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Cohesive Swarming under Consensus
Michael D. Lemmon and Yashan Sun

Abstract— This paper studies the cohesion of multi-agent
swarms moving under the control of a consensus filter. This
paper’s main result shows that swarming under consensus is
cohesive. We establish specific bounds on the degree of cohesion
and consensus as a function of the attraction/repulsion fields,
swarm size, and connectivity in the communication network.

I. INTRODUCTION

There has recently been considerable activity studying the
swarming [1][2] of autonomous unmanned vehicles (AUV)
or mobile agents. Most of this effort has used a Lagrangian
framework [3] [4] which focuses on the relationship between
individual agents. Nearly all of these papers assume the
swarm consists of agents that have the same underlying ve-
hicular dynamics. Vehicle movement is driven by a command
that passes through either a single integrator [5][6][7] or
double integrator dynamic [8]. The command input is usually
the gradient of a potential field. This potential field can
be automatically generated from proximity sensors detecting
neighboring agents and obstacles. Potential fields associated
with obstacles cause agents to move away from the obstacle.
Potential fields generated by neighboring agents are based on
long-range attraction and short distance repulsion between
agents. This mechanism helps assure the cohesiveness of the
swarm while minimizing the likelihood of agent collisions.

Potential fields, however, may also arise from virtual objects
[9] that are not directly sensed by any individual agent. For
example, a group of mobile robots attempting to find the
source of a chemical plume, must use the aggregate of all
local measurements of chemical concentration to determine
the best direction for the swarm to move towards. The
“source” of the chemical plume may be thought of as a
virtual position that generates a potential field which draws
all agents in the swarm toward that location. An individual
agent’s movements, therefore, are no longer determined lo-
cally by that agent’s sensors. Those movements are guided by
a vector that is the result of aggregating sensor information
from agents throughout the entire swarm.

This sensor information is broadcast over the entire swarm
using a communication network. In practice, these networks
are multi-hop networks. It is already well known that ad
hoc multi-hop networks have inherent capacity limitations
[10]. So in recent years, there has been considerable interest
in studying the impact that limited communication has on
the performance of swarming in such systems. In much of
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this work [11][12] [13][14], the communication network is
treated as a graph of limited connectivity and the question
concerns the behavior of the swarm under limited network
connectivity.

This paper focuses on the use of consensus in swarm guid-
ance and control. In particular, we study the interconnection
of swarm dynamics with a consensus filter as shown in figure
1. The swarm dynamics used in this paper employ short
range repulsion and long range attraction functions, similar
to [4] and [6], to prevent agent collisions. The individual
velocity is generated by integrating the mutual forces related
to the sensed distance between neighboring agents. The
consensus filter is based on the system introduced in [13].
In this study, the consensus filter estimates the swarm center
and then computes the guidance direction from estimated
center to a known target point.
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Fig. 1. Interconnection of Swarm and Consensus Filter

The paper derives uniform ultimate bounds on the swarm
size and level of consensus through Lyapunov-based method-
ologies, similar to that done in [6] for the swarm and
[13] for the consensus filter. The bounds are expressed as
a function of the attraction/repulsion strength, number of
network agents, and communication network connectivity.
These results establish that the swarm is indeed cohesive
under consensus filtering, though the level of consensus is a
function of swarm size.

The remainder of the paper is organized as follows. The
problem statement is stated in section II. The concepts of
swarm error and consensus error are introduced in section
III. The swarm and consensus filter stability analysis are pre-
sented in section IV and section V. We study the distribution
of swarm agents in section VI. We then study the behavior
of the consensus filter under integral action in section VII.
Section VIII summarizes the paper.
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II. PROBLEM STATEMENT

