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Abstract— Consensus filters [1] provide a distributed way
of computing data aggregates in embedded sensor networks.
Prior work has suggested that the rate at which such filters
achieve consensus is proportional to the number of neighbors.
This conclusions, however, is simplistic because it ignores the
intrinsic throughput limitation of multi-hop networks. This
paper examines the convergence behavior of consensus filters
under such throughput limitations. We consider a time-slotted
frequency division multiple access (FDMA) network assuming
a regular network. Under these assumptions we show that
throughput limits can be modeled as delays. We study the
impact these delays have on the time and energy that consensus
filters require to achieve ε-consensus.

I. INTRODUCTION

In many sensor network applications, it is important for
agents to have a global aggregate of the network’s sensor
measurements. Consensus filtering [1] provides one way of
computing such aggregates in a distributed manner. These
filters achieve consensus when all agents within the network
agree upon the same value for the aggregated variable. The
rate at which such filters achieve consensus is proportional
to the number of neighbors each agent can communicate
with. This suggests that as we increase the connectivity
within the network’s communication graph, we increase
the rate at which the algorithm achieves consensus. This
conclusion, however, is simplistic because it ignores the
intrinsic throughput limitation of multi-hop communication
networks.

Network throughput limitations [2] have a major impact on
the consensus filter’s convergence rate. A direct consequence
of limited throughput capacity is longer communication
delay or latency. Due to message collisions, it is impossible
for a receiver to collect all its neighbors’ information instan-
taneously. There is always a finite probability that some of
the neighboring data will be corrupted and will have to be
resent. Resending data will delay message delivery in a way
that can adversely effect the relative stability of the consensus
filter, and in a way that decrease the filter’s convergence rate.

It is well known [3] that if there are no delays then the
consensus filter’s convergence rate increases with network
connectivity. But as discussed above, increased network
connectivity will also increase the average delay in message
delivery. There is, therefore, a fundamental trade off between
network connectivity and message delay that leads to an
“optimal” level of network connectivity. The purpose of this
paper is to examine that trade off in greater detail.
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Considerable research, e.g., [3], [4], [5], [6], [7], [8], [9],
[10] and [11] has been done on consensus protocols for the
purpose of either aggregation of statistics or averaging of
computation load. In most of the prior work the consensus
communication model is described as a disc model. Each
member is allowed to communicate with neighbors within a
specified communication radius. Hence, the behavior of the
consensus filter is studied under the assumption of limited
network connectivity. Sufficient conditions for asymptotic
consensus convergence have been derived using different
mathematical tools, e.g., Lyapunov methodology [3], convex
optimization [8] and matrix analysis [9]. The convergence
rates of these protocols are characterized by the second-
smallest eigenvalue of the Laplacian matrix associated with
the communication graph. In [3], it is shown that the
convergence rate is proportional to the connectivity of the
communication network. This rate can also be changed by
manipulating weights on the edges of the communication
graph [7] [11].

Real-life communication networks have limited resources
such as the number of channels and channel bandwidth.
These resource constraints can delay message delivery in
ways that can adversely effect the consensus filter stability.
Consensus with time-delay was first explored in [3]. This
work, however, only established an upper bound on the
delay time for the system’s asymptotic stability. This paper
does much more by studying the relation between network
topology, time delay, and convergence rate. Probably the
work most related to our approach will be found in the
communications literature. Results similar to those derived
in this paper will be found in [12] where the throughput
is maximized subject to the packet collision in wireless
networks. More recently a series of papers [13], [14], [15]
and [16] have studied connectivity in packet radio networks
for different optimization objectives. The results obtained
in these papers are similar to our results in that they also
try to identify network topologies that optimize message
throughput.

In this paper we still use the consensus filter model
proposed in [1]. The paper answers questions on the per-
formance of consensus filters in ad-hoc wireless network
scenarios. The main contribution of this paper is the analysis
of the convergence rate of consensus under throughput limits.
We show that there is an optimal level of communication
connectivity which maximizes the filter’s convergence rate
and energy efficiency. Section II discusses the delay with
which messages are delivered under a communication model
commonly found in multi-hop wireless sensor networks. Sec-
tion III characterizes the convergence rate of the consensus



filter under such message delays. Section IV characterizes the
minimum energy required to achieve ε-consensus. Simulation
results in support of the paper’s analysis will be found in
section V.

