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Abstract— Prior work [1] studied the cohesiveness of swarm
dynamics when a consensus £lter [2] is guiding swarm move-
ment. In that earlier work it was shown that the degree
of consensus achieved was dependent on the swarm’s size.
This paper proves that if the swarm’s communication graph
is regular, then the introduction of integral action into the
consensus £lter achieves perfect consensus regardless of swarm
size.

I. INTRODUCTION

Swarming is a collective behavior in which a group of
distinct dynamical agents begin to move as a single entity.
Swarming behavior has fascinated those interested in how
collective actions can emerge from the sel£sh behavior of
individuals in the group. Early examples may be found
in physics and biology [3], [4] [5] [6] [7]. Control sci-
entists have recently begun studying multi-agent systems
for applications involving cooperative groups of unmanned
autonomous vehicles (UAV’s). The cooperative behaviors
includes moving in formation [8] [9] [10] [11], aggregating
in swarms [12] [13], and exploring hazardous environments
[14] [15].

A popular approach to investigate agent interactions uses
Lagrangian models. Broadly speaking, Lagrangian models
can be divided further into two types; swarming and ¤ocking.
The term “swarming” is often reserved for kinematic models
in which swarm members are treated as point masses. The
standing assumption in this case is that viscous forces
are large enough so that an agent’s acceleration is only
signi£cant over a short period of time. The ith agent’s state,
x : < → <n, therefore, satis£es a £rst order differential
equation ẋi(t) = Fi(t). The function Fi is the control
input signal. On the other hand, the term “¤ocking” pertains
to a group of agents whose states satisfy a second order
differential equation, ẍi(t) = Fi(t), in which individuals
react to external forces by accelerating. This is clearly
distinct from the “swarming” case in which inertial forces
are neglected. In both cases, the control input can be written
as

Fi(t) =
∑

j∈Ni

f(xi, xj) + ui

where Ni is the set of the ith agent’s neighbors, fi :
<n × <n → <n models the inter-agent forces and ui is an
exogenous input. Early work in swarming [12] and ¤ocking
[13] assumed that Ni was the entire group. Other groups [8]
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[16] considered ¤ocking in groups in which Ni only captured
nearest neighbor interactions. In nearly all of these works,
inter-agent forces are modeled as a mixture of short-range
repulsion and long-range attraction forces of the form

f(xi, xj) = ρ(‖xi − xj‖)(xi − xj)− α(‖xi − xj‖)(xi − xj) (1)

where ρ : <+ → <+ and α : <+ → <+ represent repulsive
and attractive forces between agents, respectively.

This paper considers swarm dynamics in which Ni rep-
resents the entire group and inter-agent forces are governed
by the repulsive-attractive forces shown in equation 1. The
novelty in this work is its focus on external inputs ui that are
generated by a consensus £lter. In other words we study the
interconnection of a swarm with a consensus £lter as shown
in £gure 1. The consensus £lter was originally introduced by
Olfati-Saber and Shamma [2] as an extension of consensus
protocols [17] used in distributed estimation. In this paper,
the consensus £lter generates a collective estimate of the
swarm’s center and agents use that estimate to guide their
movements. The primary question addressed in this paper
concerns the cohesiveness of the swarm under consensus and
the level of consensus achieved.
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Fig. 1. Interconnection of Swarm and Consensus Filter

Olfati-Saber et al. [18] brie¤y discussed using consensus
protocols to guide cooperative multi-agent systems with
regard to multi-vehicle formation control [11]. Recently, a
detailed stability analysis of vehicle swarms under consen-
sus was done by Lemmon and Sun [1] in which it was
shown that the level of consensus was dependent on the
swarm’s size. In that earlier paper it was conjectured that
the introduction of integral action into the consensus £lter
could achieve near perfect consensus regardless of swarm
size. This paper follows up on that conjecture to prove that
integral action indeed achieves perfect consensus provided
the group’s communication graph is regular.

The remainder of the paper is organized as follows.
Section II reviews the main results from [1] that are relevant



to this paper and introduces the consensus £lter with integral
action. The paper’s main results will be found in section III
with simulation results presented in section IV. Section V
summarizes the paper.