Consider a swarm of N dynamical agents that exchange
information over a multi-hop communication network. Each
agent is characterized by two types of states; its physical
state representing the agent’s position in the real world and
its consensus state representing the agent’s estimate of the
swarm’s geometric center. The physical state of the ith agent
at time t is denoted as a vector xi(t) in Euclidean n-space,
<n. The trajectory of the ith agent’s physical state is denoted
by the function xi : <+ → <n which satisfies the ordinary
differential equation

ẋi(t) = ui(t) +
∑

j∼i

g(‖xi(t) − xj(t)‖)(xi(t) − xj(t)) (1)

for i = 1, . . . , N . The vector ui(t) ∈ <n is an external input
and g : <+ → < is a function from the positive real line, <+,
into the real line, <. We will use the notation gij to denote
g(‖xi − xj‖) and we let

∑

j∼i xj to denote
∑N

j=1,j 6=i xj .

The summation in equation 1 represents long range physical
interactions between agents. We assume that this interaction
can be decomposed into a repulsive and attractive compo-
nent. In particular, if we let ρ : <+ → <+ and α : <+ → <+

denote the repulsion and attraction functions, then g may be
written as

g(r) = ρ(r) − α(r)

for any r ∈ <+. This paper restricts its attention to attraction
and repulsion functions of the form

ρ(r) =
ρ0

r2
(2)

α(r) =
α0

r
(3)

for any r ∈ <+ and where ρ0 and α0 are positive constants.

The consensus state of the ith agent at time t is denoted
as a vector x̂i(t) ∈ <n. The trajectory of the ith agent’s
consensus state is denoted by the function x̂i : <+ → <n

which satisfies the consensus filter equation

˙̂xi(t) = (x0(t) − x̂i(t)) +
∑

j∼i

Aij(ûj(t) − x̂i(t))

+
N

∑

j=1

Aij(x̂j(t) − x̂i(t)) (4)

for i = 1, . . . , N . The vector x0(t) ∈ <n is the state of the
target at time t. The coefficient Aij is the ij−th components
of the matrix In + Adj(G) where In is an n × n identity
matrix and Adj(G) is the adjacency matrix of the graph G.
The graph G models the communication connectivity within
the swarm. Agent j is able to transmit its consensus state x̂j

and an input ûj to agent i if and only if Aij = 1.

Figure 1 shows that the entire swarm may be viewed as an
interconnection of the swarm dynamics (equation 1) and the
consensus filter (equation 4). The swarm dynamic’s input
from the jth agent to the consensus filter’s ith agent is the
position of the jth agent, in other words ûj = xj . The

consensus filter’s input from the jth agent to the swarm
dynamic’s jth agent is the j’th agent’s estimate of the swarm
center (consensus state) relative to the target, in other words
uj = x0 − x̂j . The consensus filter is trying to estimate the
center of the swarm and the swarm is using those estimates
to guide the swarm toward the target. The overall dynamics
of this system may therefore be written as

ẋi = (x0 − x̂i) +
∑

j∼i

gij(‖xi − xj‖)(xi − xj) (5)

˙̂xi = (x0 − x̂i) +
∑

j∼i

Aij(x̂j − x̂i)

+

N
∑

j=1

Aij(xj − x̂i) (6)

We’re interested in establishing whether the swarm is co-
hesive and achieves consensus. Let x(t) = 1

N

∑N

j=1
xj(t)

denote the swarm center at time t. Define the swarm error
and consensus error of the ith agent at time t as

ei(t) = xi(t) − x(t) ∈ <n,

êi(t) = x̂i(t) − x(t) ∈ <n,

respectively. Furthermore let e(t) ∈ <Nn and ê(t) ∈ <Nn

denote the swarm and consensus error vectors,

e(t) =
[

eT
1 (t) eT

2 (t) · · · eT
N (t)

]T

ê(t) =
[

êT
1 (t) êT

2 (t) · · · êT
N (t)

]T

With regard to the previous notational conventions we say
that the swarm defined by equations 5 and 6 is cohesive if
and only if there exist positive real constants R and R such
that lim sup ‖e(t)‖ ≤ R and lim inf ‖e(t)‖ ≥ R. We say that
the swarm achieves ε-consensus if there exists a positive real
constant ε such that lim sup ‖ê(t)‖ ≤ ε. The objective of this
paper is to establish whether the swarm defined in equations
5 and 6 is cohesive, achieves ε-consensus, and to provide
bounds on the constants R, R, and ε as a function of the
swarm parameters.

