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Abstract— This paper studies the stabilizability of an n-
dimensional quantized feedforward nonlinear system. The state
of that system is first quantized into a finite number of
bits, then sent through a digital network to the controller.
In order to save network bandwidth, people pursue as less
quantization bits as possible to maintain stability of such a
system. In DePersis’ paper [1], n bits are used to stabilize the n-
dimensional system by assigning one bit for each state variable
(dimension). This paper extends that result by stabilizing the
whole system with a single bit under the same assumption of
local Lipschitz property of the vector field defining the system.
Its key contribution is a dynamic quantization policy which
dynamically assigns the single bit to the most “important” state
variable. Under this policy, the quantization error exponentially
converges to 0 and the asymptotic stability of the system can,
therefore, be guaranteed. Because 1 bit per sampling step is
the lowest constant bit rate, the proposed dynamic quantization
policy achieves the minimum stabilizable bit rate for that n-
dimensional feedforward nonlinear system.

I. INTRODUCTION

Consider an n-dimensional nonlinear system in the fol-
lowing feedforward form [1],

ẋ = f(x, u) =




f1(X2, u)
f2(X3, u)

...
fn−1(Xn, u)

fn(u)




(1)

where x ∈ Rn, u ∈ Rm and having denoted by Xi the
set of state variables xi, xi+1, · · · , xn, particularly Xi(t) =
[xi(t), xi+1(t), · · · , xn(t)]T . When the above nonlinear sys-
tem is controlled over a digital network as a networked
control system [2], a typical configuration is shown in Fig.
1.

Now we explain the signal flow in Fig. 1. At sampling
instants {tk}∞k=0, the state x(tk) is measured, and quan-
tized (encoded) into a symbol with R bits, sk(∈ S =
{0, 1, · · · , 2R − 1}), and transmitted over a digital network.
The sampling instants are assumed to satisfy

0 < Tm ≤ tk+1 − tk ≤ TM < ∞, ∀k ≥ 0 (2)
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Fig. 1. Quantized nonlinear control systems

It is assumed that the transmitted symbol sk is correctly
received without delay. The received symbol sk is used to
construct an estimate of the state x(tk), x̂(tk). Of course,
x̂(tk) may be different from x(tk) due to quantization error.
x̂(tk) is used to generate a continuous-time state estimate
x(t). The controller will make use of x(t), instead of the
true state x(t), to devise the control u(t)[3].

This paper addresses the following questions. Does there
exist an appropriate quantization policy to maintain its
stability under finite R? What is the minimum quanitzation
bit number R required to maintain stability? These two
questions have generated much interest in the past few years.
Note that R represents the number of quantization bits per
sampling step. So R can be understood as an approximate
measure of the bit rate (When the sampling period tk+1− tk
is constant for any k, R is exactly proportional to the bit
rate).

In [3], nonlinear systems more general than the one in
eq. 1 are investigated. It is shown that any nonlinear control
system which can be globally asymptotically stabilized by
true state feedback can also be globally asymptotically sta-
bilized by quantized state feedback, under the condition that
the number of quantization bits, R, is big enough. In [4], it is
shown that a finite number of quantization bits can stabilize
a class of nonlinear systems which can be made input-
to-state stable (ISS) with respect to measurement errors.
More quantization bits, however, means that more network
bandwidth is occupied. So it makes much sense to determine
the smallest R that still asymptotically stabilize the control
system. The minimality of the quantization bit rate required
to stabilize a nonlinear system is addressed in [5], where a



notion of topological feedback entropy (TFE) is introduced
and it is proven that a system can be stabilized locally if and
only if the feedback bit rate exceeds the inherent TFE of
that system. When the concerned system is linear, there are
many ways to compute the TFE and the required minimum
bit rate (see [6] [7] and references therein). When a system
is nonlinear, there is no systematic approach to compute
its TFE and the minimum bit rate to stabilize a general
nonlinear system is usually unknown. Researchers, therefore,
pursue a less aggressive goal: stabilize a nonlinear system
with as few quantization bits as possible. In order to save the
quantization bits, the knowledge of the concerned system has
to be taken into account. The nonlinear system in eq. 1 takes
an upper triangular structure, which falls into the class of
the feedforward systems [8]. For this type of n-dimensional
systems, R = n (R = n + 1) can be enough to achieve
semiglobal asymptotic stabilization (global stabilization) [1]
under three assumptions.

Assumption 1: Functions fi(Xi+1, u), with i =
1, 2, · · · , n− 1 and fn(u) are locally Lipschitz.

Assumption 2: There exists a constant U > 0 for which
u(t) < U for all t ≥ t0.