II. PRIOR RESULTS

Our earlier paper [1] studied a swarm of N dynamical
agents, whose system equations are,

ẋi = (x0 − x̂i) +
∑

j∼i

g(‖xi − xj‖)(xi − xj) (2)

˙̂xi = (x0 − x̂i) +
∑

j∼i

Aij(x̂j − x̂i) +

N
∑

j=1

Aij(xj − x̂i)

where xi the physical state of the ith agent and x̂i is the
consensus state of the ith agent. The target state is denoted as
x0. The coef£cient Aij is the ij-th component of the matrix
IN +Adj(G) where IN is an N × N identity matrix and
Adj(G) is the adjacency matrix of the undirected graph, G.
The graph G models the communication connectivity within
the swarm. Agent j is able to transmit its consensus state x̂j
and its current state xj to agent i if and only if Aij = 1. We
let
∑

j∼i xj denote
∑N

j=1,j 6=i xj . The function g : <+ → <
can be written as

g(r) = ρ(r)− α(r)

for any r ∈ <+ where ρ : <+ → <+ and α : <+ → <+

denote the repulsion and attraction function, respectively. In
particular, the original paper [1] and this paper assume that

ρ(r) = ρ0

r2 , α(r) = α0

r

for any r ∈ <+ where ρ0 and α0 are positive real constants.
We de£ne the swarm error and consensus error of the ith

agent at time t as

ei(t) = xi(t)− x(t)

êi(t) = x̂i(t)− x(t)

where

x(t) =
1

N

N
∑

j=1

xj(t)

denotes the swarm center. We let e(t) and ê(t) denote vec-
tors in <Nn whose (in+ j)th element is the jth component
of the ith agent’s swarm and consensus error, respectively.

In the paper [1] it was shown that the norm of the swarm
error may be bounded as,

R =
N(N − 1)ρ0

βα0
≤ ‖e‖ ≤

N(N − 1)ρ0
βα0

= R (3)

where β and β are positive real constants. These constants
are associated with the swarm’s internal energy [1]. It was
also shown that the norm on the consensus error is bounded
as

‖ê‖ ≥
N − 1−∆

1 +∆
‖e‖ (4)

where ∆ denotes the minimum out-degree of the communi-
cation graph, G. The results in equation 4 indicate that the
level of consensus will be bounded below by the swarm size
which will always be nonzero. As a result the swarm in [1]
will not achieve perfect consensus.

In our earlier paper [1], simulation results were presented
suggesting that the introduction of integral action into the
consensus £lter might achieve near perfect consensus in
which ‖ê‖ is nearly zero. This is similar to the low pass
consensus £lter introduced in [2]. The consensus £lter with
integral action satis£es the following equations,

˙̂x(t) = (x0(t)− x̂i(t)) +
∑

j∼i

Aij(xj(t)− x̂i(t))

+
∑

j∼i

Aij(x̂j(t)− x̂i(t)) +Kzi

żi =

N
∑

j=1

Aij(x̂j(t)− x̂i(t)) (5)

for i = 1, . . . , N . The entire system is formed by combin-
ing the swarm dynamics in equation 2 with the modi£ed
consensus £lter above in equation 5.

Let z ∈ <Nn be the vector of integrated errors. We can
use equations 2 and 5 to obtain the following state equation
for the consensus error ê,

˙̂e = (A⊗ In) ê+ (B⊗ In) e+KINnz (6)
ż = −L⊗ Inê (7)

where A⊗B is the Kronecker product of matrix A and B.
We can rewrite these equations in matrix vector form as
[

˙̂e
ż

]

=

([

A KI

−L 0

]

⊗ In

)[

ê

z

]

+

([

B

0

]

⊗ In

)

e (8)

In the above equation

A = X+ L(G)

B = Adj(G) + IN − 11
T

L = Deg(G)−Adj(G)

X =
1

N
11T − 2IN − 3 (Adj(G))

where Adj(G) and Deg(G) are the adjacency and degree
matrix of graph G, respectively. The matrix L is the Lapla-
cian matrix of G.

III. CONSENSUS ERROR ANALYSIS

This section contains the paper’s main result, which is a
theorem establishing conditions under which the consensus
£lter achieves perfect consensus. The proof of this result
requires the following two technical lemmas. The £rst lemma
characterizes the eigenvalues of the system matrix

Φ =

[

A KI

−L 0

]

.

The second lemma characterizes the similarity transforma-
tion taking Φ to its diagonal canonical form. The proofs for
both lemmas will be found in the appendix (section VI).



Lemma 3.1: Assume the communication graph, G, is con-
nected then Φ has exactly one zero eigenvalue and all other
eigenvalues have real parts strictly less than zero.

Lemma 3.2: Let Λ be a diagonal complex-valued matrix
whose diagonal elements are the eigenvalues of Φ ⊗ I. Let
U denote the similarity transformation such that Φ ⊗ I =
UΛU−1.