III. ERROR EQUATIONS

Since our analysis is concerned with the asymptotic behavior
of the error vectors e(t) and ê(t), it will be convenient to
transform the original system equations into a set of coupled
error equations.

The derivative of the ith agent’s swarm error is

ėi = ẋi −
1

N

N
∑

j=1

ẋj

= (x0 − x̂i) +
∑

j∼i

gij(‖xi − xj‖)(xi − xj)

−
1

N

N
∑

j=1



(x0 − x̂j) +
∑

k∼j

gjk(‖xj − xk‖)(xj − xk)





= −x̂i +
∑

j∼i

gij(‖xi − xj‖)(xi − xj)
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−
1

N

N
∑

j=1



−x̂j +
∑

k∼j

gjk(‖xj − xk‖)(xj − xk)





Note that
∑N

j=1

∑

k∼j gjk(‖xj − xk‖)(xj − xk) = 0, xi −
xj = ei − ej , and x̂i − x̂j = êi − êj so the swarm error
equation becomes

ėi =
∑

j∼i

gij(‖ei − ej‖)(ei − ej) +
1

N

N
∑

j=1

(êj − êi)(7)

for i = 1, . . . , N .

The derivative of the ith agent’s consensus error is

˙̂ei = ˙̂xi −
1

N

N
∑

j=1

ẋj

= (x0 − x̂i) +
∑

j∼i

Aij(x̂j − x̂i)

+

N
∑

j=1

Aij(xj − x̂i) −
1

N

N
∑

j=1

(x0 − x̂j)

=

N
∑

j=1

Aij(x̂j − x̂i) +

N
∑

j=1

Aij(xj − x̂i)

+
1

N

N
∑

j=1

(x̂j − x̂i)

=

N
∑

j=1

Aij(x̂j − x̂i) +

N
∑

j=1

Aij(xj − x̂i)

where Aij = Aij + 1

N
. Note that x̂j − x̂i = êj − êi and

xj − x̂i = ej − êi so we can rewrite the consensus error state
equation as

˙̂ei =

N
∑

j=1

Aij(êj − êi) +

N
∑

j=1

Aij(ej − êi) (8)

for i = 1, . . . , N .

It will be convenient to express equation (8) in matrix-vector
form. In particular, let ∆i denote the out-degree of the ith
agent in the swarm’s communication graph, G. Note that
∑N

j=1
Aij = 1 + ∆i and that

∑N

j=1
Aij = ∆i + 2. Further

assume that there exist positive integers ∆ and ∆ such that
∆ ≤ ∆i ≤ ∆ for i = 1, . . . , N . With these notational
conventions we may rewrite equation 8 as

˙̂ei =

N
∑

j=1

Aij(êj − êi) + (ei − êi) +
∑

j∼i

Aij(ej − êi)

= −êi −
∑

j∼i

Aij êi +
N

∑

j=1

Aij(êj − êi) + ei +
∑

j∼i

Aijej

But note that

ei =
1

N

N
∑

j=1

(xi − xj) =
1

N

N
∑

j=1

(ei − ej) = ei −
1

N

N
∑

j=1

ej

which implies that
∑N

j=1
ej = 0. So we can rewrite our

expression for ˙̂ei as

˙̂ei = −êi −
∑

j∼i

Aij êi +
∑

j∼i

Aij(êj − êi)

−
∑

j∼i

ej +
∑

j∼i

Aijej

=

(

−
2N − 1

N
− 2∆i

)

êi +
∑

j∼i

Aij êj +
∑

j∼i

(Aij − 1)ej

Then the vector form of consensus error equation is,

˙̂e = Aê + Be (9)

where

A =











K1I A12I · · · A1NI

A21I K2I · · · A2NI
...