Assumption 3: Each function fi(·) (i = 1, 2, · · · , n) is
zero at the origin and is such that the linearization of eq.
1 at the origin exists and is stabilizable; there exist class-K+
1 function φi(·) for which 2

|fi(Xi+1, u + v)− fi(Xi+1, u)| ≤ φi(|(Xi+1, u)|)|v|
The results in [1] are quite significant in the sense that the
prescribed bit rate is independent of both the set of initial
conditions of the system and the time-varying sampling
period, and can be simply assessed from the dimension of
the system.

R = n bits are shown to be enough to guarantee
asymptotic stability[1]. Is that possible to use fewer bits to
accomplish that task? As R is the number of transmitted bits,
it has a hard lower bound

R ≥ 1 (3)

The present paper proposes a dynamic quantization policy
that uses 1 bit to globally asymptotically stabilize the n-
dimensional nonlinear system in eq. 1 under the same
assumptions of [1], i.e., Assumptions 1-3. Due to the hard
lower bound in eq. 3, we know the minimum bit rate has
been achieved. Now we remark on that policy. In [1], the
system is n-dimensional and there are n bits. Each dimension
is assigned 1 bit. In this paper, there is only 1 bit, which is
assigned to the most needed dimension at every time step. Its
bit assignment is dynamic, compared with the static policy
in [1]. We will show that it is the dynamic bit assignment
policy that makes the best use of the provided single bit.
This policy for the nonlinear systems is motivated by the
dynamic bit assignment policy for linear systems [9].

1Class-K+ functions are nonnegative, continuous and nondecreasing
functions.

2For i = n, function φn(·) depends on |u| only.

This paper is organized as follows. In Section II, we
present the dynamic quantization policy, which is the ma-
jor difference from [1]. It is shown that the quantization
error exponentially converges to 0 as [1]. Based on this
convergence property, we prove the asymptotic stability of
the feedforward nonlinear systems. In Section III, the paper
is concluded with some final remarks. In order to improve
readability, we move technical proofs into Appendix, Section
IV.

II. MAIN RESULTS: DYNAMIC QUANTIZATION POLICY

A. Uncertainty region of the state

The quantizer/encoder is usually connected with sensors
and can know exactly the state at the sampling instants,
x(tk). On the other hand, the decoder is spatially separated
from sensors, so it cannot know the exact value of x(tk).
But the decoder keeps receiving state symbols {sk}, and can
use these symbols to determine an uncertainty region P (tk)
which the state x(tk) lies in, i.e.,

x(tk) ∈ P (tk) = C(tk) + rect(L(tk)) (4)

where the uncertainty region P (tk) is characterzied by its
centroid C(tk) and side length vector L(tk) with





C(tk) = [C1(tk), C2(tk), · · · , Cn(tk)]T

L(tk) = [L1(tk), L2(tk), · · · , Ln(tk)]T

rect(L(tk)) =
∏n

i=1

[− 1
2Li(tk), 1

2Li(tk)
]

where
∏

stands for the Cartesian product. Due to eq. 4, it
is reasonable 3 for the decoder to set

x̂(tk) = C(tk) (5)

So we will use x̂(tk) to represent the centroid of P (tk) in
the sequel. It can be seen that the estimation error x̃(tk) =
x(tk)− x̂(tk) is bounded by

|x̃i(tk)| ≤ 1
2
Li(tk), i = 1, 2, · · · , n (6)

With the received information symbol sk, the decoder up-
dates its centroid and side length vector as

{
(x̂(tk), sk) → x̂(tk+1)
(L(tk), sk) → L(tk+1)

(7)

Of course, discretion is required to guarantee no overflow
would occur, i.e.,

x(tk+1) ∈ x̂(tk+1) + rect(L(tk+1)) (8)

The symbol sk in eq. 7 is sent by the encoder. So the
encoder surely knows sk. As long as the encoder and the
decoder agree upon the initial condition x̂(t0) and L(t0), they
will generate the same sequences {x̂(tk)}k and {L(tk)}k

under the same updating rule in eq. 7. So they are always
synchronized.

3The estimation in eq. 5 minimizes the maximum estimation error, which
is measured by the infinity norm of the state estimation error.



In order to achieve asymptotic stability, i.e.,
limt→∞ x(t) = 0, we have to guarantee the convergence of
the continuous-time estimation error

x̃(t) = x(t)− x(t) (9)

Due to Assumption 2 (the boundedness of the control u(t)),
Assumption 1 (the local Lipschitz property of f(·) =
[f1(·), f2(·), · · · , fn(·)]T ) and eq. 2 (bounded sampling in-
tervals), we know

lim
t→∞

x̃(t) = 0 (10)

is equivalent to (see the updating rules in eq. 22 and 25)

lim
k→∞

‖L(tk)‖∞ = 0 (11)

where ‖ · ‖∞ denotes the infinity norm. This result is
presented as a proposition, whose proof is not difficult and
omited here.

