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Abstract— This paper considers a distributed estimation triggers could be used to enforce stability concepts such as
problem in which a sensor sporadmally transmits |nfprmatnn input-to-state stability [6] orC, stability [7]. Experimen-
to a remote-observer. An event-triggered approach is usedot 5| evidence [8] suggests that event-triggering can reduce

trigger the transmission of information from the sensor to te L . . .
remote-observer. The event-trigger is chosen to minimizehe communication bandwidth while preserving overall system

mean square estimation error at the remote-observer subjec Performance. Event-triggering therefore provides a usefu
to a constraint on how frequently the information can be approach for reducing an application’s use of the commu-
transmitted. This problem was studied by O.C. Imer et al. [1] nication network.

and M. Rabi et al. [2] where the observed process was a scalar g haner considers a canonical problem that was recently
linear system over a finite time interval. This paper extends

those earlier results by relaxing the prior assumption thatthe ~ Studied in [1], [2]. This problem considers a discrete-time
initial condition is zero-mean with no measurement noise.tl  scalar linear process over a finite interval of time. The

extends those earlier results to vector linear systems thugh a  process is observed by a sensor that constructs local éstima

computationally efficient way of computing sub-optimal evet-  of the process state and must decide when to transmit those

triggering thresholds. local estimates to a remote-observer so that the mean square
|. INTRODUCTION estimation error at the remote-observer is minimized. Tpke

the problem interesting, transmission decisions mussfyati

_ A major challenge faced by wireless sensor networkg pandwidth constraint that limits the number of messages
is that they have limited throughput capacity. Moreover, gt the sensor can send to the remote-observer. This paper
wireless link's capacity may vary over time due to changegyends the earlier work [1], [2] by dropping the assumption
in the external environment. Time-varying link capacityyma ot ;ero mean initial conditions with no measurement noise

negatively impact overall system behavior. This is true iRq developing an efficient way of computing event-triggers
networked control systems, where the quality of the feeklbag,, ector systems.

data has a direct impact on the physical plant's stability
and performance [3]. This is also true for embedded sensor
networks where sensor measurements are transmitted over
ad hoc wireless networks to a data fusion center [4]. It has long been recognized that the sporadic flow of
Many networked control systems presume the periodigformation can be incorporated into Kalman filters [9].
transmission of information. Periodic transmission, hesve Rather than simply analyzing the impact that nondetermin-
may consume more network bandwidth than necessary. Singéic network artifacts have on estimator performance, one
the period is chosen prior to system deployment, it must b@ay control the way information is transmitted. In multi-
robust over all variations in network and system behavidr arsensor networks, for example, one may schedule sensor
this open-loopapproach to period selection can be overlftransmissions [10]. The potential benefits of controlling
conservative in its use of network bandwidth. transmission time were experimentally documented in [11].
The recognition of the inherent conservatism in open-loopormal analyses of this tradeoff were done in [12] for inéinit
periodic transmission policies has led numerous reseegchéorizon estimation problems. Finite horizon problems were
to move towards thesporadic transmission of information treated in [1], [2]. This paper uses event-triggering totomin
throughevent-triggeredormalisms. Event-triggering has an transmission times across a single communication link.
agent transmit information to its neighbors when some mea- Network nodes communicate with each other in the system
sure of the novelty in that information exceeds a specifiegrchitecture in [11]. Each node estimates the state of its
threshold. Early examples of event-triggering were usefleighboring nodes. When a node finds that the estimation
in relay control systems and recent work has looked a&ror of its state is greater than a pre-specified threshold,
event-triggered PID controllers [5]. Early event-triggeér the true local state is broadcast to its neighbors. It was
controllers assumed event-triggers with constant trigger shown through simulations that network bandwidth can be

thresholds. It was recently shown that state-dependent evgignificantly reduced while the performance of the system is
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threshold, however, was expensive to compute and compuy- - y * "32:::;“;‘
. . . . 3 vent
tationally tractable approximations were proposed in [13] Process Semer Filer > Detector}'"“ri(;lr