...
. . .

...
AN1I AN2I · · · KNI











B =











0 (A12 − 1)I · · · (A1N − 1)I
(A21 − 1)I 0 · · · (A2N − 1)I

...
...

. . .
...

(AN1 − 1)I (AN2 − 1)I · · · 0











Ki =
(

− 2N−1

N
− 2∆i

)

, 0 is an n×n matrix of zeros and I

is an n × n identity matrix.

IV. UNIFORM ULTIMATE BOUND ANALYSIS

The main result of this paper establishes bounds on the
level of consensus (ε) and the swarm size (R and R) as
a function of the swarm parameters ρ0, α0, N , ∆ and
∆. This is accomplished by studying the uniform ultimate
boundedness (UUB) of the swarm dynamics and consensus
filters. This section presents 3 lemmas characterizing regions
of the error space, (e, ê), in which suitably defined positive
definite functions of the swarm error, e, or consensus error
ê have negative definite directional derivatives.

The following lemma studies the directional derivative of a
positive definite function, V (e) of the swarm error, e. The
lemma provides sufficient conditions on the norm of ‖e‖ for
which we can show the directional derivative, V̇ (e), of this
function is negative. This lemma provides one part of the
UUB analysis of the swarm under consensus

Lemma 4.1: Consider the system in equation 1 and let
V (e) = 1

2
eT e for any e ∈ <Nn. If there exists a positive

real constant β such that

N
∑

i=1

N
∑

j=1

‖xi − xj‖ ≥ β‖e‖ (10)

and if

‖e‖ ≥
N(N − 1)ρ0

βα0

(11)
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then V̇ (e) ≤ 0.

Proof: The directional derivative of V (e) is

V̇ (e) =

N
∑

i=1

eT
i ėi

=

N
∑

i=1



eT
i





∑

j∼i

gij(ei − ej) +
1

N

N
∑

j=1

(êj − êi)









=

N
∑

i=1





∑

j∼i

gij(‖ei‖
2 − eT

i ej) +
1

N

N
∑

j=1

eT
i (êj − êi)





The last term above is zero because
∑N

i=1
ei = 0 so the

above equation reduces to

V̇ (e) =

N
∑

i=1

∑

j∼i

gij(‖ei‖
2 − eT

i ej)

Completing the square within the above summation yields

V̇ (e) =

N
∑

i=1

1

2





∑

j∼i

gij(‖ei‖
2 − ‖ej‖

2 + ‖ei − ej‖
2)





Summing the first two termms over i equals zero and recall
that ei − ej = xi − xj so that the above equation reduces to

V̇ (e) =

N
∑

i=1

1

2

∑

j∼i

gij‖xi − xj‖
2

Equations 2 and 3 allow us to reduce the above equation to

V̇ (e) =
N(N − 1)

2
ρ0 −

α0

2

N
∑

i=1

∑

j∼i

‖xi − xj‖ (12)

By the assumption in equation 10 there exists β such that

N
∑

i=1

N
∑

j=1

‖xi − xj‖ ≥ β‖e‖,

so if

N(N − 1)ρ0 − α0β‖e‖ ≤ 0. (13)

then we can use equation 12 to show that V̇ (e) ≤ 0. The
inequality in equation 13 is simply a restatement of the
lemma’s second condtion (equation 11). ♦

Remark: Equation 10 of lemma 4.1 can be viewed as a
lower bound on the average interagent distance.

The following lemma is an instability result that characterizes
the set of ‖e‖ for which V̇ (e) is positive.

