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Abstract—For many control systems, control performance is
strongly dependent on delay variations of the control tasks. Such
variations can come from a number of sources including task
preemptions, variations in task workloads and perturbations
in the physical environment. Existing work has considered
improving control task delay variations due to task preemption
only. This paper presents a general adaptive framework that
incorporates a powerful heuristic aiming to further reduce
delay variations. Preliminary results indicate that the heuristic
significantly improves existing approaches.

I. INTRODUCTION
For many cyber-physical systems, intelligent coordination

between control design and its corresponding computer imple-
mentation can lead to improved control performance and/or
reduced resource demands [1], [11], [14]. A prime exam-
ple that benefits from such coordination is regulating delay
variations (jitter) in control tasks. For many control systems,
control performance strongly depends on delay variations
in control tasks. Such variations can come from numerous
sources including task preemptions, variations in task work-
loads and perturbations in the physical environment, and can
cause degraded control system performance, such as sluggish
response and erroneous behavior.

There are a number of published papers related to reducing
delay variations. In [2], [5], the authors proposed a task
decomposition based approach where each task is partitioned
into three subtasks and the delay variation of the final subtask
(corresponding to control update) is minimized. A somewhat
indirect way of reducing delay variations is to reduce task
deadlines, which has been investigated by many researchers,
e.g., [3], [4], [7], [12]. A common theme of all these methods
is to focus on reducing deadlines of either tasks or subtasks.
Because deadlines are only allowed to be reduced, these
methods cannot effectively explore the design space where
deadlines of certain tasks/subtasks may be increased (within
some upper bounds) to reduce the overall delay variations.

The task-decomposition based methods [2], [5] suffer less,
but still obvious performance degradation (compared with
direct deadline reduction methods) when deadlines are only
allowed to be decreased greedily. The decomposition task
model is acceptable for control tasks where only a small
amount of data needs to be passed to control update subtasks,
otherwise context switching cost could be prohibitive. In
addition, these methods require repeated worst-case response
time computation under EDF, which can be time consuming
and unsuitable for on-line use. On-line adjustment is needed to
reduce delay variations when parameters such as task periods
change in response to environment perturbations.

In this paper, we present an on-line adaptive approach which
directly minimizes delay variations for both decomposable and
non-decomposable control tasks simultaneously. The approach
leverages the IMF based unified model for both types of tasks
and formulates the delay variation minimization problem as
an optimization problem. An efficient algorithm is designed
based on the generalized elastic scheduling heuristic [10].
The efficiency of the algorithm readily supports an adaptive
framework which can adjust deadlines of control tasks on-line
in response to dynamic changes in workloads.

II. PRELIMINARIES

In this section, we first introduce necessary notation and
scheduling properties and then present some motivation for
the problem to be solved.

A. System Model
We consider a computer system which needs to handle a set

Γ of N real-time control tasks, {τ1, τ2, · · · , τN}, each with
the following attributes: (Ci, Di, Pi), where Ci is the worst
case execution time (WCET) of τi, Di is τi’s deadline, Pi

is its period, and Ci ≤ Di ≤ Pi. Without loss of generality,
we adopt the IMF task modeling approach introduced in [5].
Specifically, we let τi be composed of three subtasks, the
initial part τii for sampling input data, the mandatory part
τim for executing the control algorithm, and the final part τif

to deliver the control action. Thus, a task set ΓIMF consists of
3N subtasks (τ1i, τ1m, τ1f , ..., τNi, τNm, τNf ), each with the
following parameters

τii = {Cii, Dii, Pi, Oii}
τim = {Cim, Dim, Pi, Oim}
τif = {Cif , Dif , Pi, Oif}

where Oi? is the offset of the corresponding subtask. Note that
in order for the IMF model to faithfully represent the original
task set, each τii must be executed before τim, which must
in turn be executed before τif . For a non-decomposable task,
say τi, we simply have Cii = Cim = Dii = Dim = 0, and
Cif = Ci. Some tasks may also be partially decomposable,
i.e., we may have non-zero Cii and Dii but Cim = Dim = 0.