Proposition 2.1: The convergence of x̃(t) = x(t) − x(t)
in eq. 10 is equivalent to the convergence of L(tk) in eq. 11
Later we will design a quantization policy so that L(tk)
exponentially converges to 0.

B. Dynamic quantization policy

Due to Assumptions 1 and 2, we know, for each i (∈
{2, 3, · · · , n}) and ∀Wi > 0, there exists a finite positive
number Fi−1 such that

|fi−1(Xi, u)− fi−1(Yi, u)| ≤ Fi−1‖Xi − Yi‖∞ (12)

for any ‖Xi‖∞ ≤ Wi, ‖Yi‖∞ ≤ Wi and u(t) ≤ U . Here we
consider a particular structure of Yi,

Yi(tk) = Xi(tk) + X̃i(tk) (13)

where X̃i(tk) = [x̃i(tk), x̃i+1(tk), · · · , x̃n(tk)]T is the quan-
tization error vector. Correspondingly we define a vector

L(i)(tk) = [Li(tk), Li+1(tk), · · · , Ln(tk)]T (14)

By the bounds on quantization errors in eq. 6, we get

‖X̃i(tk)‖∞ ≤ 1
2
‖L(i)(tk)‖∞ (15)

Suppose both {Xi(tk)}k and {L(i)(tk)}k are bounded, i.e.,
for any i (= 1, 2, · · · , n), there exist Zi > 0 and Si > 0,
such that {

maxk≥0 ‖X(i)(tk)‖∞ ≤ Zi

maxk≥0 ‖L(i)(tk)‖∞ ≤ 2Si
(16)

Define Wi = Zi + Si. So ‖Xi(tk)‖∞ ≤ Zi < Wi and
‖Yi(tk)‖∞ ≤ Wi. For given Zi and Si, there must exist Fi−1

so that eq. 12 holds. Then we design a quantization policy
with the knowledge of Zi, Si and Fi−1. Under that policy,
the quantization error x̃i(tk), more precisely Li(tk), expo-
nentially converges to 0 as k goes to ∞. Such exponential
convergence guarantees that x(t) (Xi(t)) converges to 0 as
t →∞, i.e., the nonlinear system in eq. 1 is asymptotically
stable. The only potential hole of the above arguement is
whether do such Zi and Si exist for i = 1, · · · , n? Our

answer is definitely “Yes” and will give a constructive way
to compute them.

First we build our quantizer under the conditions in eq.
16. Choose a positive number γ by

n

√
1
2

< γ < 1 (17)

Choose large enough positive numbers ρi (i = 1, · · · , n−1)so
that





1− (n−1)FiTM

ρi
> 0(

1

1− (n−1)FiTM
ρi

)n

< 2γn
(18)

and ρn = 1. For notational convenience, define
{

ρb,i =
∏n

j=i ρj

ρf,i =
∏i−1

j=1 ρj
, i = 1, · · · , n (19)

where ρf,1 is specially defined as 1. Similar to the quan-
tization policy for a linear system in [10], we propose the
following algorithm.

Algorithm 1: Dynamic quantization policy:
Encoder/Decoder initialization:

Initialize x̂(t0) and L(t0) so that x(t0) ∈ x̂(t0)+rect(L(t0)).
Set x̂e(t0) = x̂(t0), x̂d(t0) = x̂(t0), Le(t0) = L(t0),
Ld(t0) = L(t0), and k = 0. Note that the subscripts e and
d are used to emphasize the variables are updated at the
encoder and decoder sides respectively.
Encoder Algorithm:

1) Select the index Ik by

Ik = arg max
i

4iρf,iLe,i(tk) (20)

2) Quantize the state x(tk) by setting

sk =
{

1, xIk
(tk) ≥ x̂Ik

(tk)
0, otherwise

3) Transmit the quantized symbol sk.
4) Update L(tk+1) at time instant tk+1 as 4

Li(tk+1) = (21){
Li(tk)/2 + FiTM

∑n
j=Ik+1 Lj(tk+1), i = Ik

Li(tk) + FiTM

∑n
j=Ik+1 Lj(tk+1), i 6= Ik

x̂(tk+1) is updated by running the differential equation
in Fig. 1

d

dt
xe,i(t) = fi(Xe,i+1(t), u(t)), (22)

xe,i(tk) =





x̂e,i(tk) + Li(tk)/4, i = Ik, sk = 1
x̂e,i(tk)− Li(tk)/4, i = Ik, sk = 0
x̂e,i(tk), i 6= Ik

where Xe,i(t) = [xe,i(t), xe,i+1(t), · · · , xe,n(t)]T , t ∈
[tk, tk+1) and the control u(t) is generated by the
controller in Fig. 1 with the estimated state xe(t)(=

4To successfully do the computation in eq. 21, we start from i = n, and
proceed in the decreasing order of i.