Lemma 4.2: Consider the system in equation 7 and let
V (e) = 1

2
eT e where e ∈ <Nn. If there exists β > 0 such

that

β‖e‖ ≥

N
∑

i=1

N
∑

j=1

‖xi − xj‖ (14)

and if

‖e‖ ≤
N(N − 1)ρ0

βα0

then V̇ (e) ≥ 0.

Remark: Equation 14 of lemma 4.2 is an upper bound on
the average interagent distance.

Proof: If there exists β satisfying inequality 14 and if we
require

N(N − 1)

2
ρ0 −

α0β

2
‖e‖ ≥ 0 (15)

then equation 12 in the proof of lemma 4.1 implies that
V̇ ≥ 0. ♦

The following lemma provides bounds on ‖e‖ and ‖ê‖ for
which a positive definite function V (ê) of the consensus
state has a negative definite directional derivative. Since the
consensus error system is a linear system, this lemma is a
straightforward UUB analysis.

Lemma 4.3: Consider the system defined in equation 9 and
let V : <n → < be the function V (ê) = 1

2
êT ê. Let ∆ denote

the minimum out-degree of the swarm’s communication
graph. If

‖ê‖ ≥
N − 1 − ∆

1 + ∆
‖e‖ (16)

then V̇ (ê) ≤ 0.

Proof: Consider the consensus error dynamics in equation 9.
Let λ(A) and λ(B) denote eigenvalues of system matrices
A and B, respectively. The eigenvalues of A and B are
real since these matrices are symmetric. An application of
Gershgorin’s theorem establishes that the eigenvalues of A

lie in the union of the sets

Ωi(A) =

{

z ∈ C :

∣

∣

∣

∣

z +

(

2N − 1

N
+ 2∆i

)∣

∣

∣

∣

≤ ∆i +
N − 1

N

}

which means the eigenvalues of A are bounded as

−
3N − 2

N
− 3∆ ≤ λ(A) ≤ −1− ∆.

where ∆ is the maximum out-degree of the swarm’s com-
munication graph, and ∆ is the minimum out-degree. A
similar application of Gershgorin’s theorem establishes that
the eigenvalues of B lie in the union of sets

Ωi(B) =







z ∈ C : |z| ≤
∑

j∼i

|Aij − 1|







which means the eigenvalues of B are bounded as

∆ + 1 − N ≤ λ(B) ≤ N − 1 − ∆

Now consider the directional derivative

V̇ (ê) = êT ˙̂e = êT Aê + êT Be.
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We may use the aforementioned bounds on λ(A) and λ(B)
to show that

V̇ (ê) ≤ −(1 + ∆)‖ê‖2 + (N − 1 − ∆)‖e‖‖ê‖ (17)

If the righthand side of equation 17 is negative definite then
V̇ (ê) ≤ 0. Inequality 17 can be rearranged to yield equation
16. ♦

V. COHESION ANALYSIS

Establishing the cohesion of the swarm under consensus is
accomplished by examining the regions identified in lemmas
4.1 to 4.3. This examination allows us to identify a compact
region which is an attracting invariant set of the system.

Proposition 5.1: Consider the interconnected system given
by equation 7 and 8. Assume there exist constants β and β

such that

β‖e‖ ≤

N
∑

i=1

N
∑

j=1

‖xi − xj‖ ≤ β‖e‖ (18)

Let

Ω−
s =

{

(e, ê) ∈ <2Nn : ‖e‖ ≥
N(N − 1)ρ0

βα0

}

Ω+
s =

{

(e, ê) ∈ <2Nn : ‖e‖ ≤
N(N − 1)ρ0

βα0

}

Ω−
c =

{

(e, ê) ∈ <2Nn : ‖ê‖ ≥
N − 1 − ∆

1 + ∆
‖e‖

}

For any initial state (e(0), ê(0)) ∈ <2Rn, the set

Ω = (Ω+
s )c ∩ (Ω−

s )c ∩ (Ω−
c )c

is an attracting invariant set.