Remote | ¥
Observer

A related problem was studied in [1], [2]. This work ,
characterized event-triggers that minimized MSEE over a N —— :
finite horizon subject to a constraint on the maximum number Lo T [

of transmissions. The work was confined to discrete-time
scalar linear systems with zero initial condition and no  Fig. 1. Structure of event triggered networked state estima
measurement noise. The problem was solved in [1] using
dynamic programming concepts. The problem was solved

in [2] using optimal stopping concepts for the mUIt'plewhen information is transmitted from the sensor to the

transmission problem. While this work asserted that thg, e ohserver. The decision to transmit is based on es-

extension to multiple transmissions and vector systems W\?%ates that are generated by the filter and local-observer.
relatively easy, those assertions were supported with only, Ve = {10,y v} denote the measurement in
k — 1Y0,Y1, ", Yk -

partial characterizations of the proofs and algorithms. formation available at time:. The filter generates a state

This paper uses dynamic programming to solve the finite- .. _ o LS

: . . estimatez : [0,1,...,M] — R™ that minimizes the mean

horizon multi-sample problem treated in [2]. We recover the St —\2 .

L . : - . : Square estimation errdd [(a:k — k) |yk] at each time step
original results in [2] that determine an optimal time-viagy

. . . . conditioned on all of the sensor information received up to
event-triggering threshold. We also generalize the resalt . N . ;
L . and including timek. These estimates are computed using a
[2] to cases where the initial state is hon-zero mean and th

. ; . Kaiman filter. The filter equations for the system are,
sensor data is corrupted by measurement noise. This paper% q 4

results apply to the scalar systems treated in [2] as well as 7, = FE[x;|Vi] = ATp—1 + Li(yr — CATy_1)
more general vector linear systems. Solving for the event- P E [(Ik ) yk] 1)
triggers in vector systems, however, has a computational — T _ T
complexity that is exponential in the state space dimension = APy A" +Q = LiC(AP1 A" + Q) (2)
This paper, therefore, introduces a computationally atalet |\ hare Ly is the Kalman filter gain and = 1,2,..., M.

method for determining event-triggefs using families Ofrpg initial condition, is the first a posteriori update based
quadratic forms to bound the problem’s value function. yo and P, is the covariance of this initial estimate.

I1l. PROBLEM STATEMENT The event-detector uses the filter’s state estintatend

Consider a sensor that is observing a linear discrete—tirT"f‘é;IOther estimate generated bylatal-observerto decide

. . when to transmit the filtered stateto the remote-observer
rocess over a finite horizon of lengl + 1. The process . o - fh
P - ’ Given a set of transmission time§r'}B |, let X} =

stater : [0,1,..., M] — R" satisfies the difference equation "~ _ _ ) -
{ZT;1,%2,..., Tt denote the filter estimates that were
Tpr1 = Az + wi transmitted to the remote-observer by tithavhere/(k) =
. . max {¢ : 7 < k}. This is theinformation setavailable to
forke0,1,.. "M]. whereA is ann X regl matrix,w : .. the remote-observer at tinke The remote-observer generates
[0,1,...,M] — R™ is a zero mean white noise process with

an a posteriori estimaté : [0,1,..., M] — R™ of the pro-

covariance matrix)). The initial state;xg, is assumed to be cess state that minimizes the MSEE,[(xk ) ka},

a Gaussian random variable with meapiand variancdlo. at time k£ conditioned on the information received up

The sensor generates a measurergenf, 1,..., M| — R to and including timek. The a priori estimate of the

that is a corrupteq version of the process state. The Sen$lote-observers— : 0,1,....M] — R", minimizes
measurement at time is

E [(z) — &1)*| Xk—1], the MSEE at timek conditioned on
yr = Cxp + vy, the information received up to and including tinte— 1.

These estimates take the form
for k € [0,1,...,M] and wherev : [0,1,...,M] — R™

is another zero mean white noise process with varialice &, = F [xk |?k,1} = A1

that is uncprrelated with the process noise We assume R . 2, don't transmit at stepk

that (A,_C) is observable._ The process and sensor blocks arék E [z | Xi] = { Zr transmit at stepk

shown in figure 1. In this figure, the output of the sensor

feeds into a transmission subsystem that decides whenwherez, = po.

transmit information to a remote-observer. The event-triggering strategy that is used to select the
The transmission subsystem consists of three componerttsinsmission times! is based on observing thgap, ¢, =

an event-detectora filter, and alocal-observer The event- 7, — &, between the filter's estimatg and the remote-

detector decides when to transmit information Bt € observer's a priori estimat2—. Note that even though the