Xe,1(t)) in the place of x(t). At time t = tk+1,
x̂i(tk+1) is updated as

x̂i(tk+1) = xe,i(t−k+1), i = 1, 2, · · · , n
5) Update time index, k = k + 1 and return to step 1.

Decoder Algorithm:
1) Select the index Ik by

Ik = arg max
i

4iρf,iLd,i(tk) (23)

2) Wait for quantized data, sk, from encoder.
3) Update the state estimate at tk as

x̂d,i(tk) := (24)



x̂d,i(tk) + Li(tk)/4, i = Ik, sk = 1
x̂d,i(tk)− Li(tk)/4, i = Ik, sk = 0
x̂d,i(tk), i 6= Ik

4) Generate the continuous-time state estimate as
d

dt
xd,i(t) = fi(Xd,i+1(t), u(t)), (25)

xd,i(tk) = x̂d,i(tk)

where t ∈ [tk, tk+1).
5) Control variable u(t) is constructed from the con-

troller in Fig. 1 by replacing x(t) with xd(t)(=
Xd,1(t)).

6) Update L(tk+1) at time instant tk+1 as

Li(tk+1) = (26){
Li(tk)/2 + FiTM

∑n
j=Ik+1 Lj(tk+1), i = Ik

Li(tk) + FiTM

∑n
j=Ik+1 Lj(tk+1), i 6= Ik

At time t = tk+1, x̂d,i(tk+1) is updated as

x̂d,i(tk+1) = xd,i(t−k+1), i = 1, 2, · · · , n (27)

7) Update time index, k = k + 1, and return to step 1.
Remark: Because the transmitted symbol sk is always
received correctly, Le(t0) = Ld(t0) and Le(tk) and Ld(tk)
are updated by the same rule in eq. 21 and 26, we have

Le(tk) = Ld(tk), ∀k (28)

Therefore we may shorten Le(tk) and Ld(tk) into the same
variable L(tk) without confusion. Similarly we can show that

{
x̂e(tk) = x̂d(tk), ∀k
xe(t) = xd(t), ∀t ≥ t0

(29)

x̂e(tk) and x̂d(tk) are shortened into x̂(tk), xe(t) and xd(t)
into x(t) as well. The same x(t) is used to compute control
variable by the same rule at both encoder and decoder sides.
Of course, the same control variable u(t) will be obtained
at both sides. Our quantization policy guarantees there is no
overflow, which is presented as the following proposition.
See Appendix for its proof.

Proposition 2.2: Under Assumptions 1-3, we choose γ
and ρ by eq. 17 and 18. The dynamic quantization policy
in Algorithm 1 is implemented to the quantized nonlinear
system in eq. 1. For any k ≥ 0,

x(tk) ∈ x̂(tk) + rect(L(tk)) (30)

Remark: In Algorithm 1, the side is measured by the
weighted length 4iρf,iLi(tk) rather than the direct length
Li(tk). That policy assigns the highest priority to the n-th
dimension. The motivation lies in the feedforward struction
of eq. 1, i.e., the n-th dimension affects the other dimensions,
but NOT reversely. After Ln(tk) is reduced enoughly, we
get almost precise state estimate xn(t) and the order of the
state estimation problem could be reduced by 1, i.e., from
n to n− 1. That rationale keeps working for the remaining
dimensions. Of course, some subtle balance has to be made
during assigning the single bit among n dimensions, which
is carried out by the appropriate choice of ρ in eq. 18. It
will be shown in Proposition 2.3 that L(tk) exponentially
converges to 0. The proof can be found in the appendix.

Proposition 2.3: Under Assumptions 1-3, we choose γ
and ρi by eq. 17 and 18. The dynamic quantization policy
in Algorithm 1 is implemented on the quantized nonlinear
system in eq. 1. The side length vector L(tk) is bounded as

‖Li(tk)‖∞ ≤ 22n+1ρb,iγ
k‖L(t0)‖∞, i = 1, · · · , n (31)

Remark: By Proposition 2.3, we can simply choose Si in
eq. 16 as

Si = 22n+1ρb,i‖L(t0)‖∞, i = 1, · · · , n (32)