II. PROBLEM STATEMENT

The consensus problem studied in this paper has it origins
in the distributed filter framework introduced by [1]. Con-
sider a sensor network of size N . The consensus state of
this network is a function xi : � → �n (i = 1, . . . , N ) that
satisfies the consensus filter equations [1]

ẋi =
∑
j∈Ni

aij (xj − xi) +
∑

j∈(Ni∪{i})
aij (uj − xi)

where ui : � → �n is the filter’s ith input. This equation
can be rewritten in matrix-vector form as

ẋ = − (IN + Δ + L)x + (IN + Adj(G))u (1)

where x is the vector of consensus states, u is the vector of
filter inputs, IN is an N ×N identity matrix, Adj(G) is the
adjacency matrix of the undirected graph, G. L is the graph
G’s Laplacian matrix and Δ is a diagonal matrix whose
diagonal elements are the outdegrees of the graph’s nodes.
The graph G models the communication connectivity within
the nodes. Node j is able to transmit its consensus state xj

to node i if and only if the ijth component of Adj(G) is
one (i.e.,aij = 1).

We are concerned with the impact that limits on network
throughput have on the consensus filter’s performance. This
paper therefore confines its attention to the consensus dy-
namics given by,

ẋ(t) = Ax(t − τ) + r (2)

where A = − (IN + Δ + L), r is a constant input vector,
and τ is the average delay with which messages are trans-
mitted throughout the network.

We consider the delay τ arising in a time-slotted wire-
less communication network in frequency division multiple
access (FDMA). We consider a wireless communication
network in which nodes transmit in time slots. When a
node wants to transmit its local state, it select with equal
probability one frequency in a fixed set of Q frequencies.
The network, therefore, is a time-slotted network using
frequency division multiple access (FDMA) to the wireless
medium. Suppose node xi transmits over the mth sub-
channel to a node xj . the communication delay τij > 0
measures the average time slots taken for accomplishing
a successful transmission. Regular communication graphs
have been shown to be an efficient network topology for
distributed consensus [1]. They have also been shown to arise
naturally in the swarming under consensus framework [17].
We therefore assume that each node has the same number, Δ,
of neighbors. Based on this assumption we can then derive a
delay, τ , for equation 2 which is the statistical average over
all information flows.

Because we’re considering wireless radio networks, each
node’s broadcast through a selected subchannel is simulta-
neously transmitted to all of the node’s Δ neighbors at the
same time. The wireless medium, however, is shared with
other nodes in the network so that two messages may collide
with each other at the designated receiver. When this occurs,
the message from both transmitters is destroyed. In addition
to this we assume that nodes cannot receive and transmit
at the same time, so that transmitted messages will not be
successfully received if the destination is also transmitting.
To decrease the likelihood of these message collisions, each
node broadcasts with a probability p in every time slot. On
average, the time it takes for a node to successfully gather all
of its Δ neighbors’ messages is denoted as τ . After receiving
the Δ messages, the given node updates its consensus state.

The average communication delay τ can be written as

τ = γ · 1
Rp

where R is the probability of a successful receiving all of
the neighbors’ messages, and p is the broadcast probability.
For a regular network with Δ-connectivity, the receiving
probability R is,

R =
(

1 − p

Q

)Δ

(3)

The average time delay, therefore, is a function of the
graph’s connectivity, Δ. Obviously, if a node knows how
many neighbors it has, then it will select p to minimize the
delay τ . It can be easily shown that the broadcast probability
that minimizes the average delay will be p∗ = Q

1+Δ . This
leads to the following average delay

τ∗ =
γ

Q

(1 + Δ)1+Δ

ΔΔ
(4)

The minimum communication delay τ ∗ in equation 4
is proportional to the communication degree. This implies
that as the network connectivity increases, there will be
a subsequent increase in message latency. The following
sections explore how this increase in message delay may
effect the time and energy required to achieve ε-consensus.