U =

[

u1 u2 · · · u2N
u1 u2 · · · u2N

]

⊗ In,

and U−1 =











vT1 vT1
vT2 vT2

...
...

vT2N vT2N











⊗ In

where ui, ui, vi and vi ∈ <N for i = 1, . . . , 2N . The
matrices U and U−1 have following properties,

1) u2N = u · 1T ∈ <N , where u is a constant.

2) v2N = 0 · 1T ∈ <N , and
v2N = v · 1T ∈ <N , where v is a constant.

3) KvTi = λiv
T
i i = 1, · · · , 2N − 1

4)
∑2N−1

i=1 uiv
T
i = −u2Nv

T
2N

5) vT2Nu2N = 1

6) Au2N +Ku2N = 0

From equation 3, we know eventually ‖e(t)‖ ≤ R.
Assume that e(t) satis£es this inequality at time 0. Assuming
that initial state satis£es ê(0) = z(0) = 0, we can use the
consensus error equations 6-7 to see
[

ê(t)
z(t)

]

=

∫ t

0

UeΛ(t−τ)U−1
[

B⊗ I
0

]

e(τ)dτ

We de£ne the vector ‖êss‖

‖êss‖ = lim
t→∞

sup {‖ê(τ)‖ : t ≥ τ} (9)

The following theorem provides an upper bound on ‖êss‖.
Theorem 3.3:

‖êss‖ ≤

∥

∥

∥

∥

(

1

c
11T

)

B

∥

∥

∥

∥

R (10)

where the scalar c is

c = −1TA1
Proof: For notational convenience we let A = A ⊗ I

and B = B⊗ I. Then

‖ê(t)‖ =

∥

∥

∥

∥

∫ t

0

[INn 0Nn]Ue
Λ(t−τ)U−1

[

B

0

]

e(τ)dτ

∥

∥

∥

∥

≤

∥

∥

∥

∥

∫ t

0

ueΛ(t−τ)vTBdτ

∥

∥

∥

∥

R

where

u =
[

u1 u2 · · · u2N
]

⊗ In

v =
[

v1 v2 · · · v2N
]

⊗ In

Since v2N = 0, the lowest n×n sub-matrix in the matrix
vT B is zero. So we can conclude

‖êss‖ ≤

∥

∥

∥

∥

∥

∥

∥

∥

∥

u











− 1
λ1

. . .
− 1

λ2N−1

r











⊗ Inv
TB

∥

∥

∥

∥

∥

∥

∥

∥

∥

R

=

∥

∥

∥

∥

∥

(

2N−1
∑

i=1

−
uiv

T
i

λi
+ ru2Nv

T
2N

)

B

∥

∥

∥

∥

∥

R

=

∥

∥

∥

∥

∥

2N−1
∑

i=1

−
uiv

T
i

λi
B

∥

∥

∥

∥

∥

R

=

∥

∥

∥

∥

(

1

K
u2Nv

T
2N

)

B

∥

∥

∥

∥

R

=

∥

∥

∥

∥

(

1

K
uv11T

)

B

∥

∥

∥

∥

R

where the last couple equalities follow from lemma 3.2.
Multiplying vT2N on the left-hand side and using the sixth

item in lemma 3.2 yields,

vT2NAu2N +K = 0

The above equation is equivalent to,

uv · 1TA1+K = 0

Therefore,

‖êss‖ ≤

∥

∥

∥

∥

(

1

−1TA1
11T

)

B

∥

∥

∥

∥

R

and the proof is complete.
The following theorem represents the main result of this

paper. It states and proves a bound on ‖êss‖ for swarming
under consensus with integral action.

Theorem 3.4: Let ∆ and ∆ denote the maximum and min-
imum out-degree of the communication graph, respectively.
Then

‖êss‖ ≤
∆−∆

N(1 + ∆)
R (11)

Remark: A regular graph is one in which ∆ = ∆, so
that all nodes have the same out degree. Theorem 3.4 means
that if the graph, G, is regular then the consensus error
will be zero in swarms under consensus with integral action
regardless of the swarm’s size.

Proof: Let

M =

(

1

c
11T

)

B,

where the scalar c is −1TA1. The norm of M can be
bounded as

‖M‖
2
≤

1

c2
xTBT11T · 11TBx =

N

c2
xTBT11TBx

=
N

c2

(

1TBx
)2

where x ∈ <N is a nonzero vector such that ‖x‖ = 1 and
∑N

i=1 xi = 0.



