCTION

In many computer-controlled systems, the plant’s output
must be quantized before it can be fed back to the controller.
Quantization of the feedback signal can have a dramatic
effect on the closed loop system’s behavior and in recent
years there has been considerable interest in understanding
the fundamental limitations that such quantization places on
feedback control systems. This paper derives an optimal
bit assignment for quantized feedback systems using the
uncertainty set method introduced by Brockett and Liberzon
[1]. The bit assignment is optimal in the sense of minimizing
the summed squared quantization error. We then identify
performance-rate functions that characterize the optimal
achievable performance as a function of the bit rate. The
proposed bit assignment policy is similar to those proposed
earlier for scalar [2] and two-dimensional [3] systems. This
paper extends the two-dimensional results of [3] to n-
dimensional systems with bounded noise.

Static or so-called memoryless quantization policies use
static codebooks to map real-valued signals onto one of a
discrete set of quantization symbols. Delchamps [4] demon-
strated that static quantization policies required an infinite
number of quantization levels to assure closed loop asymp-
totic stability. Elia and Mitter [5] later derived the lowest
“density” static quantizer assuring asymptotic stability. This
quantizer, however, still required an infinite number of bits.
With only a finite number bits, it has been repeatedly shown
that the best we can hope for using static quantization is the
uniform ultimate boundedness of the state [6] [7] [8].

Brockett and Liberzon showed [1] that dynamic quanti-
zation or so-called quantization with “memory” can achieve
asymptotic stability with a finite number of bits [1]. These

The authors are with the department of Electrical Engineering, Univ. of
Notre Dame, Notre Dame, IN 46556; e-mail: lemmon,rsun@nd.edu. The
authors gratefully acknowledge the partial financial support of the National
Science Foundation NSF-ECS0400479

policies generate a sequence of sets, {P [k]} such that each
element of the sequence is encoded with a finite number
of bits and it can be guaranteed that the system state x[k]
lies in P [k] for all k. If the quantization policy guarantees
that the “size” of P [k] goes to zero as k goes to infinity,
then the quantized system is asymptotically stable. Moreover,
since each P [k] is encoded with a finite number of bits,
we achieve asymptotic stability with only a finite number
of quantization levels. Sufficient conditions for asymptotic
stability with a finite number of bits were established in [1]
with later extensions in [9]. Tatikonda [10] [11] established
necessary and sufficient conditions for asymptotic stability
for general linear systems with a finite number of bits. This
bound requires that the number of bits Q used in the feedback
path must satisfy the following bound

Q ≥

n
∑

i=1

max [0, log2 λi] (1)

to assure asymptotic stability. In equation 1, n is the system’s
dimension and λi is the ith eigenvalue of the system matrix.
Similar bounds were established by Nair and Evans [12] for
general linear systems in the stochastic sense.

Most of the aforecited work only focuses on the impact of
quantization on closed loop stability. Since many computer-
controlled systems quantize feedback signals at rates much
greater than the rate suggested in equation 1, it may be
more important to study the effect that quantization has on
system performance. Early work in this direction focused on
static quantization policies in which the quantization error
was treated as a noise term. This noise analysis becomes
less valid as a system approaches its equilibrium point and
subsequent work used describing-function methods to study
limit cycle effects in quantized sampled data systems. Astrom
and Wittenmark [13] provide a high-level survey of this ear-
lier work with appropriate references. More recent work has
studied the performance of dynamically quantized feedback
systems for either scalar systems [2] or two-dimensional di-
agonalizable systems [3]. The primary emphasis of this later
work was to characterize the optimal performance achieved
by the dynamic quantization policies of Brocektt/Liberzon.
This paper extends the earlier work in [2] and [3] to n-
dimensional diagonalizable systems with bounded process
noise.

II. PROBLEM STATEMENT

Consider the quantized feedback system shown in figure 1.
The discrete-time system has a state x[k] ∈ <n that satisfies
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the state equations,

x[k + 1] = Ax[k] + Bu[k] + w[k]

for k = 0, . . . ,∞. w[k] ∈ <n is an exogenous disturbance
such that ‖w[k]‖∞ ≤ M where M is a finite constant. u[k] ∈
<m is the feedback control signal which is generated by a
state feedback control law of the form

u[k] = Fxq [k]

where xq [k] is a quantized approximation of the state at
time k (to be described below). We assume that (A, B) is
controllable, A is diagonalizable with unstable eigenvalues
(|λi| > 1 for i = 1, . . . , n), and F is a stabilizing state
feedback gain matrix of appropriate dimensions.