III. CONVERGENCE RATE

This section considers the convergence rate of the consen-
sus filter under message delay. Section II modeled throughput
limitations in a time-slotted FDMA wireless network as an
average message delay. Olfati-saber et al. [3] derived a upper
bound on the maximum delay for which the consensus filter
is asymptotically stable. This leads to the following interval
of stable delays for the consensus filter,

τ ∈
(

0, − π

2λmax(A)

)
(5)

For a regular network, we can use Gershgorin’s theorem
to show that the eigenvalues of A = − (IN + Δ + L) lie in
the interval,

−3Δ − 1 ≤ λ(A) ≤ −Δ − 1 (6)



Inserting equation 6 into equation 5 yields the following
lemma which is stated without formal proof.

Lemma 3.1: If τ ∈
(
0, π

2(1+Δ)

)
, then consensus filter in

equation 2 is asymptotically stable.
Using the upper end of the interval in lemma 3.1 in our

expression for the optimal delay, τ ∗, in equation 4 yields the
following bounds on the network connectivity, Δ, required
for the consensus filter’s stability.

Lemma 3.2: If the communication degree Δ satisfies

Q − 1 ≤ Δ ≤
√

πQ

2eγ
− 1 (7)

then the consensus filter in equation 2 is asymptotically
stable.

The convergence rate of the consensus filter can be an-
alyzed through a direct application of Laplace transforms.
Taking the Laplace transform on the consensus filter dynam-
ics (eq:2) yields,

X(s) =
(
sI − Ae−γτs

)−1
(
x(0) +

r
s

)
(8)

where X(s) denotes the Laplace transform of x(t), and x(0)
is the initial state. The eigen decomposition of the symmetric
matrix A yields A = UΛUT , where Λ is the diagonal
matrix with A’s eigenvalues along the diagonal, and U is an
orthogonal matrix. X(s) may therefore be written as

X(s) = Udiag
(

1
s − λie−τs

)
UT
(
x(0) +

r
s

)
(9)

We use the P2,1 Pade approximation to approximate the
time delay term e−τs to get the locations of the system poles.
This allows us to approximate the diagonal terms in equation
9 as

1
s − λie−τs

=
1

s − λi
6−4τs+(τs)2

6+2τs

=
6 + 2τs

s2 + 6+4λiτ
2τ−τ2λi

s − 6λi

2τ−τ2λi

(10)

Let Li(s) denote the characteristic polynomial for the i th

subsystem. For our system, Li(s) is

Li(s) = s2 +
6 + 4λiτ

2τ − τ2λi
s − 6λi

2τ − τ2λi
(11)

The roots of Li(s) describe the convergence rate of the
consensus filter in equation 2. The properties of the charac-
teristic polynomial’s, Li(s), roots are studied in the following
lemma.

Lemma 3.3: Suppose s1 and s2 are the two roots of
the characteristic polynomial, Li(s), in equation 11 and let
Re(s1) ≤ Re(s2). For any fixed λi the following statements
are true.

• If s1 and s2 are real roots, then s2 is a monotonically
decreasing function of the communication degree Δ.

• If s1, s2 are a pair of conjugate complex roots, then
Re(s2) is a monotonically increasing function of the
communication degree Δ.

• The root Re(s2) achieve its minimum value for that
value of Δ∗(λi) that renders the discriminant of the
quadratic function, Li(s), equal to zero.
Proof: See the appendix

The lemma tells us that for a given eigenvalue λi, there
is a corresponding communication degree, Δ∗(λi), which
minimizes Re(s2). Different eigenvalues have different op-
timal degrees. The system’s overall performance, however,
is a result of all of the eigenvalues of A. The following
lemma examines what happens when we consider all of the
eigenvalues of A.

Lemma 3.4: Assume that the eigenvalues of matrix A are
sorted in non-decreasing order so that λ1 ≤ λ2 ≤ · · · ≤
λN < 0.

• Let s�(λi) = Re(s2|λi, Δmin) for eigenvalue λi. When
Δmin = min{Q − 1, 2}, then s�(λN ) ≤ s�(λN−1) ≤
· · · s�(λ1) < 0.