Suppose there exist Zi (i = 1, · · · , n) to satisfy eq. 16. We
first choose Sn by eq. 32. The updating rule of Ln(tk) in
eq. 21 and 26 guarantees {Ln(tk)} is non-increasing w.r.t.
k. So we have made a right choice of Sn. Zn and Sn are
used together to determine Fn−1 in eq. 12. With Fn−1, we
can select ρn−1 by t ∈ [tk, tk+1) and then determine Sn−1

by eq. 32. Repeat the above story with Sj and Zj for j =
n − 1, n − 2, · · · , 2. We get ρn−2, ρn−3, · · ·, ρ1. Therefore
we get all parameters of Algorithms 1. Under these ρi (i =
1, · · · , n− 1) and ρn = 1, Proposition 2.3 guarantee that all
choices of Si (i = n − 1, n − 2, · · · , 1) in eq. 32 are valid.
So the existence of Si is no longer a problem. We only need
to justify the existence of Zi (i = 1, · · · , n).
Remark: Algorithm 1 and Proposition 2.3 assume both
the encoder and the decoder know the initial uncertainty
region P (t0)(= x̂(t0) + rect(L(t0))), which the initial state
x(t0) lies within. That assumption might not hold, e.g., the
decoder does not know the true initial uncertainty region. A
“zooming-out” algorithm in [1] is introduced to tackle this
issue, which works as follows.

1) First, the encoder and the decoder agree upon an initial
compact set.

2) If the initial state xn(t0) lies outside of that compact
set, the encoder sends a packet with its n-th bit as
“1” to notify the decoder that overflow. Then both the
encoder and the decoder synchronously expand the n-
th side length of the initial compact set, Ln(t0), into
Ln(t1) = λLn(t0) with a certain ratio λ. When the
expanding ratio λ is big enough, after a finite number
of steps, Ln(tk) is long enough so that xn(tk) will not
overflow. Ln(tk) will be chosen as the new “initial”
n-th side length and the encoder and the decoder have
been synchronized regarding the n-th dimension.



3) After the n-th dimension synchronization is achieved,
the encoder and the decoder work for the (n − 1)-th
dimension by setting the (n−1)-th bit of a packet into
1 to signal the overflow of the (n−1)-th dimension of
the state. Similar expanding strategy is implemented to
achieve synchronization over the (n−1)-th dimension
in finite steps.

4) The above procedure repeats until synchronization
between the encoder and the decoder has been achieved
for all dimensions of the state. Such synchronization
again takes only finite stepes.

In the above “zooming-out” algorithm, only 1 bit of a packet
with n bits is used to signal an overflow. Furthermore, the
above algorithm works consecutively from the n-th dimen-
sion to the 1-st dimension. We can, therefore, replace the n-
bit packet with a single bit and also pursue synchronization
consecutively from the n-th dimension to the 1-st dimension.
This synchronization is done before implementing Algorithm
1. So the synchronization assumption can be relaxed.

C. Asymptotic stabilization by quantized feedback

As shown in eq. 31, the quantization error exponentially
converges to 0, which satisfies the requirements in proving
asymptotic stability in [1] (Proposition 2 and Proposition 3).
Here we directly borrow these results to give the following
statement.

Proposition 2.4: Let Assumptions 3 and 3 hold. There
exist positive numbers Zi for i = n, n − 1, · · · , 2, positive
numbers and vectors λ∗i and, respectively, ki, for i =
1, 2, · · · , n, which can be used to construct the following
controller

u = λnσ

(
knXd,n + vn−1

λn

)
(33)

vn−i = λn−iσ

(
kn−iXd,n−i + vn−i−1

λn−i

)

v1 = λ1σ

(
k1Xd,1

λ1

)

where, for i = 1, 2, · · · , n, λi ∈ (0, λ∗i ] and Xd,i(t) (xd(t))
is generated by the decoder in eq. 25 5 and the function σ(·)
denotes a saturation function.

The quantization policy in Algorithm 1 and the controller
in eq. 33 guarantees the response of the closed-loop system
in eq. 1 to satisfy the following properties:

• For each ε > 0, there exists δ(ε) > 0 such that
‖x(t0)‖∞ ≤ ‖L(t0)‖∞/2 ≤ δ(ε) implies

‖x(t)‖∞ ≤ ε, ∀t ≥ t0 (34)

• The state converges to 0, i.e.,

lim
t→∞

‖x(t)‖∞ = 0 (35)

5Because xe(t) = xd(t) for any t, xd(t) or Xd,i(t) is known by the
encoder.

Remark: We do not pursue strict proof here. What we do
is to show the key ideas in proving Proposition 2.4. By eq.
33, we get

u(t) = λnσ

(
knxn(t) + vn−1(t)

λn

)

= λnσ

(
knxn(t) + φn−1(t)

λn

)
(36)

where φn−1(t) = kn(xn(t) − xn(t)) + vn−1(t). |xn(t) −
xn(t)| is bounded by Ln(tk+1) with tk ≤ t ≤ tk+1. Because
Sn is an upper bound on {Ln(tk)}, it is also an upper bound
on |xn(t) − xn(t)|. vn−1(t) is bounded by λn−1. So we
have a well-defined bound on φn−1(t) for all t. Assumption
3 (stabilizability assumption) guarantees, under the control
u(t) in eq. 36, the following equation

ẋn(t) = fn(u) (37)

has a bounded solution xn(t). Of course we can get its
bound, which is chosen as Zn. Xn(t)(xn(t)) is, therefore,
bounded by (Sn + Zn).