Fig. 1. Quantized Feedback Control System

Figure 1 shows how the system state, x[k], is quantized
and transmitted over the feedback channel. In this figure, the
system state x[k] is measured at time k by the encoder and
that measurement is mapped onto a symbol s[k] that is drawn
from the discrete set {0, 1, · · · , 2Q − 1}. The symbol s[k] is
therefore represented by Q bits. This symbol is transmitted
across a lossless communication channel with a single step
delay. The decoder receives a symbol s′[k] = s[k − 1] that
is a one-step delayed version of the transmitted symbol.
The decoder then uses s′[k] to construct the quantized
approximation, xq [k], of the system state.

The quantization method used to construct xq [k] from the
received symbol originates in the uncertainty set evolution
method introduced in [1]. This approach presumes at the
beginning of the kth time interval, the encoder and decoder
agree that the state lies within the set

x[k] ∈ xq [k] + U [k].

U [k] is a rectangular set of the form

U [k] =

n
∏

i=1

[−Li[k], Li[k]]

where xq [k] is the quantized state and Li[k] is the half length
of the ith side of the rectangle U [k] at time k. We sometimes
refer to U [k] as the uncertainty set. The quantization error
between the true state and the quantized state is denoted as
e[k] = x[k] − xq [k].

Immediately after the start of the kth time interval, the en-
coder measures the system’s current state x[k]. The encoder
then uses this measurement to determine that

x[k] ∈ xq
s[k] + Us[k]

where xq
s[k] is the center of a smaller subset and

Us[k] =

n
∏

i=1

[

−
Li[k]

2bi[k]
,
Li[k]

2bi[k]

]

.

bi[k] represents the number of bits used to quantize the ith
component of the state vector at time k. The new center and
smaller uncertainty set are indexed by the symbol s[k] which
is drawn from the set {1, 2, · · · , 2Q−1}. This symbol is then
transmitted across the channel with a one step delay.

The decoder receives the symbol s[k] at time k + 1. As
soon as it receives this symbol it knows that the system state
at time k lies in the set xq

s[k] + Us[k]. However, time has
now marched ahead from k to k + 1, so the decoder must
propagate the uncertainty set through the state dynamics to
determine the quantized state at time k + 1. This is done
through the following equations,

x[k + 1] ∈ xq [k + 1] + U [k + 1]

U [k + 1] =

n
∏

i=1

[−Li[k + 1], Li[k + 1]]

where

xq [k + 1] = Axq
s[k] + BFxq

s[k]

and

Li[k + 1] =
λi

2bi[k]
Li[k] + M (i = 1, . . . , n). (2)

Throughout this paper we impose a constant bit rate con-
straint which requires bi[k] ≥ 0 and

n
∑

i=1

bi[k] = Q (3)

where Q is a fixed positive integer representing the number
of bits used to encode the state.

This paper is interested in determining bit assignments
that are optimal in the sense of minimizing the worst-case
summed quantization error over a finite horizon of length
N . In other words we’re interested in determining {bi[k]}
for fixed Q that minimize

P = sup
x[0]

N
∑

k=1

n
∑

i=1

(x[k] − xq [k])2

Note that by definition |x[k]−xq [k]| ≤ Li[k] for all i and any
x[0]. This inequality becomes equality for a specific initial
condition which means that P may be rewritten as

P =

N
∑

k=1

n
∑

i=1

L2
i [k]

For a given number of quantization bits, Q, the objective
is to find {bi[k]} for k = 1, . . . , N − 1 and i = 1, . . . , n
that minimize P subject to the constraint that bi[k] ≥ 0,
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∑n
i=1 bi[k] = Q and that Li[k] satisfies equation 2. This

optimization problem may be formally stated as follows,

minimize:
∑N

k=1

∑n
i=1 L2

i [k]
with respect to: bi[k] ∈ <
subject to: bi[k] ≥ 0

Q =
∑n

i=1 bi[k]

Li[k + 1] = λi

2bi[k] Li[k] + M

(4)

This problem will be solved below using dynamic program-
ming [14]. Note that the optimization is done with respect to
bi[k] over the set of real, rather than the set of non-negative
integers. The above problem may therefore be seen as a
relaxation of the true bit assignment problem which would
require the bit assignments to be integers.