• Let sr(λi) = Re(s2|λi, Δmax) for eigenvalue λi. When
Δmax = N −1, then sr(λN ) ≥ sr(λN−1) ≥ · · · sr(λ1)

• Δ∗(λN ) ≤ Δ∗(λN−1) ≤ · · · ≤ Δ∗(λ1).
Figure 1 illustrates the conclusions of lemma 3.3 for a

particular system in which we let Q = 3 and N = 20. In
this figure, the x-axis is the communication degree, Δ, and
the y-axis is the real part of the root s2. The red dashed line
plots Re(s2) as a function of the system eigenvalue λN and
the green dotted line plots Re(s2) as a function of λ1. The
solid blue line shows the maximum of Re(s2) over all system
eigenvalues, λi for i = 1, . . . , N . Lemma 3.3 asserts that if
the discriminant of the quadratic function L i(s) greater than
zero, then the maximum Re(s2) is a decreasing function
of Δ. If this discriminant is negative, then the maximum
Re(s2) is an increasing function of Δ. The point where
the discriminant vanishes is precisely that point where the
maximum of Re(s2) is minimized.
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Fig. 1. Property of the eigenvalues of A

Figure 1 can also be used to visualize the conclusions
of lemma 3.4. Let Re(s2|λi, Δ) denote the largest real part
of the characteristic equation’s (eq:11) root when the system
eigenvalue is λi. The figure shows that when Δ = Q−1, the
dashed line representing Re(s2|λN , Q − 1) is smaller than



Re(s2|λ1, Q − 1). On the other hand when Δ = N = 20,
then the roles of these two quantities is reversed, just as
asserted in the first two statements in lemma 3.4. The solid
blue line in figure 1 draws the largest eigenvalue maxRe(s2)
as a function of the node degree Δ. smallest Re(s2) is
at the intersection of the two curves for Re(s2|λ1) and
Re(s2|λN ). At this point consensus filter should exhibit
the fastest convergence rate. For the system in figure 1,
this point occurs when the blue line achieves its minimum
value. This occurs when the node outdegree is 8. A precise
characterization of this “optimal” degree, Δ∗, is given in the
following theorem.

Theorem 3.5: Consider the consensus filter given by equa-
tion 2 whose delay τ as a function of network connectivity Δ
satisfies equation 4. Let Re(s2|λi, Δ) denote the maximum
real part of the roots of the system’s characteristic equation
(eq:11) where λi is the ith eigenvalue of A and Δ is the
network’s connectivity. The optimal network connectivity is
approximated by,

Δ∗ = min max
(λi,Δ)

{Re(s2|λi, Δ)}

=

⌊√
0.3Q

γe
− 1

⌋
.

Proof: see the appendix
Remark 3.6: Theorem 3.5 shows that the optimal degree

is inversely proportional to the square root of the time slot’s
duration, γ. A ten fold increase in γ decreases the optimal
degree Δ∗ by a factor of three. This means that if we increase
the network’s throughput by using transmitters/receivers that
transmit at a higher rate (smaller γ) then we can increase
the optimal Δ∗ and thereby improve the filter’s convergence
rate.

The consensus filter’s convergence rate is directly depen-
dent to the location of the characteristic polynomial’s roots.
Since these roots are a function of the network connectivity
Δ, we can see that the consensus filter’s convergence rate
is also a function of Δ. The following theorem provides a
more precise characterization of this relationship.

Theorem 3.7: Consider the consensus dynamics (eq:2)

ẋ = Ax(t − τ) + r

where the eigenvalues of A satisfy the inequality (6). Assume
the initial condition is x(0), and the steady state is x(∞),
then

‖x(t) − x(∞)‖ ≤ C(Δ)e−J(Δ)t (‖x(0)‖ + 2kr) (12)

where k = γe
Q and

C =
(2k(1 + Δ) + k2(1 + Δ)3)

√
3 − k(1 + Δ)J

3 − 4k(1 + Δ)2 − 3k2(1 + Δ)4

If Δ ≤
√

0.3
k − 1

J =
3k(1 + Δ)3 + 2(1 + Δ)

2 + k(1 + Δ)2
(13)

(14)

otherwise,

J =
3 − 2k(1 + Δ)(3Δ + 1)