To achieve desirable control performance, control actions
should be delivered at regular time intervals. However, pre-
emptions, variations in task workloads, and perturbations in
the physical environment make each instance of the control
actions experience different delays. Similar to [5], we define
the delay variation as the difference between the worst and
best case response times of the same final subtask relative to
its period, i.e.,



TABLE I: A motivational example containing four tasks with the first two tasks being indecomposable.
Original Delay Variations Delay Variations

Computation Delay Delay Variations before Reassignment after Reassignment
Task name Exec. time Deadline Period Variations(%) DRB / TBB / ADVR(%) DRB / TBB / ADVR(%) DRB / TBB / ADVR(%)

Speed 5000 27000 27000 18.52 38.98 / 18.52 / 3.7 38.98 / 18.52 / 3.7 41.48 / 18.52 / 3.7
Strength 8000 30000 320000 1.56 2.89 / 1.56 / 3.37 28.91 / 15.63 / 33.68 31.25 / 15.63 / 22.81
Position 10000 45000 50000 32 31.75 / 26 / 0.27 31.75 / 26 / 0.27 34 / 26 / 2.34
Sense 13000 60000 70000 40 32.86 / 20 / 8.57 32.86 / 20 / 8.57 32.86 / 20 / 8.57

DVi =
WCRTif −BCRTif

Pi
, (1)

where WCRTif , BCRTif are the worst case response time
and best case response time, respectively. Our problem then
is to minimize the delay variations of all the final subtasks.

We use Earliest Deadline First (EDF) scheduling algorithm.
A necessary and sufficient condition for a synchronous task
set to be schedulable under EDF is given below.
Theorem 1. A set of synchronous periodic tasks with relative
deadlines less than or equal to periods can be scheduled by
EDF if and only if ∀L ∈ K · Pi + Di ≤ min(Lip,H,Bp) the
following constraint is satisfied,

L ≥
N∑

i=1

(bL−Di

Pi
c+ 1) · Ci (2)

where Lip =
PN

i=1(Pi−Di)Ui

1−U , Ui = Ci

Pi
, U =

∑N
i=1

Ci

Pi
,

K ∈ N (the set of natural numbers including 0), H is the
hyperperiod, and Bp is the busy period [6], [9].

For an asynchronous task set, the condition in Theorem 1
can be used as a sufficient condition [6].
B. Motivation

We use a simple robotic example, similar to the one in [5],
to illustrate the deficiencies of existing approaches for delay
variation reduction. The example contains four control tasks,
i.e., the speed, strength, position and sense tasks. The tasks and
the original delay variations under EDF are shown in columns
1 to 5 of Table I. We consider two representative methods for
delay variation reduction: a deadline reduction based method
from [4], denoted as DRB, and a task decomposition based
method from [5], denoted as TBB.

Suppose that decomposing the speed and strength tasks
would cause non-negligible context switch overhead and we
opt to only partition the position and sense tasks according to
the IMF model. Assume that the IMF decomposition is made
considering that the initial and final subtasks consume 10% of
the execution time of corresponding control task. By applying
the DRB and TBB methods, new delay variation values are
obtained and are shown as the first two values in column 6
of Table I. It is easy to observe that the TBB method is more
effective in reducing delay variations than the DRB method
(which does not even provide much improvement over the
original delay variations). However, with the TBB method,
two tasks still suffer about 20% or more delay variation.

Now, assume that at some time interval, the execution rate
of the strength task increases by 10 times. If the same deadline
assignments are used for the tasks/subtasks, the delay variation
of the strength task increases to 28.91% and 15.63% for DRB
and TBB, respectively (see the first two values in column 7 of
Table I). Suppose we apply the DRB and TBB methods online
in response to the period change, the new delay variation

values are shown in column 8 of Table I. It turns out that
the TBB does not improve the delay variations while DRB
actually gives worse delay variations.

With our proposed approach (ADVR), better delay varia-
tions can be obtained for all the cases considered above. In
particular, for each respective scenario, we have applied our
approach and the delay variation values are shown as the third
number in columns 6-8 of Table I. Though for some tasks,
delay variations see a small increase, most of the tasks which
suffer from large delay variations due to the other methods are
now having much smaller delay variations.

III. OUR APPROACH

From the previous section, one can see that delay variations
could be improved significantly if more appropriate deadline
assignments can be identified. In this section, we describe
our proposed adaptive delay variation reduction (ADVR) ap-
proach. ADVR is built on three basic elements. First, the
general IMF model as given in the last section is used for both
decomposable and non-decomposable tasks. Second, the delay
variation reduction problem is formulated as an optimization
problem. Third, an efficient heuristic is developed to solve the
optimization problem. The heuristic is then incorporated into
a simple adaptive framework.

We adopt the generalized IMF model described in Section II
to represent the task set under consideration. The general
IMF model allows both decomposable and non-decomposable
tasks to be treated equivalently. Given an IMF task set, there
may exist numerous sets of feasible deadlines (Dii, Dim, Dif )
which allow the original task set to be schedulable. However,
different sets of deadlines could lead to different delay varia-
tions of the original tasks. To find the particular subtask dead-
line assignment that results in the minimum delay variation,
we formulate the deadline selection problem as a constrained
optimization problem. Though existing work such as [10], [13]
has considered the deadline selection problem as an optimiza-
tion problem, there are two major differences between our
present formulation and theirs. First, our formulation directly
minimizes delay variations. Second and more importantly, our
formulation leverages special properties of the IMF task model
and thus allows much more effective delay variation reduction.