III. OPTIMAL BIT ASSGINMENTS

This section states and proves the optimal bit assignment
solving the problem in equation 4. The following mathemat-
ical notation will be used throughout this section.

Λi[k] = λiLi[k]

Λ[k] = n

√

√

√

√

n
∏

i=1

Λi[k]

λ = n

√

√

√

√

n
∏

i=1

λi

The paper’s main proposition is stated below.
Proposition 3.1: If

Q >

n
∑

i=1

log2(λi) (5)

Q

n
=

Λ[0]

Λi[0]
(6)

for i = 1, . . . , n, then the bit assignment

bi[k] =
Q

n
− log2

(

Λ[k]

Λi[k]

)

(7)

is a local minimizer of the bit assignment problem in
equation 4.

Remark: Note that the first constraint is the stabilizing
bit rate constraint in equation 1 for systems in which |λi| >
1 for all i. The second constraint requires that the initial
uncertainty set be balanced. Note that the bit assignment in
equation 7 has an intuitive interpretation which requires us to
equally distribute the Q available bits between all channels
and then to adjust that “average” bit assignment to the ith
side based on the balance between that side’s uncertainty
set and the geometric average of all sides of the uncertainty
set. This means that optimal bit assignments seek to balance
the uncertainty almost all components of the state vector, a
principle that lies at the heart of the optimal bit assignment
described in [3].

Proposition 3.1 will be established using dynamic pro-
gramming. That method requires the solution of an interme-
diate single step optimization problem. The solution of that
intermediate problem is given in the following lemma.

Lemma 3.2: Let Q > 0, R > 0, M > 0, Λi > 0 and
Li > 0 be known real constants for i = 1, . . . , n. Consider
the problem of minimizing

J = R +

n
∑

i=1

L2
i +

n
∑

i=1

(

M +
Λi

2bi

)2

(8)

subject to bi ≥ 0 and
∑n

i=1 bi = Q. There exists a nonempty
set M ⊂ {1, . . . , n} with cardinality m such that

bi =

{

Q
m − log2

(

Λ
Λi

)

if i ∈ M

0 otherwise
(9)

is a local minimizer of J .
Proof: This result is proven using the Karush-Kuhn-Tucker
(KKT) conditions [15]. The augmented Lagrangian for this
problem is

L(b,p) = R +

n
∑

i=1

L2
i +

n
∑

i=1

(

M +
Λi

2bi

)2

+p0

(

n
∑

i=1

bi[k] − Q

)

+

n
∑

i=1

pibi

where b = {b1, · · · , bn} is the decision variable and p =
{p0, · · · , pn} are Lagrange multipliers.

The first KKT condition is that

0 =
∂L

∂bi
= 2 ln 2

Λ2
i

22bi
+ 2M ln 2

Λi

2bi
− p0 − pi

for i = 1, . . . , n. The second KKT condition is the constant
bit rate constraint,

0 =
∂L

∂p0
=

n
∑

i=1

bi − Q

The third KKT condition for the inequality constraints re-
quires that pibi = 0 for i = 1, . . . , n, where pi ≥ 0 and
bi ≥ 0.

¿From the third KKT condition, we know that if bi > 0,
then pi = 0. So let M denote the set of indices for which
bi > 0. We know this set is nonempty because Q > 0. For
i ∈ M the first and third KKT conditions can be used to
infer that

p0 = 2 ln 2
Λ2

i

22bi
+ 2M ln 2

Λi

2bi
(10)

for i = 1, . . . , n.
We may solve equation 10 for bi as follows. First let

Xi = Λi

2bi
and p0 = p0/(2 ln 2). With this variable substution

equation 10 becomes

0 = X2
i + MXi − p0

which has a non-negative solution

Xi = −M/2 +
√

M2/4 + p0 (11)

which means Xi is independent of the index i.
Note that

X = n

√

√

√

√

n
∏

i=1

Xi =
Λ

2Q/n
= −

M

2
+

√

M2

4
− p0 (12)
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The denominator in equation 12 follows from the constant
bit rate constraint constraint (eq. 3) and the righthand side
follows from equation 11. We can therefore solve for p0 to
see that

p0 =

(

Λ

2Q/n
+

M

2

)2

−
M2

4

=
Λ

2

22Q/n
+

MΛ

2Q/n
(13)