2k(1 + Δ) + k2(1 + Δ)2(3Δ + 1)
(15)

Proof: See the appendix

When Δ >
√

0.3
k − 1, the system has complex conjugate

roots so that the consensus state trajectory is oscillatory.
This oscillatory behavior is undesirable, so we confine our
attention to cases where the system only has two real root

(i.e.,Δ ≤
√

0.3
k −1). Therefore in the remainder of this paper

we confine our attention to the case where the exponent J
satisfies equation 13. Note that the exponent J in equation
13 is a monotone increasing function of the node degree
Δ. Since this equation is only valid for a finite interval of
Δ, then the optimal degree occurs at the upper edge of this
interval. In other words the optimal degree that maximizes

the consensus filter’s convergence rate is Δ∗ =
√

0.3Q
γe − 1

for a given transmission rate (as fixed by the time slot length
γ and the number Q of subchannels).

IV. ENERGY EFFICIENCY

The preceding section identified network connectivities
that minimize the “time” to ε-consensus. This may be the
preferred problem setting in situations such as the swarming
under consensus model [17] where the consensus filter is
used to guide the movement of a dynamical swarm. In
other sensor network applications, however, we may be more
interested in minimizing the “energy” required to achieve
ε-consensus. This section uses the results of the preceding
analysis to study energy-efficient consensus filtering.

We restrict our attention to the disk model for wireless
radio network in which each disk has an equal number
of regularly spaced neighbors. This assumption is overly
simplistic for randomly deployed sensor networks. However
for the swarming under consensus model [17] [18] it was
shown that agent’s usually converge to swarms in which
agents are regularly spaced with nearly constant distances
between neighbors.

We therefore assume that the N agents are uniformly
distributed with a density of ρ. If we let r denote the radio’s
transmission radius, then the average number of agents in
a given disk will be 1 + Δ = ρπr2. The average power
at the receivers (located at the edge of the disk) will be
PR = PT r−α where α is the path loss exponent and PT

is the transmitter power. If we let P R denote the minimum
received power required to assure successful reception of the
transmitted messsage, then the transmitter will need to have
a transmission power of

PT = (ρπ)−αPR(1 + Δ)
α
2 (16)

to assure that all neighbors in the disk successfully receive
the message.

Let Tc denote the time it takes for the consensus filter to
achieve ε-consensus from an initial state x(0) with constant
input r. From equation 12, we know that

‖x(Tc) − x(∞)‖ ≤ ε ·
(
‖x(0)‖ + 2

γe

Q
r
)

.



We may therefore approximate the time to ε-consensus as

Tc ≥ − 1
J(Δ)

ln
ε

C(Δ)
(17)

If ε 	 1, then we can treat the ln(ε/C(Δ)) term as a
constant that is independent of Δ. The parameter dominating
the convergence time is therefore Tc ∝ 1/J(Δ).

Determining which Δ minimizes Tc is what we considered
in the preceding section. If, however, we’re more interested
in energy-efficient communication, then we should think of
minimizing the total energy

Total Energy = PT · Tc

∝ (1 + Δ)α/2

J(Δ)
≡ E(Δ) (18)

required to achieve ε-consensus. The following theorem
provides a characterization of the energy efficient Δ∗.

Theorem 4.1: Consider the optimization problem,

minimize : E(Δ)
with respect to: Δ
subject to: Q − 1 ≤ Δ ≤√ π

2k − 1

where k = γe
Q and E(Δ) is defined in equation 18.

The optimal degree Δ∗ solving the above problem is

Δ∗ =

{
max

{⌊√
0.3Q
γe − 1

⌋
, Q − 1

}
; α ≤ α0

max{2, Q − 1} ; α > α0

(19)

where

α0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4
(

ln 1.26 2+9k
2+27k

ln 0.1
3k

+ 0.5
)

; Q ≤ 3

4

(
ln 1.26 2+kQ2

2+3kQ2

ln 0.3
kQ2

+ 0.5

)
; Q > 3

(20)

Proof: See the appendix.
Note that the energy-efficient Δ∗ has an interesting thresh-

old behavior in that it is either
⌊√

0.3Q
γe − 1

⌋
or Q − 1. In

relatively lossy environments (α > α0), we optimize energy
efficiency by adopting a sparsely connected network. In a
relatively lossless environment (α ≤ α0), we achieve better
energy-efficient by increasing network connectivity to that
level that minimizes the time, Tc, to ε-consensus.