Now we work on boundedness of Xn−1(t). u(t) is com-
posed of kn−1Xd,n−1, knXn(t) and vn−2(t). The latter two
items, knXn(t) and vn−2(t), are bounded. And Xn−1(t)−
Xn−1(t) is also bounded. By the stabilizabiity assumption,
we get an upper bound on Xn−1(t), the solution of the
following equaiton

Ẋn−1 =
{

fn−1(Xn, u)
fn(u) (38)

We choose Zn−1 as the upper bound on Xn−1(t), which is
determined only by Zn. We can keep working on Xn−2(t)
and get Zn−2 that is a function of Zn and Zn−1. Following
the similar procedure, we get all Zi (i = n− 3, · · · , 2).

III. CONCLUSION

In summary, the present paper proposes a dynamic quanti-
zation policy to stabilize with only 1 bit(per sample) a class
of n-dimensional quantized feedforward nonlinear systems.
Because 1 bit per sample is the lowest constant bit rate, the
proposed quantization policy achieves the minimum bit rate
for the given nonlinear systems, which is rarely reported in
the current literature. These results on minimum constant
bit rate are, however, achieved under the perfect newtwork
transmission assumption(without either dropout or delay).
For linear systems with dropouts and network transmission
delay, there are already some results on the minimum sta-
bilizing bit rate [9]. For certain nonlinear systems, it is
shown that bounded network transmission delay may not
increase the stabilizing (average) bit rate [11]. Built upon
these achievements, we will try to relax our assumptions in
future.

Besides stability, people are also interested in performance
of a control system. It is shown in [12] that a dynamic quanti-
zation policy similar to Algorithm 1 can achieve the optimal
performance for a linear second order control system. An
extenstion of [12] was given in [13] for n-dimensional linear
control systems. In future, we may follow the philosophy in



[12] [13] to study performance of the concerned feedword
nonlinear systems under the given dynamic quantization
policy and upgrade it if necessarily for better performance.

IV. APPENDIX: TECHNICAL PROOFS

A. Proofs of Proposition 2.2

We prove it by mathematical induction. Eq. 30 works for
k = 0. Suppose it holds for k ≥ 0. Now we prove it also
holds for k + 1.

As mentioned in the remark immediately afer Algorithm
1, xe(t) and xd(t) are equal, and named x(t). Define e(t) =
x(t) − x(t). By the definitions of sk (eq. 20 and 23) and
xe,i(tk)/xd,i(tk) (eq. 22 and 24) , we get

|ei(tk)| ≤
{

LIk
(tk)/2, i = Ik

Li(tk), otherwise (39)

For t ∈ [tk, tk+1), x(t) (by eq. 22 and 25) is updated as

ẋi(t) = fi(xi+1(t), · · · , xn(t), u(t)), i = 1, · · · , n (40)

where fi(·) are the functions in eq. 1. By Assumption 1, we
get

|ėi(t)| =
∣∣ẋi(t)− ẋi(t)

∣∣ ≤
n∑

j=i+1

Fi|ej(t)| (41)

It is straightforward that

|ei(tk+1)|
≤ |ei(tk)|+

∫ tk+1

tk

|ėi(τ)|dτ

≤ |ei(tk)|+ TM max
tk≤t<tk+1

|ėi(t)|

≤ |ei(tk)|+ FiTM

n∑

j=i+1

max
tk≤t<tk+1

|ej(t)| (42)

where the last inequality comes from eq. 41. We can place
the following lemma.

Lemma 4.1: For t ∈ [tk, tk+1),

|ei(t)| ≤ Li(tk+1) (43)
Proof: We again prove this Lemma by mathematical induc-
tion. We can see that Eq. 43 holds for i = n. Now suppose
that eq. 43 holds for i ≥ i0 + 1. We want to prove it also
works for i = i0.