Inserting our expression for p0 into equation 11 yields,

Xi =
Λi

2bi

= −
M

2
+

√

M2

4
+

Λ
2

22Q/n
+

MΛ

2Q/n

= −
M

2
+

(

Λ

2Q/n
+

M

2

)

=
Λ

2Q/n

which can be solved for bi to obtain equation 9 for those
i ∈ M. ♦
Proof of Proposition 3.1: This proof uses dynamic program-
ming [14]. In particular, let’s consider a value function with
the following form,

V (L[k]) = R[k] +

n
∑

i=1

L2
i [k] (14)

where L[k] = {Li[k]}n
i=1 is the “system state” and R[k]

is a non-negative sequence of parameters (k = 1, . . . , N )
in which R[N ] = 0. For notational convenience we let
Vk = V (L[k]). Solving this problem involves finding {R[k]}
and the bit assignemnts {b[k]} that satisfy the dynamic
programming recursion,

Vk = min
b[k]

(

n
∑

i=1

L2
i [k] + Vk+1

)

for k = 0, . . . , N − 1. The dynamic programming recursion
consists of a sequence of single-step optimization problems.
The cost functional that must be optimized over this single
step can be rewritten as

n
∑

i=1

L2
i [k] + Vk+1

=

n
∑

i=1

L2
i [k] + R[k + 1] +

n
∑

i=1

L2
i [k + 1]

= R[k + 1] +

n
∑

i=1

L2
i [k] +

n
∑

i=1

(

Λi[k]

2bi[k]
+ M

)2

This cost must be minimized subject to the bi[k] ≥ 0 and
∑n

i=1 bi[k] = Q. Note that this is precisely the problem
we solved in lemma 3.2. So we know that if the ith state
component is assigned a nonzero number of bits that the bit
assignment must be

bi[k] =
Q

m[k]
− log2

Λ[k]

Λi[k]
(15)

where m[k] is the number of state components with nonzero
bit assignments at time k. Note that if

Q

n
> log2

Λ[k]

Λi[k]
(16)

for all i and k , then all state components can have a non-
zero state assignment and equation 15 holds for all i with
m[k] = n.

We now show that the proposition’s assumptions in equa-
tions 5 and 6 imply that equation 16 is true for all k. We’ll
prove this by mathematical induction. First note that equation
6 requires that equation 16 holds for k = 0. So let’s now
assume that the inequality holds for k and try to show it also
holds for k + 1.

Note that

Λ[k + 1]

Λi[k + 1]
=

n
√
∏n

i=1 Lj [k + 1]λj

Li[k + 1]λi

=
λ

λi

n

√

∏n
j=1

(

Λj2−bj [k] + M
)

Λi[k]2−bi[k] + M

Substituting our expression for the optimal bi[k] into the
above equation shows that

Λ[k + 1]

Λi[k + 1]
=

λ

λi
(17)

By the assumption in equation 5, however, we know that

Q

n
>

1

n





n
∑

j=1

log2 λj



 = log2 λ

> log2

λ

λi

Under the optimal bit assignment we can insert equation 17
into the above expression to conclude that

Q

n
>

Λ[k + 1]

Λi[k + 1]

for any i. We’ve just shown that if inequality 16 holds for
k, then it must also hold for k + 1. So by the principle of
mathematical induction, we know that inequality 16 holds for
all k, which implies that under the optimal bit assignment
all state components get assigned a nonzero number of bits
for all k ≥ 0.

To complete this proof we need to verify that we can
construct the sequence R[k] ≥ 0 such that the value function
in equation 14 satisfies the dynamic programming recursion
for all k. Inserting this canadidate form of the value function
into the dynamic programming recursion yields,

Vk = R[k] +

n
∑

i=1

L2
i [k]

= R[k + 1] +

n
∑

i=1

L2
i [k] +

n
∑

i=1

(

M +
Λi[k]

2b∗
i
[k]

)2

(18)

where b∗i [k] is the optimal bit assignment,

b∗i [k] =
Q

n
− log2

Λ[k]

Λi[k]
. (19)
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Inserting our expression for b∗i (equation 19) into the expres-
sion for Vk (equation 18) yields,