The delay variation minimization problem is to minimize
the total delay variation bounds of (1) subject to the schedu-
lability constraints as given in (2) while considering the IMF
task model. Specifically, we have

min:
N∑

i=1

wi(Dif − Cif )2 (3)

s.t.
N∑

i=1

[(bL−Dii

Pi
c+ 1) · Cii + (bL−Dim

Pi
c+ 1) · Cim



+(bL−Dif

Pi
c+1) ·Cif ] ≤ L,∀L ∈ K · Pi + Di ≤ Lip, (4)

Dii = Dim, (5)

Cif ≤ Dif ≤ min (Dim, Di −Dim), (6)

Cim ≤ Dim ≤ Di − Cif , (7)

where Lip and K is defined in Theorem 1. If task τi is not
decomposable, (6) and (7) are replaced by

Cif ≤ Dif ≤ Di, (8)

Dim = 0. (9)

To see why the above formulation can lead to valid deadline
assignments that minimizes delay variations, first note that
deadline Dif is the upper bound of the WCRT of the final
subtask of τi, and Cif is the lower bound of the BCRT of the
final subtask of τi. By setting wi = 1

P 2
i

, the objective function
in (3) is the upper bound on the delay variation squares as
defined in (1). (By using wi instead of P 2

i directly, we can
also capture the relative importance of control tasks in the
objective function.)

To guarantee schedulability under the IMF model, we have
introduced a set of constraints in our formulation. Constraint
(4) helps ensure the schedulability of the task set according to
Theorem 1. However, this constraint alone is not sufficient
since there exist dependencies when executing the initial,
mandatory and final subtasks of any decomposable task. Note
that ensuring the subtask dependencies during task execution
is straightforward. The difficulty lies in capturing this in the
schedulability test without being overly pessimistic.

To handle the unique challenges due to the IMF task model,
we have added several more constraints in addition to (4).
To capture the fact that τii is always executed before τim,
we can set Dii ≤ Dim (and hence τii has a higher priority
than τim as long as Oii = Oim = 0). For simplicity, we
let Dii = Dim, assuming that a tiebreak goes to τii, which
leads to constraint (5). This simplification is based on the
observation that constraint (4) is satisfied by a task set with
(Dii = Dim, Dim, Dif ) for i = 1, ..., N if it is satisfied by a
task set with (D′

ii, Dim, Dif ) for D′
ii ≤ Dim and i = 1, ..., N .

Since τif must start after τim is completed, we let Oif =
Dim. Furthermore, to guarantee that task τi finishes by its
deadline Di, we must have Oif +Dif ≤ Di. We automatically
have Dif ≤ Di − Dim, which leads to one part of (6).
The other part of (6), i.e., Dif ≤ Dim reflects the desire
that smaller deadlines should be assigned to the final subtask
compared to that of the mandatory subtask so as to help the
delay variation reduction of the final subtask (as this would
be the delay variation of interests). (7) constrains the space of
Dim and is obtained simply by combining Dim ≤ Di −Dif

and Dif ≥ Cif .
Solving the optimization problem specified in (3)-(7) is not

trivial as it involves dealing with a discontinuous function (the
floor function). Heuristic techniques such as the one presented
in [10] can be used to solve the problem, but the computation
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Fig. 1: Feasible deadline region for mandatory/final tasks.

time can be quite long and the solutions may not always
of high quality. We have devised an improved heuristic by
making use of some observations specific to the particular
problem at hand and also by designing a more effective search
method. Due to the page limit, we only discuss some of the
key observations below.

Based on constraints (5)-(7), Figure 1 depicts the feasible
region of (Dim, Dif ), which is bounded by M ABO. However,
in M ABO, there are a large number of solution points
that cannot satisfy (4). To make our search more efficient,
we would like to reduce our search region as much as
possible without sacrificing the optimization solution quality.
Theorem 2 provides the basis for reducing the search region.
Theorem 2. Given a set ΓIMF of N tasks. If the necessary and
sufficient condition for schedulability in Theorem 1 is satisfied
for a synchronous task set ΓIMF with (Dii = Dim, Dim, Dif )
for i = 1, ..., N , then the same condition is satisfied for
a synchronous task set Γ

′
IMF with (D

′
ii, D

′
im, Dif ), where

D
′
ii = D

′
im ≥ Dim for i = 1, ..., N .