For t ∈ [tk, tk+1),

|ei0(t)| ≤ |ei0(tk)|+
∫ t

tk

|ėi0(τ)|dτ

≤ |ei0(tk)|+ (t− tk) max
tk≤τ<t

|ėi0(τ)|
≤ |ei0(tk)|+ TM max

tk≤τ<tk+1
|ėi0(τ)|

≤ |ei0(tk)|+ Fi0TM

n∑

j=i0+1

max
tk≤t<tk+1

|ej(t)|

≤ Li0(tk) + Fi0TM

n∑

j=i0+1

Lj(tk+1)

= Li0(tk+1)

where the fourth inequality comes from eq. 41, the fifth
inequality from the assumption that eq. 43 holds for i ≥
i0 + 1. We, therefore, complete the proof. ♦

Because x̂(tk+1) = x(t−k+1),

|xi(tk+1)− x̂i(tk + 1)| = |xi(tk+1)− xi(t−k+1)|
= |ei(t−k+1)|
≤ Li(tk+1), (44)

for i = 1, 2, · · · , n. So

x(tk+1) ∈ x̂(tk+1) + rect(L(tk+1)). ♦ (45)

B. Proofs of Proposition 2.3

Define generalized side lengths as
{

Ln(tk) = max
(
Ln(tk), ρnγk‖L(t0)‖∞

)
Li(tk) = max

(
Li(tk), ρiLi+1(tk)

) (46)

where i = 1, 2, · · · , n− 1.
Based on the above definition, we can easily get a lower

bound on Li(tk).
Lemma 4.2:

Li(tk) ≥ ρb,iγ
k‖L(t0)‖∞ (47)

L(tk) is updated by eq. 21 (26). Based on the definitions
of γ and ρi (in eq. 17 and 18) and the definition in eq. 46,
we get the following results.

Lemma 4.3: Let β = n
√

2γ. For any k and any i =
1, · · · , n,

Li(tk+1)
Li(tk)

≤ β (48)

For the “longest” side chosen by eq. 20(23), if LIk
(tk) ≥

4ρb,Ik
γk‖L(t0)‖∞, then

LIk
(tk+1)

LIk
(tk)

≤ 1
2
β (49)

Proof: We first prove eq. 48.
Obviously it holds for i = n. Now we assume it works

for i = i0 + 1 and prove it also holds for i = i0. By eq.
21(26), we know

Li0(tk+1) ≤ Li0(tk) + Fi0TM

n∑

j=i0+1

Lj(tk+1)

= Li0(tk) +
Fi0TM

ρi0

n∑

j=i0+1

ρi0Lj(tk+1)

≤ Li0(tk) +
Fi0TM

ρi0

n∑

j=i0+1

Li0(tk+1)

≤ Li0(tk) + (n− 1)
Fi0TM

ρi0

Li0(tk+1) (50)

Note that the above second inequality comes from the
defintion of Li(tk) in eq. 46. If Li0(tk+1) = Li(tk+1), eq.
50 produces

Li0(tk+1) ≤ Li0(tk) + (n− 1)
Fi0TM

ρi0

Li0(tk+1)

Solving the above inequality w.r.t. Li0(tk+1), we get eq. 48.



When Li0(tk+1) 6= Li(tk+1), Li0(tk+1) =
ρi0Li0+1(tk+1) and we get

Li0(tk+1)
Li0(tk)

=
ρi0Li0+1(tk+1)

Li0(tk)

≤ ρi0Li0+1(tk+1)
ρi0Li0+1(tk)

≤ β

By mathematical induction, we know eq. 48 works for any
i.

From now on, we prove eq. 49. By the definition of Ik in
eq. 20(23), we know, for any j = Ik + 1, · · · , n,

4Ikρf,Ik
LIk

(tk) ≥ 4jρf,jLj(tk), j = Ik + 1, · · · , n (51)

So

LIk
(tk) ≥ 4

j∏

m=Ik+1

ρmLj(tk) (52)

When LIk
(tk) ≥ 4ρb,Ik

γk‖L(t0)‖∞, the defintion in eq. 46,
together with eq. 52, yields

LIk
(tk) = LIk

(tk) ≥ 4ρb,Ik
γk‖L(t0)‖∞ (53)

By the updating rule of LIk
(tk),

LIk
(tk+1) = LIk

(tk)/2 + FIk
TM

n∑

j=Ik+1

Lj(tk+1)

≥ LIk
(tk)/2 (54)

Combining eq. 53 and 54 yields

LIk
(tk+1) ≥ 2ρb,Ik

γk‖L(t0)‖∞ (55)

Combining eq. 52 and 54 produces

LIk
(tk+1) ≥ 2

j∏

m=Ik+1

ρmLj(tk) (56)

Based on the defintion of Lj(tk), the above equation, to-
gether with eq. 55, gives us

LIk
(tk+1) ≥ 2

j∏

m=Ik+1

ρmLj(tk) (57)

Substituting eq. 48 into the above equation generates

LIk
(tk+1) ≥ 2

β

j∏

m=Ik+1

ρmLj(tk+1)

>

j∏

m=Ik+1

ρmLj(tk+1)

Particularlly, LIk
(tk+1) > ρIk

LIk+1(tk+1). So

LIk
(tk+1) = LIk

(tk+1)

=
1
2
LIk

(tk) + FIk
TM

n∑

j=Ik+1

Lj(tk+1)

=
1
2
LIk

(tk) +
FIk

TM

ρIk

n∑

j=Ik+1

ρIk
Lj(tk+1)

≤ 1
2
LIk

(tk) +
FIk

TM

ρIk

n∑

j=Ik+1

LIk
(tk+1)

=
1
2
LIk

(tk) +
(n− 1)FIk

TM

ρIk

LIk
(tk+1)

Solving the above last inequality w.r.t. LIk
(tk+1) yields eq.