Proof: The region identified in lemmas 4.1, 4.2, and 4.3 are
precisely the sets Ω−

s , Ω+
s and Ω−

c , respectively. The set Ω
is the intersection of the complements of these sets. From
lemmas 4.1 and 4.2, we know the region (Ω+

s )c∩(Ω−
s )c must

be an attracting invariant set. From lemma 4.3 we know that
the region (Ω−

c )c is an attracting invariant set. Therefore the
intersection of these two sets (the set Ω) is also an attracting
invariant set and the proposition’s proof is complete. ♦

Remark: Figure 2 provides a graphic illustration of propo-
sition 5.1’s proof. The boundary of sets Ω−

s , Ω+
s and Ω−

c are
shown in figure 2 for a system in which N = 20, ∆ = 10,
ρ0 = 1 and α0 = 2. The downward arrow shows the direction
in which V (ê) is a monotone decreasing function of time.

The right to left (left to right) arrow shows the direction in
which V (e) is a monotone decreasing (increasing) function
of time. The arrows point to the boundary that ê or e is
converging. The attracting invariant set Ω is the shaded
region in the figure.

The following corollary of proposition 5.1 simply states that
the swarm is cohesive under consensus.
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Corollary 5.2: Consider the interconnected system given by
equation 7 and 8. Assume there exist constants β and β such
that

β‖e‖ ≤
N

∑

i=1

N
∑

j=1

‖xi − xj‖ ≤ β‖e‖

Then the swarm is cohesive and achieves ε-consensus where

R =
N(N − 1)ρ0

βα0

, R =
N(N − 1)ρ0

βα0

ε =
N − 1− ∆

1 + ∆
·
N(N − 1)ρ0

βα0

Proof: The variables R and R are the bounds on ‖e‖
obtained in lemmas 4.1 and 4.2, respectively. The variable ε

is obtained by inserting R into the upper bound for ‖ê‖ in
lemma 4.3. This corresponds to the upper righthand corner
of the set Ω in figure 2. ♦

VI. INTERAGENT DISTANCE ANALYSIS

As mentioned earlier, equation 18 in proposition 5.1 is an
assumed upper and lower bound on the average inter-agent
distance. This bound is expressed as a linear function of
the vector 2-norm of the swarm error vector, which we can
consider as a reasonable measure of the swarm’s size. This
section justifies the bound in equation 18 and shows how we
can go about computing the constants β and β.

We first claim that we can always bound the interagent
distance as shown in equation 18. Let ‖x‖1 =

∑n

i=1
|xi|

denote the 1-norm of vector x ∈ <n. Let ‖x‖2 =
√

∑n

i=1
x2

i

denote the 2-norm of vector x ∈ <n. It is already known
from standard mathemtical analysis that we can always find
constants c and C such that

c‖x‖2 ≤ ‖x‖1 ≤ C‖x‖2

So now consider the swarm error vector e ∈ <Nn and note
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that

‖e‖1 =

N
∑

i=1

‖ei‖1 (19)

≤

N
∑

i=1

1

N

N
∑

j=1

‖xi − xj‖1

≤

N
∑

i=1

C

N

N
∑

j=1

‖xi − xj‖2 (20)

which implies that there exists a constant β such that

β‖e‖2 ≤
∑

i

∑

j

‖xi − xj‖2.

Also note that
N

∑

i=1

N
∑

j=1

‖xi − xj‖2 =

N
∑

i=1

N
∑

j=1

‖ei − ej‖2

≤

N
∑

i=1

N
∑

j=1

(‖ei‖2 + ‖ej‖2)

≤
N

c
(

N
∑

i=1

‖ei‖1 +
N

∑

j=1

‖ej‖1)

=
2N

c
‖e‖1 (21)

which implies there exists a constant β such that

β‖e‖2 ≥

N
∑

i=1

N
∑

j=1

‖xi − xj‖2.