[0,1,..., M + 1] time instants to the remote-observer. Bo gap is a function of the remote-observer’s estimate, this

represents the total number of transmissions that the sensanal will be available to the sensor. This is because the

is allowed to make to the remote-observer. We{let}Z,  sensor has access to all of the informatidh,, that it sent

denote a sequence of increasing times< [0,1,...,M]) to the remote-observer. As a result, the sensor can use a



local-observer to construct a copy #fthat can be locally equation (5) is only conditioned on the current information
accessed by the event-detector to compute the gap. Tha&her than all past information. This section’s main resul
local-observer is shown as part of the transmission subisystis a theorem characterizing the backward recursion used to
in figure 1. The event-detector’s transmission is triggeredalculate the value function. The theorem’s proof is given i
when the estimate’s gag, leaves the time-varying trigger the appendix.
set Sp* wherek € [0,1,...,M] and p; is the number of  Theorem 4.1:The value function (5) satisfies the back-
transmissions that are remaining at stepAs noted in [2], ward recursive equation:
this type of decision logic treats the transmission time as a i
random variable that forms a stopping time of the stochastic (¢, b;7) = min {vne (€, b,7), ve(C, b,7)} (6)
process being monitored. These sets can be computed usjjigere
optimal stopping theory. The result, however, is a backward -
recursion that bears great similarity to dynamic prograngmi vnt(-) = tr (P.) +[I¢[5 + E (v(ey,y, b7+ DI = (¢, b))
recursions. So this paper uses stochastic dynamic programy () = tr (ﬁ«) 4+ E (v(er_+1?b —Lir+ 1)L = (0,b— 1))
ming to obtain these trigger sets. o N

For later convenience, the following notational convenWith initial conditions
tions are l}sed througAhout this paper, ’The estimation gtror a v(C,0;7) = CTA(T)JC + 02,1 @)
stepk is éx = xr — 2, and the filter's error at step is b
e = T — T. We Iete,; =Tr — I, ande, = Ty — 2% U(C’b;M+1_b):pM+1—b’ (8)
denote the a priori and a posteriori gap, respectively. Tha which
a priori information available to the event-detector atetim v
k is denoted as/, = (e, ,px), an ordered pair consist- Ag,l = S (AT)k=r Ak,

ing of the a priori gap and the number of transmissions k=r
remaining to be made. The a posteriori information avadlabl | M k T AT \k—i Ak—i =
. = tr (X,_1L5 (A JARTIL ;) + tr(P ;
to the event-detector i§, = (ex,pri1). We let St(k) = “ra ,;Z:T j:%l r (8L (A7) i)+ (P |5
Smax{O,b7k+r} Smin{b,l\l#»lfk}
e ey Sy

}denote the triggering . M _
sets to be used at stdp when there areb transmissions ~PM+1-5 = T k:%:q_bpk ’

remaining at step < k. We letS? = {S%(r),...,S(M)}.
We are now in a position to formally state the problemandy; = CAP;ATCT+CQCT +R. The optimal triggering
being addressed in this paper. Consider a cost function et is

the form S ={C  vne(C,0,7) < wr(C,b,7)}, (9)
M
. with S%* =R" forall r = B,B+1,..., M andS% =
Tu(B:Sy) = B Zeim):B ®) ¢ for arllbzl 2 ; S A
P ,2,...,B. _ N _ _

) ) 0 R R What should be apparent in examining equation (6) is that
wlhere tr;e expect_atm_n IS tal_<en OVED, ..., EM and  yhe optimal cost at time stepis based on the choice between
Tt T The ObJeCt'Ve, |s.to find the optimal trigger setSy,e osts of transmitting (i.ev;(+)) or not transmitting (i.e.
minimizing the cost function: vne(+)) at stepr. The actual values that those two costs take

Ju(B*) = min Jy (B; SP). (4) is c_onditioned on the valué, that the a priori gap;, takes _
S at time stepr. This means we can use the choice in equation
IV. CHARACTERIZATION OF VALUE FUNCTION (6) to identify two mutually disjoint sets; the trigger sgit*

a['ld its complement. I, is not in the setS’*, then we

The problem in equation (4) may be treated as the optim? o . .
. . : rigger a transmission otherwise the sensor decides not to
control of a stochastic process. The control variable is the