49. ♦
Define

p(tk) =
n∏

i=1

Li(tk) (58)

Lemma 4.4: If

p(tk) ≥
n∏

i=1

(
4ρb,iγ

k‖L(t0)‖∞
)
, (59)

then

LIk
(tk) ≥ 4ρb,Ik

γk‖L(t0)‖∞ (60)
Proof: Under the condition of eq. 59, we first prove the
following claim by contradition.
Claim: There must exist i such that

Li(tk) ≥ 4ρb,iγ
k‖L(t0)‖∞ (61)

Suppose the above claim is false, i.e., for any i = 1, 2, · · · , n,

Li(tk) < 4ρb,iγ
k‖L(t0)‖∞ (62)

Then we get p(tk) <
∏n

i=1 4ρb,iγ
k‖L(t0)‖∞, which contra-

dicts with eq. 59. So the claim in eq. 61 must be true.
There are 3 cases for Ik.
Case (1): Ik = i. Then eq. 60 obviously holds.
Case (2): Ik < i. By the selection rule of Ik, we get

LIk
(tk) ≥ ρf,i

ρf,Ik

Li(tk) (63)

=




i−1∏

j=Ik

ρj


Li(tk) (64)

≥



i−1∏

j=Ik

ρj


 4ρb,iγ

k‖L(t0)‖∞ (65)

= 4ρb,Ik
γk‖L(t0)‖∞ (66)

So eq. 60 holds.
Case (3):Ik > i. Similar to Case (2). ♦
By Lemmas 4.3 and 4.4 and the definitions of p(tk), ρ

and γ, we get
Corollary 4.5:

p(tk+1)
p(tk)

≤ 2γn, ∀k (67)



When eq. 59 holds,

p(tk+1)
p(tk)

≤ γn (68)

For p(tk), we can place the following upper bound.
Proposition 4.6:

p(tk) < 2
n∏

i=1

(
4ρb,iγ

k‖L(t0)‖∞
)
, ∀k (69)

Proof: For k = 0, eq. 69 holds. Suppose it holds when
k = k0. Now we prove it also works for k = k0 + 1. There
are 2 cases.

(1)When eq. 59 holds, we know, by eq. 68,

p(tk0+1) ≤ γnp(tk0)

< γn2
n∏

i=1

(
4ρb,iγ

k0‖L(t0)‖∞
)

= 2
n∏

i=1

(
4ρb,iγ

k0+1‖L(t0)‖∞
)

i.e., eq. 69 holds for k = k0 + 1.
(2)When eq. 59 does NOT hold, we know, by eq. 67,

p(tk0+1) ≤ 2γnp(tk0)

< 2γn
n∏

i=1

(
4ρb,iγ

k0‖L(t0)‖∞
)

= 2
n∏

i=1

(
4ρb,iγ

k0+1‖L(t0)‖∞
)

i.e., eq. 69 holds for k = k0 + 1.
In summary, eq. 69 holds for both cases. ♦
Now we are ready to prove Proposition 2.3.

Proof: We want to get an upper bound of Li(tk) for a given
i. First we try to get an upper bound for Lj(tk) with j 6= i.

If j < i, then we know

Lj(tk) ≥ ρjρj+1 · · · ρi+1Li(tk) (70)

If j > i, we get

Lj(tk) ≥ ρb,jγ
k‖L(t0)‖∞ (71)

Multiplying eq. 70 and 71 for all j, we get a lower bound
on p(tk) as

p(tk) =
n∏

m=1

Lm(tk)

≥ (Li(tk))i
i−1∏
m=1

(ρmρm+1 · · · ρi−1)

×
n∏

m=i+1

(
ρb,mγk‖L(t0)‖∞

)

Combining the above equation with the upper bound of p(tk)
in eq. 69 yields

(Li(tk))i ≤ 2× 4n
(
ρb,iγ

k‖L(t0)‖∞
)i

(72)

Taking the i-th root on both sides of the above inequality
produces

Li(tk) ≤ i
√

2× 4nρb,iγ
k‖L(t0)‖∞

≤ 2× 4nρb,iγ
k‖L(t0)‖∞♦
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