So we can conclude that we can always find constants β and
β such that inequality 18 is true.

The determination of constants β and β may be accom-
plished by solving an associated optimization problem. In
particular, consider the optimization problem

minimize: J =
∑N

i=1

∑N

j=1
‖ei − ej‖2

with respect to: ei (i = 1, . . . , N)

subject to:
∑N

i=1
‖ei‖

2
2 = E2

∑N

i=1
ei = 0

where E is a parameter to be chosen. This parameter
represents the total squared distance between swarm agents.
Essentially this problem is finding the smallest average
interagent distance

∑N

i=1

∑N

j=1
‖xi − xj‖2 such that the

total squared distance, ‖e‖2, is equal to E. Recall that
we showed earlier

∑N

i=1
ei must always equal zero, so the

final constraint in the optimization problem ensures that this
condition is satisfied.

The solution to the previous optimization problem may be
denoted as J(E) where E is the supplied parameter. Since E

equals the swarm size ‖e‖2, the solutions to this optimization
problem is generating the curve J(‖e‖2) which we can then
easily fit with a linear function of ‖e‖2, thereby identifying
the constant β which enforces the lefthand side of inequality
18.

A similar approach may be used to determine β. In this case,
however, we seek to maximize J subject to the same con-
straints. The solutions to this set of maximization problems
will generate solutions J(‖e‖2) which we can again over
bound with a linear function of ‖e‖2 to determine β.

This optimization problem was solved for a specific swarm
of size N = 20 using Matlab’s fmincon function. The
asterisks in figure 3 plot J(‖e‖2) and J(‖e‖2) versus ‖e‖2.
The dashed lines represent the best fit linear functions of
‖e‖2 for the data. For this particular swarm we determined
that β = 114 and β = 40.

 

2
e
 

( )J E  

( )J E

Fig. 3. J and J versus ‖e‖2

The distribution of swarm error vectors e computed by
solving this optimization problem are shown in figure 4
for ‖e‖2 = 5. The left-hand figure corresponds to the low-
energy configuration and the right-hand figure corresponds
to the high-energy configuration. The high-energy configu-
ration shows a configuration in which the agents have all
grouped together into two distinct clusters. The low-energy
configuration shows a set of agents that are uniformly spaced.

−5 0 5
−5

0

5

−5 0 5
−5

0

5

Fig. 4. Agent configurations associated with J
∗

(right) and J∗ (left)

With the preceding bounds for β and β we can now verify
the analysis results through simulation. A Matlab script
was written to simulate the system equations in equations
5 and 6. This simulation was performed with 20 agents
in which the repulsion coefficient ρ0 and the attraction
coefficient, α0 were both equal to one. The communication
graph was specified at time 0 and that graph was kept static
over the length of the run. This simulation’s communication
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graph had a maximum connectivity of about ∆ = 10. The
swarm was attempting to intercept a target that started at
(0, 150) and moved with a constant velocity of (−10,−10).
The swarm was initialized to be uniformly distributed over
a rectangular region with side length 30 centered at the
(15, 15). The simulation was run for 100 time steps with
a step size of T = 0.02.

Figure 5 shows the swarm and consensus errors (x − x and
x̂−x) at the final simulation time. The righthand plot shows
the final swarm error vectors and the lefthand plot shows the
final consensus error vectors. In this case the final swarm
size ‖e‖ = 3.31 and the final consensus error ‖ê‖ = 0.48.
Note that the final swarm configuration is similar to the low-
energy configuration shown in figure 4. This suggests that the
associated swarm size should be closer to the lower bound
in equation 18 than the upper bound.

Fig. 5. Final Swarm/Consensus Error Vectors ( ρ0 = 1, α0 = 1, N =

20, ∆ = 10)

Figures 6 plot the the swarm and consensus errors conver-
gence processes. In this particular simulation, the swarm size
N = 20, ρ0 = 1, α0 = 1 and ∆ = 10. The figures show that
the swarm error e and consensus error ê converge to the
invariant set Ω exponentially.