From the de£nition of matrix B we can show that

1TBx = −

N
∑

i=1

(N − 1−∆i)xi

where xi is the ith element of vector x.
By construction

∑N
i=1 xi = 0 so we can partition x so

that xi ≤ 0 (i = 1, · · · , `) and xi ≥ 0 (i = ` + 1, · · · , N).
Then,

∣

∣1TBx
∣

∣ ≤ ∆
∑̀

i=1

xi −∆

N
∑

i=`+1

xi = (∆−∆)
∑̀

i=1

xi

Application of Cauchy’s Inequality N
(

∑`
i=1 xi

)2

≤
∑`

i=1 x
2
i yields,

‖M‖
2
≤

N

c2

(

(∆−∆)
∑̀

i=1

xi

)2

≤
1

c2
(∆−∆)

∑̀

i=1

x2i

≤
1

c2
(∆−∆)

N
∑

i=1

x2i =
1

c2
(∆−∆) ‖x‖

=
1

c2
(∆−∆)

From the de£nition of A we obtain

c = N +
N
∑

i=1

∆i

which we can combine in the above inequality to obtain the
theorem’s result.

The following corollary characterizes the degree of con-
sensus achieved with and without integral action when
swarming under consensus.

Corollary 3.5: The ratio of the minimum consensus errors
êint and êno−int achieved with and without integral action,
respectively is

‖ê‖int
‖ê‖no−int

≤
∆−∆

N(N − 1−∆)
(12)

Remark: This corollary bounds the decrease in the con-
sensus error when we add integral action. The result shows
that consensus error can be small in poorly connected graphs
(∆ is small) provided the swarm is large enough.

Proof: This follows directly from equation 4 and
equation 11 in theorem 3.4.

IV. SIMULATION

A matlab script was written to simulate swarming under
consensus with integral action. In the following simulations,
the integrator gain is K = 20 and the swarm size is N = 20.
The repulsion/attraction strengths are ρ0 = 1 and α0 = 2,
respectively. Every simulation ran for 6000 time steps with
a step size of T = 0.02.

We £rst simulated swarming under consensus with integral
action on the two communication graphs shown in £gure
2. The left-hand £gure corresponds to a regular graph with
degree 8. The right-hand £gure corresponds to a connected
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Fig. 2. Communication Graph, N= 20 (left) 8-degree (right) connected
graph
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graph with ∆ = 19 and ∆ = 8. The degree distribution for
this graph is shown in £gure 3.

Even though the connected graph has an agent that is
connected to all other agents, the entire swarm is unable to
achieve perfect consensus. The regular graph, on the other
hand, achieved perfect consensus as is shown in £gure 4.
This £gure plots the log of the norm squared consensus error,
‖ê‖

2 as a function of time. In this particular simulation the
swarm size, ‖e‖ was bounded above by 1.6662. The solid
line in £gure 4 is the consensus error for the regular graph
and the dashed line is the consensus error for the other graph.
In the regular graph, the consensus error reached a minimum
level of ‖êss‖ = 5.9174e − 014, which is essentially zero.
The minimum consensus error achieved over the other graph
was several orders of magnitude larger.
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Fig. 4. Consensus Error Bound with Integral Action, N=20

As noted above, even if the graph is not regular, integral
action can dramatically improve the level of consensus.
Figure 5 shows the comparison of minimum consensus error



with /without integral action on the same communication
graph. In this paritcular graph the node out-degrees were
bounded between ∆ = 3 and ∆ = 7. Without integral action
the minimum consensus error was about 0.9851 (dashed
line). With an integral gain of K = 20, the same system
achieved a minimum consensus level of 0.0102. The £gure
veri£es that integral action can decrease the consensus error
signi£cantly.
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Fig. 5. Consensus Error Equilibrium with /without Integral Action

The following simulation results experimentally evaluate
the tightness of the bounds presented in theorem 3.4 and
corollary 3.5. Theorem 3.4’s proof used the following bound

∣

∣1TBx
∣

∣ ≤ (∆−∆)
∑̀

i=1

xi and,

(∆−∆)
∑̀

i=1

x2i ≤ (∆−∆)

N
∑

i=1

x2i

in which a unit vector x satisfying
∑N

i=1 xi = 0 was
partitioned into its positive and negative components (xi ≤
0 (i = 1, · · · `) and xi ≥ 0 (i = ` + 1, · · · , N)). The bound
clearly gets tight when ∆ is close to ∆.

Figure 6 illustrates the relationship between (∆−∆) and
the bound on ‖êss‖. This £gure plots ‖êss‖ for two different
graphs. In the £rst graph (solid line) there is a large spread
in the node out-degrees (∆ = 13 and ∆ = 5). In this case
the consensus error is predicted to be less than 0.3176 by
theorem 3.4. The actual minimum consensus error, however,
was only 0.0154. In the second graph (dashed line), there is a
small spread in the node out-degrees (∆ = 10 and ∆ = 11).
For this case, theorem 3.4 predicts a consensus error that is
less than 0.0216 with the actual norm being 0.0134. These
results show close agreement between the predictions made
in theorem 3.4 and actual simulated results.