R[k] +

n
∑

i=1

L2
i [k]

= R[k + 1] +

n
∑

i=1

(

M +
Λ[k]

2Q/n

)2

+

n
∑

i=1

L2
i [k]

So the sequence R[k] is generated by the following recursion,

R[N ] = 0

R[k] = R[k + 1] + n

(

M +
Λ[k]

2Q/n

)2

(20)

for k = 0, · · · , N − 1.
To solve the recursion in equation 20, we need to know

Λ[k]. Note, however, that if we let ρ = λ/2Q/n then

Λ[1] = ρΛ[0] + λM

Λ[2] = ρ2Λ[0] + ρλM + λM

· · · (21)

Λ[k] = ρkΛ[0] + λM
1 − ρk

1− ρ
(22)

This means that Λ[k] can be computed as a function of the
initial Λ[0] and we can therefore use equation 22 to compute
the required sequence of R[k]. ♦

IV. PERFORMANCE-RATE FUNCTIONS

One interesting aspect of of the proof in proposition 3.1
is that the value function V0 gives the optimal cost achieved
by the bit assignment. This is generally a function of the
bit rate, Q, the horizon length, N , and the noise level, M .
We may therefore think of V0(Q, M, N) as a performance-
rate function that characterizes the optimal achievable per-
formance (as measured by the summed squared quantization
error) as a function of the bit rate. Such performance-rate
functions represent fundamental limitations on the system’s
achievable performance. They are similar in spirit to the
Rate-Distortion functions found in source coding theory [16].
This section presents several closed form expressions for the
performance-rate function of a dynamically quantized linear
system under various assumptions.

The following result establishes a general closed form
expression for the optimal performance achievable under the
assumption that the system is noise-free.

Corollary 4.1: Under the assumptions of proposition 3.1
and assuming that M = 0, the optimal cost achieved under
the optimal bit assignment is

P ∗ =

n
∑

i=1

L2
i [0] + n

Λ
2
[0]

22Q/n

ρ2N − 1

ρ2 − 1

where ρ = λ
2Q/n .

Proof: The optimal cost is
∑n

i=1 L2
i [0] + R[0]. So we need

to determine R[0]. From equation 20 with M = 0 we know
that

R[k] = R[k + 1] + n
Λ

2
[k]

22Q/n

From equation 22 with M = 0 we know that

Λ[k] = ρkΛ[0]

Combining both expressions above yields,

R[k] = R[k + 1] + nρ2k Λ
2
[0]

22Q/n

for k = 0, . . . , N − 1. We know R[N ] = 0 so that

R[N − 1] = nρ2(N−1) Λ
2
[0]

22Q/n

R[N − 2] = nρ2(N−1) Λ
2
[0]

22Q/n
+ nρ2(N−2) Λ

2
[0]

22Q/n

=
nΛ

2
[0]

22Q/n

(

ρ2(N−1) + ρ2(N−2)
)

· · ·

R[0] =
nΛ

2
[0]

22Q/n

N−1
∑

i=0

ρ2i

=
nΛ

2
[0]

22Q/n

1− ρ2N

1 − ρ2

which completes the proof. ♦
The following corollary states a closed form expression

for the summed squared quantization error in the noisy case
(M 6= 0).

Corollary 4.2: Under the assumptions of proposition 3.1,
the optimal cost achieved by the optimmal bit assignment is

V0(Q, N) =

n
∑

i=1

L2
i [0] + A + B

1 − ρN

1 − ρ
+ C

1 − ρ2N

1 − ρ

where

A = nNM2 + 2nNMY + nY 2

B = n(2M + Y )(X − Y )

C = n(X − Y )2

and X = ρΛ[0]

λ
, Y = ρM

1−ρ , and ρ = λ
2Q/n .