X b : : . lransmit its information.
trigger setS;. We use a stochastic version of Bellman’s . Lo .
29 L ) : Equation (6) recurses over two set of indices; the time
principle of optimality to obtain a backward recursion that - o
X steps, r, and the remaining transmissioris The value
generates the value function for our problem. The valu ction, v(C, b; r) is computed from the value functions
function characterizes the cost (as measured by the MS R P '

at the remote-observer) from any initial system state. Y .C’ bir + 1.) andv({_, b_.l;H_ 1)'. The initial conditions for
The problem’s value function is defined as this recursion are given in equations (7) and (8). Equafijn (

specifies the value function when at time steg [B, B +
. M ” B 1,...,M] there are no transmissions remainirig £ 0).
v(G byr) = min B Y& | I7=(b) ], () These initial conditions are computed as the total MSEE

k=r assuming no further measurement updates. Equation (8)
which is the minimal expected cost conditioned on thepecifies the value function when there &re [1,2, ..., B]
information I, = (e, ,p,) at time r. The optimal value transmissions remaining between time stép-1—b and M.
satisfiesJy (B*) = E (v(¢, B; 0)). This initial condition equals the MSEE assuming an update

It can be shown that the information sequencat each remaining time step. We may picture the recursion
{1y, Io,....I;,In} is Markov, so the value function in as shown in figure 2. This picture plots the indi¢és-) and



As suggested in [13], this problem may be circumvented
by using quadratic functions to approximate the value func-
tion. The following theorem bounds the value function
v(¢,b;r) from above with a family of quadratic forms,
{CTAL ¢+ cﬁjj}?ilfbfr whereA? ; is a symmetric posi-
tive definite matrix and:l;yj is a constant that are computed
recursively over the indices and b. The proof for this
theorem is in the appendix.

Theorem 5.1:The value function (5) is bounded above by

B=3 ’L_)(C,b,’l’) = min{l_}nt(<7bar)al_)t(<7bar)}a
where
Fig. 2. Order of calculating value function with M=4, B=3 .
{[s] rder Of calculating value tunction wi ’Dnt(é_7 b’ /r') _ mlngb{é_TAﬁjé_ + C?] 7 |f b 7é 0(10)
J=L,e 80 ' '
identifies the initial conditions and the order of computati u(¢,b,r) = o (11)

The filled-in circles are the indices for value functions inyo .o andp? are computed recursively as

equations (7) and (8). The arrows show the computational™" "

dependencies in the recursion. AL ATAQH_J-A +1, j<M+1-b-—r,
Some properties of the value function and optimal trigger-"7 I, j=M+1-b—r,
ing sets are statc_—:‘d in the fpllowing coroIIaries._ T_he.proofsb 0£+1j +t0(P,), j<M+1—b—r;
for these corollaries are omitted due to space limitations. ¢r; = ot T tr(P,) j=M+1—b—r
Corollary 4.2: With b and r fixed, the value function m ol ’
v(¢,b;7) is symmetric about the origin and nondecreasing » _ tr(Pr) + 0,50 0,0 b=1;
with respect to||¢||2 in the same direction, i.e. " tr(P,) + min{af}i,la e vafﬂ,e?’pgﬂ}’else'
v(¢G,bir) = v(=C, b;7); whereo?, | ; = tr(Z, L7 ALy L) + ¢k, and b =
v(and, b;r) > v(aed, b;r),Yag > ag > 0,d € R". M + 1 — b — r. The initial conditions forv,,; andv; are

described by equations (7) and (8) respectively. The sub-

Corollary 4.3: Given any directiond € R"™, the optimal . . .
optimal triggering sets are

triggering setS’* lying in this direction is in the form of

[_elr)(d)’ eg(d)] . . S£+ = {< : Tjnt(<a b7 T) S Ut (Ca ba ’f‘)}
With corollary 4.3, the triggering event becomes | > . 04 . bt
6b. For the scalar case one may search for the optim#fith ;" =R" forallr=5,..- M andSy ., , = 0 for

thresholdb?, instead of finding the optimal sé¢*. A similar @l b=1,---, B. _ _ . _
strategy can be used in the vector case, where we search fof "€ Sub-optimal triggering set is the union of the el-

the threshold along some ray extending away from the origifiPsoidal sets {¢ € R™ : (TA? ;(+cp; < pp} for j =
1,2,...,M +1—5b—r. Givenr andb, this set may be