V. SIMULATION

A Matlab script was written to simulate the behavior of
consensus filters on regular graphs with various node out-
degrees, Δ. The following simulations assumed N = 40
nodes with Q = 2 sub-channels and a nominal time-slot
length of γ = 0.004 seconds.

Figure 2 plots −J(Δ) for different network topologies.
The system diverges when −J(Δ) > 0, which occurs when
Δ > 9. Lemmas 3.3 and 3.4 assert that −J(Δ) is a
decreasing function for Δ < 6 and an increasing function
for Δ > 6. Hence the “optimal” out-degree that minimizes
the time, Tc, to ε-convergence is 6, which is clearly seen in
figure 2.

Simulated responses of the consensus filter are shown in
figure 3. In this figure, the x-axis is the consensus time index
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Fig. 2. The convergence exponent of consensus system

and the y-axis is the norm of the total consensus error. The
different curves correspond to different node degrees. The
figure shows that the fastest convergence is achieved with
Δ = 6. As Δ increases beyond, the trajectory becomes
highly oscillatory eventually becoming unstable when Δ >
9. These results closely match the analytical predictions that
were displayed in figure 2.

Note: It can be difficult to construct regular graphs for
any given N . In the simulations shown in figure 3, we chose
graphs whose degree sequence showed that 90% of the nodes
had the same out degree.

0 100 200 300 400 500 600 700 800
−5

0

5

10

iter step

lo
g(

||x
||)

Convergence Rate

Δ=5
Δ=6
Δ=7
Δ=8
Δ=9
Δ=10

Fig. 3. The optimal Δ

Figure 4 summarizes results from several simulations that
were used to study energy-efficient consensus for networks
with N = 40 nodes and Q = 2 sub-channels. Again we
choose the time slot duration γ = .004 seconds and measured
the total energy required to achieve ε-consensus where ε =
10−6. Figure 4 plots the total energy cost versus network
degree, Δ for path loss exponents of α of 2, 3, and 4. These
plots show that the energy cost is a concave function over the
interval Δ ∈ [2, Δ∗]. This energy is monotonically increasing
for Δ > Δ∗. As a result, the optimal communication degree,
Δ∗ will lie at one of two boundary points of the concave
region, either when Δ = Q − 1 (2 in our example) or Δ∗.
From theorem 4.1, we expect the smaller Δ to be chosen



when α > α0. For this case, α0 will be about 2.8, thereby
suggesting that the optimal degree, Δ∗ should be equal to
Q − 1 = 2 when α = 3. This is indeed what we see in
figure 4. Moreover, for α < α0 we would expect to choose
Δ∗ to be 6 (that level that maximizes the consensus filter’s
convergence rate. Figure 4 shows that this Δ∗ = 6 for
α = 2 and 3, which is again consistent with our analytical
predictions.
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Fig. 4. Energy Efficient Convergence

VI. CONCLUSION

In this paper, we studied the relations among communi-
cation topology, time delay and convergence rate. We have
designed techniques to calculate the “good” communication
connectivity for maximizing the consensus convergence rate,
subject to communication throughput limitation. Moreover,
we proposed an energy efficient consensus optimization
problem and explored the variation of consensus performance
under different the wireless communication conditions.

VII. APPENDIX

Mathematical Preliminaries: The discriminant of Li(s) in
equation (11) is

Ri = −2(τλi)2 + 24λiτ + 9 (21)

and the roots s1, s2 of Li(s) are,

s1 = −3 + 2λiτ +
√

R

2τ − τ2λi
, s2 = −3 + 2λiτ −√

R

2τ − τ2λi

When Ri ≥ 0, s1 and s2 are both real and s1 ≤ s2. When
Ri < 0, then s1, s2 are a pair of conjugate complex roots in
which Re(s2) = − 3+2λiτ

2τ−τ2λi
.

proof of Lemma 3.3
Proof:

• if Ri ≥ 0, we want to show s2 monotonically decreases
with Δ increasing.