Fig. 6. Comparison with analytical bounds α0 = 2.0

Figure 7 is similar to the plot shown in figure 2. In this
figure, however, not only do we plot Ω, but we show the final
swarm and consensus errors achieved by the simulation. This
simulation was run for 5000 steps with a step size T = 0.02.
This final error vector is shown by the blue circle. The region
Ω is marked by the dark dotted shaded region. The four plots
in figure 7 show these regions and simulation data assuming
α0 = 2 and with ρ0 ranging from 0.5 to 2.0. In viewing
the plots, we want to see if the experimental prediction lies
within the set Ω. This happens in all cases with the simulation
result usually resting at the far lefthand side of the set Ω.

 

e  e  

ê ê

ê ê

e  

e  e  

e  

0 02 0.5α ρ= =  
0 02 1α ρ= =  

0 02 1.5α ρ= =  
0 02 2α ρ= =  

Fig. 7. Comparison with analytical bounds α0 = 2.0

VII. CONSENSUS UNDER INTEGRAL ACTION

As stated in the introduction, the consensus filter generates
estimates of the swarm center which are then used by agents
to guide the swarm to the target. The analytical bounds and
simulation results presented above indicate that using the
consensus filter in equation 4, the best we can hope for is
ε-consensus where the size of ε is given in corollary 5.2.
Obviously what we’d like to do is identify conditions under
which we might drive ε to zero.

In general, we’ve found it is impossible to drive the con-
sensus error ê to zero for all agents. The best we can
show is that under integral action we can force all agents
to reach a consensus error that is identical for all agents.
That error, however, will not be zero. This is done through
the introduction of integral action in the consensus filter
equation. The state equations for the consensus filter with
integral action are shown below,

˙̂e = Aê + Be + KIz

ż = −Lê (22)

where z ∈ <Nn is the integrated error, K ∈ < is the
integrator gain, I is an Nn × Nn identity matrix, and L

is the Laplacian for the communication graph.

To see how integral action achieves perfect consensus, let’s
first consider vectors êss ∈ <Nn and zss ∈ <Nn such that

0 = Aêss + Be + KIzss

0 = −Lêss

where e is the steady state swarm error vector. The aug-
mented system equations may now be rewritten in matrix
vector form as

[

˙̂e
ż

]

=

[

A KI

−L 0

] [

ê

z

]

+

[

B

0

]

e

In the preceding equations, it should be apparent that êss

and zss are equilibrium points of the unforced system (i.e.
e = 0).

From the second equilibrium equation we see that êss must
lie in the null space of the Laplacian, L. This means that
êss = α1 where 1 is a vector of ones and α is any real
constant. Inserting this into the above equation we see that
zss = − α

K
A1 − 1

K
Be. Since êss = α1, we know that all

agents converge to the same consensus error êi under integral
action. The magnitude of that error (e.g. α) will depend on
the initial conditions of the system. In some sense we can say
that the filter achieves perfect consensus because all agents
agree upon the same error vector.

A Matlab script was written to simulate swarming under
consensus with integral action. In this particular simulation,
we set K = 20 with α0 = 1, ρ0 = 2, N = 20, and ∆ = 10.
Figure 8 plots the swarm position error, the consensus error,
and the integrator vector z as a function of time. The plots
show that the consensus error clearly converges to a very
small constant vector for all agents.
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Fig. 8. Swarm/Consensus Time History (integral action)

VIII. SUMMARY

This paper studied cohesive swarming under consensus filter-
ing. Specific bounds were determined for average inter-agent
distance, swarm size, and the level of consensus as a function
of repulsion strength, attraction strength, number of agents,
and communication network connectivity. The theoretical
predictions of the analysis were corroborated with computer
simulations of the system. This paper also studied the impact
of integral action on the consensus filter.
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