Applying Theorem 2 to the search region depicted in
Figure 1, one can readily see that point M

′
on the segment

MI leads to a schedulable solution if point M leads to a
schedulable solution. Since Dim corresponding to M

′
is larger

than that of M , M
′

is a more desirable solution than M as
it leads to a smaller Dif . Based on this observation, we can
reduce the search region by 1/2 by replacing constraints (6)-(7)
in the optimization problem by the following:

Cif ≤ Dif ≤ Di −Dim, (10)

Di

2
≤ Dim ≤ Di − Cif , (11)

If task τi is not decomposable, constraint (11) is replaced by

Dim = 0. (12)

The optimization problem defined by (3) together with (4),
(5), (10), (11) and (12) is similar to the problem studied
in [10]. However, the simplified sufficient condition adopted
by [10] either fails to find a solution or finds a very pessimistic
solution for task sets with high utilization. It can also take
more iterations to reach convergence. We have developed a
better heuristic to avoid such problems. Our heuristic first
replaces constraint (4) by two related constraints

N∑

i=1

[(bL−Dii

Pi
c+ 1) · Cii + (bL−Dim

Pi
c+ 1) · Cim



+(bL−Dif

Pi
c+1)·Cif ] ≤ L,∀L ∈ K · Pi + Di < Lip, (13)

N∑

i=1

[(
L−Dii

Pi
+ 1) · Cii + (

L−Dim

Pi
+ 1) · Cim

+(
L−Dif

Pi
+ 1) · Cif ] ≤ L,∀L = Lip, (14)

where Lip and K are as defined in Theorem 1. It is easy to see
that (4) is equivalent to (13) and (14). By leveraging the KKT
Theorem [15], Theorem 3 defines the set of optimized final
task deadlines for any fixed values of L = Lip and mandatory
task deadlines. The schedulability of an optimized task set is
checked at any scheduling point L < Lip by Theorem 1.
Theorem 3. Given the constrained optimization problem as
specified in (3), (5), (10), (14), for fixed values of L = Lip

and mandatory task deadlines Dim,∀i. Let

D̃ =
N∑

i=1

L · Ui −
N∑

i=1

Dim · (Uii + Uim) +
N∑

i=1

Ci − L

−
∑

Dif 6=Difmax

DifminUif −
∑

Dif =Difmax

DifmaxUif , (15)

S̃ =
∑

Dif 6=Difmax

U2
if

wif
, (16)

A solution, D∗
if , is optimal, if and only if

D∗
if =

D̃Uif

S̃wif

+ Difmin, (17)

where Ui = Ci

Pi
, Uii = Cii

Pi
, Uim = Cim

Pi
, Uif = Cif

Pi
,

Difmin = Cif and Difmax = Di −Dim.

Based on Theorem 3, our heuristic solves the optimization
problem as follows. For an initial solution (Dii = Dim, Dif ),
the value of L is computed, and an updated Dif is obtained by
applying Theorem 3. Then, Dim is updated by using Dim =
Di − Dif which satisfies (10). The updated Dim and Dif

are used to find a new L. This process is repeated until the
algorithm converges. We refer to this heuristic as ADVR.

As we have seen from the motivational example, dynamic
workload changes could cause larger delay variations if the
original task/subtask deadlines were used. It is desirable to
deploy an on-line adaptive framework to adjust task/subtask
deadlines when workloads change significantly. The key to
such an adaptive framework is an efficient method of solving
the optimization problem posed earlier. Based on experimental
results, our heuristic, ADVR, seems to satisfy such a require-
ment. Hence, we propose an adaptive framework built around
ADVR. The framework is similar to the one in [8] and is
shown in Figure 2.

An on-line monitoring mechanism in Kernel measures the
mean execution time ĉi and the maximum execution time Ĉi,
and transfers the data to Execution Time Estimator. Execu-
tion Time Estimator estimates and provides the approximate
execution time Qi for Trigger. Meanwhile, Plant also reports
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Fig. 2: Event-driven based arch. for deadline adaptation.

its error and task period Pi to Trigger. When the error and
the changes of Qi and Pi reach some thresholds, Trigger will
signal ADVR algorithm to recompute the deadlines and send
the results to Kernel again. With these new results, Kernel
adjusts Plant so as to reduce delay variations.

IV. SUMMARY AND FUTURE WORK
We have presented a new approach to reduce delay varia-

tions of control tasks. The approach formulates the delay vari-
ation reduction problem as an optimization problem that can
effectively handles both decomposable and non-decomposable
tasks. Based on several key observations, we devised an
efficient heuristic to solve the optimization problem. The
efficiency of the heuristic leads to an adaptive framework that
can dynamically readjust task/subtask deadlines to keep delay
variations small in the presence of environment perturbations.
As future work, we will implement and evaluate our approach
in a real-time operating system to control an actual application.
Besides, our approach will be extended to adapt to various
perturbations in physical environment.
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