First, we simplify
√

Ri as,√
Ri =

√
−2(τλi)2 + 24τλi + 9

≈ 3 + 4τλi − 3(τλi)2

then we have,

y = −Re(s2) ≈ 3(τλi)2 − 2τλi

2τ − τ2λi

=
3τλ2

i − 2λi

2 − τλi
=

8/τ

2 − τλi
+

4
τ
− 3λi

which is monotonically increasing with λi. Hence, we
consider λi = −(1 + Δ), and obtain,

y =
3τ(1 + Δ)2 + 2(1 + Δ)

2 + τ (1 + Δ)

=
3 γ

Q
(1+Δ)3+Δ

ΔΔ + 2(1 + Δ)

2 + γ
Q

(1+Δ)2+Δ

ΔΔ

=
3x (1+Δ)3+Δ

ΔΔ + 2(1 + Δ)

2 + x (1+Δ)2+Δ

ΔΔ

=
u(Δ)
v(Δ)

where x = γ
Q . To show −Re(s2) is monotonically

increasing is equivalent to showing u ′v − v′u > 0. We
first get

u′ = 3x
(1 + Δ)3+Δ

ΔΔ
(ln

1 + Δ
Δ

+
2

1 + Δ
) + 2

= 3xA((1 + Δ)2B + (1 + Δ)) + 2

v′ = x
(1 + Δ)2+Δ

ΔΔ
(ln

1 + Δ
Δ

+
1

1 + Δ
)

= xA(B(1 + Δ) + 1)

and then

u′v − v′u = 2A(1 + Δ)(2(1 + Δ)B + 3)x + 4
> 0

where we let A = (1+Δ)(1+Δ)

ΔΔ > 0 and B = ln 1+Δ
Δ >

0, which completes the proof.
• For Ri < 0, the real part of the conjugate roots is

Re(s2) = − 3 + 2λiτ

2τ − τ2λi
= − 7

2τ − τ2λi
+

2
τ

which decreases with λi increasing for a given τ . Hence,
we consider the bound by letting λi = −1 − 3Δ.
Therefore, let

y = −Re(s2) =
u(Δ)
v(Δ)

=
3 − 2 γ

Q
(1+Δ)(1+Δ)(3Δ+1)

ΔΔ

2 γ
Q

(1+Δ)(1+Δ)

ΔΔ +
(

γ
Q

)2
(1+Δ)(2+2Δ)

Δ2Δ (3Δ + 1)

=
3 − 2x (1+Δ)(1+Δ)

ΔΔ (3Δ + 1)

2x (1+Δ)(1+Δ)

ΔΔ + x2 (1+Δ)(2+2Δ)

Δ2Δ (3Δ + 1)



where x = γ
Q is not dependent on Δ. Let A =

(1+Δ)(1+Δ)

ΔΔ and B = ln 1+Δ
Δ , then

u(Δ) = 3 − 2xA(1 + 3Δ)
v(Δ) = 2xA + x2A2(1 + 3Δ)

Taking derivative of y related to Δ gives dy
dΔ = u′v−v′u

v2

where

u′ = −2xA(B(1 + 3Δ) + 3)
v′ = 2xAB + x2A2(B(1 + 3Δ) + 3)

Therefore, we obtain,

u′v − v′u = 3A2(3 − B(1 + 3Δ))x2 − 6ABx

For Δ > 1, 3 − B(1 + 3Δ) < 0. Thus dy
dΔ < 0, since

x > 0, or y decreases with Δ increasing. Therefore,
the real part of the conjugate roots is monotonically
increasing.

proof of Lemma 3.4
Proof:

• Similar to the proof in the first part of lemma 3.3, we
can show s2 increases with increasing λi. Hence, it
is straightforward to prove s�(λN ) ≤ · · · ≤ s�(λ1).
Moreover, the numerator of the Re(s2) is