V. SUMMARY

This paper studied the effect of integral action on the con-
sensus £lter. When compared to consensus errors in swarms
without integral action, we found that adding integral action
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dramatically improved the level of consensus. In particular,
we found that if the communication graph is regular, then
the swarm could achieve perfect consensus under integral
action.

VI. PROOFS

Proof: Lemma 3.1: Any eigenvalue λ of Φ must satisfy
the characteristic equation χ(Φ) = 0 so that

0 = χ(Φ) = det

[

λI−A −KI
L λI

]

= det (λI−A) det
(

λI+KL(λI−A)−1
)

= det (λ(λI−A) +KL) (13)

The rank of Laplacian matrix L(G) is N − 1 when the
graph G is connected, so that det(KL) = 0. This implies
that Φ has at least one zero eigenvalue.

We now show that the eigenvalues of Φ cannot have
positive real parts. Assume that λ is an eigenvalue of Φ such
that Re(λ) > 0. If λ is complex, its complex conjugate, λ
must also be an eigenvalue of Φ. So consider any vector
x 6= 0 in <N and let x+ denote its conjugate transpose, then

x+(λ(λI−A) +KL)x

+ x+(λ(λI−A) +KL)x

=
(

λ2 + λ
2
)

x+x−
(

λ+ λ
)

x+Ax+Kx+Lx

= 2 (Re(λ))
2
x+x− 2Re(λ)x+Ax+Kx+Lx (14)

In [1], Gershgorin’s theorem was used to show that the
eigenvalues of A were real and negative. Therefore the facts
that A is negative de£nite, L is positive semide£nite and
Re(λ) > 0 can be used to deduce that the right-hand side of
equation 14 is greater than zero which means that λ cannot
satisfy the characteristic equation and so if λ is complex, it
cannot have positive real part. A similar argument can be
used to show that λ cannot be positive if it is real.

Finally, we show that Φ has at most one zero eigenvalue.
We consider matrix ΦT ,

ΦT =

[

A −L
KI 0

]



and let λj be the zero eigenvalue of ΦT with associated
eigenvector u =

[

uT1 uT2
]T
∈ <2N in which u1,u2 ∈

<N . then

0 = Au1 − Lu2 (15)
0 = −Ku1 (16)

Equation 16 implies that u1 = 0 and u2 is the eigenvector
resulting in Lu2 = 0. u2 will be any vector belonging to the
null-space of matrix L. Because L is the Laplacian of graph
G, the dimension of L’s null space is exactly one, thereby
completing the proof.

Proof: Lemma 3.2: It is straightforward that

U−1
[

A KI

−L 0

]

⊗ In = ΛU−1 =











x
...
x

0











∈ <2Nn×2Nn

and,
[

A KI

−L 0

]

⊗ InU = UΛ =
[

x · · · x 0
]

∈ <2Nn×2Nn

where x is any complex vector satisfying dimension require-
ment.

1) For the eigenvalue of λ2N = 0, we have,

[

A KI

−L 0

] [

u2N
u2N

]

=







0
...
0






∈ <2N

Hence, u2N is the null space vector of Laplacian
matrix L, which completes the proof of the £rst item.

2) The second item’s proof is similar to the £rst one. For
the eigenvalue of λ2N = 0, we have,

[

vT2N vT2N
]

[

A KI

−L 0

]

=
[

0 · · · 0
]

∈ <1×2N

So that, v2N = 0 and v2N = v · 1.
3) For the eigenvalue of λi 6= 0, we have,

[

vTi vTi
]

[

A KI

−L 0

]

= λi
[

vTi vTi
]

It is easy to show,

KvTi = λiv
T
i i = 1, · · · , 2N − 1

4) Since UU−1 = I, it means the matrix block

[

u1 · · · u2N
]







vT1
...
vT2N






= 0 ∈ <N×N

It turns out,
2N−1
∑

i=1

uiv
T
i = −u2Nv

T
2N

5) Because of U−1U = I, we have the last element

vT2Nu2N + vT2Nu2N = 1

in terms of the property of v2N = 0T , the above
equation is equivalent to, vT2Nu2N = 1.

6) It is easy to shown based on the equation,

[

A KI

−L 0

] [

u2N
u2N

]

=







0
...
0






∈ <2N×1
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