V. COMPUTATION OF EVENT-TRIGGERS computed using theV/ + 1 — b — r quadratic forms in

This section discusses the complexity of computing the,.({, b; ). Computing the value function only requires the
value function and event-triggers. Direct computation oévaluation of a quadratic form on the ordenof multiplies.
the value function scales in an exponential manner witlihe complexity, therefore associated with evaluating the
state-dimension. This fact has made it difficult to extentboundsv(,b;r) is on the order of M +1 — B)(M — B)n3,
earlier results in [1], [2] beyond scalar systems. Thisieact which is cubic in the state space dimension.
introduces a computationally tractable method that boundsWe now consider a comparsion between the thresholds,
the value function with a family of quadratic approximason 6¢;, computed using the value function¢,b;r) and the
This allows us to determine event-triggers for vector Imeabound T({,b;7). For n = 2, it is possible to compute
systems. This result is demonstrated through a simulation. . . 0 -1
yTheorem 4.1 computes the value functizcirg,b;r) as the v(¢,b;7) and its associated thresholds. Jet= [ 1 V2 ]
minimum of two functionsv;({,b;7) and v, (¢, b;7). The and C = [ 1 1 |. The mean and variance of initial
event-triggering threshold)®, occurs at those points where condition are[1,0]7 and I (identity matrix), respectively.
ve(C, ;1) = vt (¢, b; 7). Moreover, corollaries 4.2 and 4.3 The variance ofw andv are[1 2;2 5] and 1, respectively.
imply that we can search for the threshdlfi along rays The terminal step is chosen to bé = 4 with only one
extending out from the origin. The number of rays, howeveallowed transmission3 = 1. The value functions and their
that would need to be considered is an exponential functidrounds are computed using theorems 4.1 and 5.1. The results
of the process’ state space dimension. As a result, it h&i®m these computations are shown in figure 3.
proven impractical to compute these optimal thresholds for The left side of this figure shows cross-sectional plots of
state dimensions any larger than= 2. the value functions and their upper bounds. The red and



white lines in the cross-section represent the value fancti

*  optimal

. /-“! sub-optimal and its upper bound, respectively. One can see that the
; differences between these two lines are small, especially
ok at the points where,,; andv; are equal. These points are
é important, because they form the edge of the optimal trig-
5 ) gering set. The right side shows the optimal and sub-optimal

triggering sets. We can see that the union of the ellipses,
, 0w ¢ -5 0 5 which is the sub-optimal triggering set, over-approxinsate
P 1 the optimal triggering set very closely.
,ﬂ Let's now vary the number of allowed transmissiofis,
sub-optimal betweenl to 4 and calculate the optimal and sub-optimal
triggering sets. These sets were used in a simulation of the
system whose results are shown at the bottom of figure 3.
This figure plots the MSEE as a function Bf where event-
triggering was done using the optimal or sub-optimal thresh
olds. The figure shows that the suboptimal event-triggers
perform are only slightly worse than the optimal event-

Z1
] ez triggering thresholds. Simulations were also run for pdico
transmssions with comparable periods. These results show
' that the sub-optimal and optimal event-triggers have snall
/ MSEE than comparable periodic transmission schemes. Fi-
Mo nally, we determine the actual MSEE that should have been
achieved and this value matches what was achieved using
the optimal event-triggers.
-5
g 0w g - : ° VI. SUMMARY

k=3
s

optimal
sub-optimal

This paper discussed the design of optimal event-triggers
for distributed multi-dimensional state estimation peyhs

14

k=3
b 1 with finite terminal time and a fixed number of transmissions.
- off This paper extends the results in [2] to vector linear system
10 with nonzero mean initial conditions and measurement noise
Q o The paper provides a computationally tractable approach
> 5 -2 for determining the event-triggering thresholds, thersbyg-
P 10 2 -1 0 1 2 gesting that these event-triggering approach can be used on
k=4
0
0 -1 ';‘

S

¢

1 Z1

’ ked multi-dimensional linear systems, not just the scalaresysst
! that have been usually studied in the past.
6
. °° VII. APPENDIX
. S0 * Proof of Theorem 4.1: The value function may be written
as
;15 -0.5 o
1

: . - m 52T —

. e B v(Gbir) = minE (Z lewl3 1 17 = <<,b>>

"2 4 T k=r

: b
60 = ming((, b, 5)