−3 − 2λiτ +
√
−2(τλi)2 + 24λiτ + 9

= −3 − 2λiτ +
√

(3 + 2λiτ )2 + 6τλi(2 − τλi) < 0

since λi < 0 and 0 < τ ≤ π
2λN

.
• The proof is similar to the first item’s proof.
• In terms of the lemma 3.3, the optimal degree Δ∗

associated with a given λi is obtained by solving that the
discriminant of Li(s) equals to zero, such that Ri = 0.
This leads to

λiτ(Δ) = −0.364 (22)

for all λi associated with different communication de-
grees. τ is determined by the degree Δ, which increases
with increasing Δ. Therefore, in equation (22), an
increase in Δ leads to an increase in τ and a decrease
in λi.

proof of theorem 3.5
Proof: As illustrated in figure 1, the optimal degree Δ∗ for
the fastest convergence is located at the intersection of the
two curves for λ1 and λN . In the system’s stable region, we
solve the equation

3 + 2τ − λ1

√
R1

2τ − τ2λ1
=

3 + 2τλN

2τ − τ2λN

to obtain Δ∗ =
√

0.3Q
γe − 1.

proof of theorem 3.7

Proof: Taking the inverse Laplace transform on equation 9
yields,

x(t) = UL−1

{
diag

(
1

s − λie−τs

)
N×N

}
UT ·

(
x(0) + diag

(
2τ − τ2λi

λi

)
N×N

r

)

+UL−1

{
diag

(
−2τ − τ2λi

sλi

)}
UT r

The second term in the above equation represents the system
steady state x(∞), so the consensus error can be written as,

‖x(t) − x(∞)‖
≤

∥∥∥∥L−1

{
diag

(
1

s − λie−τs

)}∥∥∥∥ ·∥∥∥∥x(0) + diag

(
2τ − τ2λi

λi

)
r
∥∥∥∥

≤ Cemax{Re(s)}t

∥∥∥∥x(0) + 2
γe

Q
r
∥∥∥∥

where max {Re(s)} is the maximal value of the roots of
all subsystem Li(s) = s − λie

−τs = 0 (eq:11), and C is
a function of the communication degree. The expression of
max {Re(s)} and C is obtained easily from lemma 3.3 and
theorem 3.5.

proof of theorem 4.1
Proof: Denote x = 1 + Δ. According to the second item
of lemma 3.3, we know the cost function E(Δ) is mono-

tonically increasing with Δ when x >
√

0.3Q
γe . Therefore,

we only consider optimization problem in the region that

Q ≤ x ≤
√

0.3Q
γe . We use the approximation of

√
Ri in the

first item of lemma 3.3 again to have,

J(x) =
3 − 2kx2 −√

9 − 24kx2 − 2k2x4

2kx + k2x3

≈ 3 − 2kx2 − (3 − 4kx2 − 3k2x4)
2kx + k2x3

= 3x − 4x

2 + kx2

and hence the energy cost function can be written as

E(Δ) =
x

α
2 (2 + kx2)
2x + 3kx3

=
(

t

k

)β 2 + t

2 + 3t

where t = kx2, and β = α
4 − 1

2 . Since 2 ≤ α ≤ 4, then
0 ≤ β ≤ 1

2 . Taking the second-order derivative of E related
to t gives

d2E

dt2
=

1
kβ(2 + 3t)3

· [4(β2 − β)tβ−2

+(22β2 − 26β)tβ−1 + (6β2 − 18β + 12)tβ

+9(β2 − β)tβ+1
]

< 0

for 0 ≤ t ≤ 0.3. Hence, E is a concave function of t, which
implies that minx E = min{E(max {Q, 3}), E(

√
0.3
k )}.



Let E(max {Q, 3}) = E(
√

0.3
k ), we have

α0 = 4

(
ln 1.26 2+9k

2+27k

ln 0.1
3k

+ 0.5

)
(Q − 1 ≤ 2);

α0 = 4

⎛
⎝ ln 1.26 2+kQ2

2+3kQ2

ln 0.3
kQ2

+ 0.5

⎞
⎠ (Q − 1 > 2)

To summarize, the optimal degree Δ∗ = x∗ − 1 is

Δ∗ =

{
max

{⌊√
0.3
k − 1

⌋
, Q − 1

}
α ≤ α0

max{2, Q − 1} α > α0
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