Proof: From equation 20, we can readily show that

R[0] = n

(

N−1
∑

k=0

(

M +
ρΛ[k]

λ

)2
)

= nNM2 + 2Mn

N−1
∑

k=0

ρΛ[k]

λ
+ n

N−1
∑

k=1

(

ρΛ[k]

λ

)2

(23)

Using equation 22, the first summation above can be written
(after some algebra) as

N−1
∑

k=0

ρΛ[k]

λ
=

(

ρ

Λ[0]
λ −

ρM

1 − ρ

)N−1
∑

k=0

ρk +
ρM

1 − ρ
N

= (X − Y )
N−1
∑

k=0

ρk + Y N (24)

and the second summation may be written as
N−1
∑

k=0

(

ρΛ[k]

λ

)2

= (X − Y )2
N−1
∑

k=0

ρ2k (25)

+Y (X − Y )

N−1
∑

k=1

ρk + Y 2 (26)
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Inserting equations 24-26 into equation 23 and simplifying
yields the expression in the corollary’s statement. ♦

In the limit as N → ∞, we can expect the summed
squared quantization error to become unbounded if M 6=
0. In this case it makes more sense to use the following
performance measure,

P∞ = lim
N→∞

1

N
V0(Q, N)

The following corollary provides a closed form expression
for P∞.

Corollary 4.3: Under the assumptions of proposition 3.1
then under optimal bit assignment

P∞ = lim
N→∞

1

N

N
∑

k=1

n
∑

i=1

L2
i [k] = nM2 1 + ρ

1 − ρ

Proof: This is obtained by simply letting N go to infinity
in the result from corollary 4.2. ♦

V. BIT ASSIGNMENT ALGORITHM PERFORMANCE

The performance rate curves shown in the preceding
section represent the minimum summed quantization error
assuming bit assignments are real-valued. In reality, these
bit assignments are integer valued and the natural question to
ask is how far a “real” algorithm making integer assignments
may deviate from the theoretical performance-rate curve.

To answer this question, we developed a simple recursive
algorithm to compute the optimal bit assignments and com-
pared the resulting quantization error against the theoretical
performance-rate function. The following algorithm was used
to make the integral assignments. In this algorithm n is
the dimension of the system, Li is the uncertainty on the i
component of the state, λi is the eigenvalue associated with
the ith subsystem, and Q are the number of bits that need
to be assigned.

001 intialize: i = n

002 Λj = Ljλj (j = 1, . . . , n)

003 Λ =

n
∏

j=1

(Ljλj)
1/n

004 Qm = Q

005 LOOP: do while i > 1

006 k = argmin
j

(

Λ

Λj

)

007 if i == 1, then bk = Qm

008 else bk = F
(

Qm

i − log2

(

Λ
Λk

))

009 Qm = Qm − bk

010 Lk = 0.0

011 i = i − 1

The actual bits assigned to the kth state component is given
above in variable bk. The integer assignment is done in
step 008, where the function F (·) may be taken as either
a rounding, ceiling, or floor function.

Figure 2 compares the results obtained using this algorithm
against the theoretical bound. In this case we assumed

M = 0, so a log-log plot of the performance-rate function is
simply a straight line. The blue dots in the figure represent
the performance levels that were achieved by an algorithm
with integer bit assignments. This figure shows results for
integer assignments made by both the ceiling function and
floor function. The figure shows that the integer assignment
algorithm performs very close to the theoretical performance-
rate function.
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Fig. 2. Integer versus Real Bit Assignments: noise free case

Similar results were generated for the bounded noise case
when M = 1. Figure 3 plots the power of the quantization
error signal P∞ as a function of Q for the infinite horizon
case (N = ∞). The results show close agreement between
the integer bit assignment and the predictions made by the
performance-rate function.

VI. SUMMARY

This paper did three things. It first used dynamic pro-
gramming to determine an optimal way of assigning bits in
a dynamically quantized feedback system, where optimality
refers to minimizing the summed squared quantization error.
The proof of optimality used a dynamic programming ar-
gument that allowed us to obtain closed form expressions
for the optimal achievable performance as a function of
the bit-rate. These expressions can be thought of as rate-
distortion functions for feedback control loops. This paper
referred to these functions as “performance-rate” functions.
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Fig. 3. Integer veruss Real Bit Assignments: noisy case

Since theoretical performance-rate functions assume real-
valued bit assignments, we experimentally compared of the
performance achieved using integer-valued bit assignments to
the performance predicted by the performance-rate function.
The resulting comparisons were very close to each other.

Prior results on the optimal performance of dynami-
cally quantized feedback systems were obtained in [3] for
noise-free 2-dimensional systems. This paper extends that
prior work to multi-dimensional diagonalizable systems with
bounded noise. The analysis method used in this paper may
be extended to non-diagonalizable system by simply using a
larger noise term M .
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