8 O  theoretical minimum "
2 507 *  optimal ] . " R -
! perioi whereg(¢,b, 5%) = min B (0L, lexl3lL; = (6.b)).
= -

I bontimal | P=5p
'% 40 T sub-optima We calculateg(¢, b, S?) for the two casest € S° and
2 0} ] ¢ ¢ SP. Here, the first case is explained explicitly. Because
z i the second case can be derived similarly, we only give the
S 20¢ = 1 final result.
Q P
g i If ¢ €S,

"% 15 2 25 3 35 4
. . . b
B = maximum number of broadcasts Q(C, bv Sr)

M
Fig. 3. Top plots show value functions, upper bounds, ogtimad sub- = min E Z ||ék|\§|er_ =(e€ Sf,pr =b)|.
optimal triggering sets. Bottom plots shows experimen¢sults Sh(r+1),-+,S2(M) o



Because the condition, = ( € Sff,pr =b & e =
<ap7‘+1 =b ander_ = <ap7‘ - b,

M
9(C0,8) = min, B Znekn 11, =17 = (D)

Jnin, ZHekH I, = (¢,b)

Since p,41 = b which meansb transmissions remaining
at stepr + 1, only S, can influence the value of the
expectation.

VANVAN

vne(+), can be bounded as

Unt (€, b,7)
t( )+ T+ E@(C b+ 1)1 = (¢,b))
tr(P,) 4+ ¢"'¢ 4+ min{

Jrggl B(e, 1A 1 jeria + iy gler =€)y praa}

mln{mézn(CT(ATAHl A+ + ol +tr(P)))

) CTC + pr+1 + tr(P"")}
@nt(ga ba ’f').

In a similar way we can show that(-) is bounded as
AOLEN o(¢.b,7)
. R < P T _
= mink (Z lexli3Iz, = <<,b>> < (P + BECH=Lir+ DI = (0,6 -1))
SPiq —r < tr(P,) 4+ min{
— M minE(r lAr r l+cr |€ O) pr 1
= tr(Po)+ <3 +min B [ > [éwl3IT = (¢, b) sem T *bl Jl + b“lﬂ b* 1
r+1 k=r+1 = tr(PT) + mln{o—r;—l RN O-Tll,l\r{+1fb7'r’ pr;—l

M

= tr(P <E< Z lexl3H 5 =
k=r+1
( r+1’b) I, = (< b)) |IT = (<’b))
M
r(P) + 113 + B (gginE< > lexlBlii =

T+l k=r+1
(ers1:0)) |1 = (¢,1))
tr(Pr) + I¢ll3 + E (v(ep, by + 1L
Unt (¢, b, 7).

The fourth equality holds because the information set sel3]
quence{I, , I }#L, is Markov ande;,, is independent with
Sy
If ¢ ¢ Sb we can show thay(¢,b,S%) = tr(P,) +
E (v(eyq,b—Lir+ 1)L = (0,b— 1)) = v(b,7)

With the value function in both cases, we conclude thafs]
9(¢,b,52) = vnileegy + vi(b,7)1cgsn, and the value func- .
tion v(¢, b; ) = min{v,: (¢, b, 7), v (b,7)} with S = {¢ : e
Unt(C,0,7) < vp(b,r)}.

There are two initial conditions for the recursive equation [7]
One is the case when there is no remaining transmissions,
v(¢,0; 7). The other is the case when the number of remain{g]
ing transmissions is the same as the remaining st&p$; r)
for b € [1,B] andr = M + 1 — b. Both of them can be
calculated directlyl
Proof of Theorem 5.1: The initial conditions forv; = v,
andw,; = v, Satisfy equations (11) and (10), respectivelyj10]
whereA? ; = 0, ¢, = oo andp) = oo for j = 2,--- , £0.
Now assume that

») + IS + min B

7+1

(1]

-,

(4]

El

[11]

min

Ut (G Ky + 1) =1, ,M—k—r

Et(Ca k,T =+ 1)

(C Ar+1 it Clrc+1,j)

P 12

are upper bounds far,:({, k,7+1) andv.(¢, k, r+1) when
k=bandb—1. LetQy = {1,2,...,M —b—r} and let
O ={1,2,...,M+1-b—r}. The cost of not transmitting,

[13]

The fourth equality holds becausg; = p) = oo

tr(P, )+or+11,|f b=
tr(P,) + Hnn{crwri17 e ,Uer} Eb7pr+1} else.

o(¢,b,7)
N |
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