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Abstract—For many control systems, control performance is
strongly dependent on delay variations of the control tasks. Such
variations can come from a number of sources including task
preemptions, variations in task workloads and perturbations
in the physical environment. Existing work has considered
improving control task delay variations due to task preemption
only. This paper presents a general adaptive framework that
incorporates a powerful heuristic aiming to further reduce
delay variations. Preliminary results indicate that the heuristic
significantly improves existing approaches.

I. INTRODUCTION

For many cyber-physical systems, intelligent coordination
between control design and its corresponding computer imple-
mentation can lead to improved control performance and/or
reduced resource demands [1], [18], [24]. A prime example
that benefits from such coordination is regulating delay varia-
tions (jitter) in control tasks. For many control systems, control
performance strongly depends on delay variations in control
tasks. Such variations can come from numerous sources in-
cluding task preemptions, variations in task workloads and
perturbations in the physical environment, and can cause de-
graded control system performance, such as sluggish response
and erroneous behavior. An integrated approach to regulate
delay variation has the potential to significantly improve a
physical system performance.

There are a number of published papers related to reduc-
ing delay variations. A somewhat indirect way of reducing
delay variations is to reduce task deadlines, which has been
investigated by many researchers, e.g., [3], [4], [10], [11],
[19]. A common theme of all these methods is to focus
on reducing deadlines of either tasks or subtasks. Because
deadlines are only allowed to be reduced, these methods
cannot effectively explore the design space where deadlines
of certain tasks/subtasks may be increased (within some upper
bounds) to reduce the overall delay variations.

Another set of methods are based on a task decomposition
based approach where each task is partitioned into three
subtasks, i.e., Initial, Mandatory, and Final Subtasks (referred
as the IMF model), and the delay variation of the final
subtask (corresponding to control update) is minimized. The
task-decomposition based methods [2], [5] suffer less, but
still obvious performance degradation (compared with direct
deadline reduction methods) when deadlines are only allowed

to be decreased greedily. The decomposition task model is
acceptable for control tasks where only a small amount of
data needs to be passed to control update subtasks, otherwise
context switching cost could be prohibitive. In addition, these
methods require repeated worst-case response time computa-
tion under the Earliest Deadline First (EDF) scheduling policy,
which can be quite time consuming.

Some recent works have focused on studying the influence
of task delay variations on control system performance, and
how to reduce such influence by scheduling the tasks intelli-
gently in order to enhance system performance. A Matlab-
based toolbox for real-time control performance analysis,
which takes the timing effects into account, is presented in
[15], [23]. A computational model has been proposed in [14] to
provide small jitter and short input-output latencies of control
tasks to facilitate co-design of flexible real time control sys-
tems. Theory of jitter margin is proposed in [16], and applied
in [7], [8], [16] to guarantee the stability and performance
of controllers in the target system. Some straightforward
jitter control methods to improve control system performance,
e.g., task splitting, advancing deadlines and enforcing non-
preemption, are evaluated in [11]. [9] proposes a delay-aware
period assignment algorithm under fixed priority scheduling
to reduce the control performance cost. Some of these works
[9], [14], [16] adjust control task periods and change the
workload of the control system, which may over or under
utilize the control system resources, while some of them [7],
[8], [11] are not suitable for on-line use due to the exceedingly
long computation time of the schedulability analysis in the
algorithms.

When considering the various sources that cause delay
variation in a physical system and the significant influence
of delay variation on the stability and performance of control
systems, it is imperative that a delay variation reduction
process be integrated in the control loop so as to regulate
delay variation whenever there are strong internal and external
perturbations. To accomplish this, we need a delay variation
reduction approach that is effective, efficient and adaptive. In
this paper, we propose an on-line adaptive approach which
directly minimizes delay variations for both decomposable and
non-decomposable control tasks simultaneously. The approach
leverages the IMF based task model for both types of tasks
and formulates the delay variation minimization problem as



an optimization problem. An efficient algorithm is designed
based on the generalized elastic scheduling heuristic [17].
The efficiency of the algorithm readily supports an adaptive
framework which can adjust deadlines of control tasks on-line
in response to dynamic changes in workloads.

The rest of the paper is organized as follow. Section II re-
views important system model and provides some motivations
to our work. Section III presents our heuristic to solve the
delay variation reduction problem. Experimental results are
presented and discussed in Section IV and the paper concludes
with Section V.

II. PRELIMINARIES

In this section, we first introduce necessary notation and
scheduling properties and then present some motivation for
the problem to be solved.

A. System Model

We consider a computer system which needs to handle a set
Γ of N real-time control tasks, {τ1, τ2, · · · , τN}, each with
the following attributes: (Ci, Di, Pi), where Ci is the worst
case execution time (WCET) of τi, Di is τi’s deadline, Pi

is its period, and Ci ≤ Di ≤ Pi. Without loss of generality,
we adopt the IMF task modeling approach introduced in [5].
Specifically, we let τi be composed of three subtasks, the
initial part τii for sampling input data, the mandatory part
τim for executing the control algorithm, and the final part τif

to deliver the control action. Thus, a task set ΓIMF consists of
3N subtasks (τ1i, τ1m, τ1f , ..., τNi, τNm, τNf ), each with the
following parameters

τii = {Cii, Dii, Pi, Oii}
τim = {Cim, Dim, Pi, Oim}
τif = {Cif , Dif , Pi, Oif}

where Oi? is the offset of the corresponding subtask. Note that
in order for the IMF model to faithfully represent the original
task set, each τii must be executed before τim, which must
in turn be executed before τif . For a non-decomposable task,
say τi, we simply have Cii = Cim = Dii = Dim = 0, and
Cif = Ci. Some tasks may also be partially decomposable,
i.e., we may have non-zero Cii and Dii but Cim = Dim = 0.

To achieve desirable control performance, control actions
should be delivered at regular time intervals periodically.
However, preemptions, variations in task workloads, and per-
turbations in the physical environment make each instance of
the control actions experience different delays. Similar to [5],
we define the delay variation as the difference between the
worst and best case response times of the same final subtask
relative to its period, i.e.,

DVi =
WCRTif −BCRTif

Pi
, (1)

where WCRTif , BCRTif are the worst case response time
and best case response time, respectively. The definition of
delay variation gives information on the delay variance that a
task will suffer in the control action delivery within a period.

Our problem then is to minimize the delay variations of all
the final subtasks.

We use Earliest Deadline First (EDF) scheduling algorithm.
A necessary and sufficient condition for a synchronous task
set to be schedulable under EDF is given below.

Theorem 1. A set of synchronous periodic tasks with relative
deadlines less than or equal to periods can be scheduled by
EDF if and only if ∀L ∈ K · Pi + Di ≤ min(Lip,H, Bp) the
following constraint is satisfied,

L ≥
N∑

i=1

(bL−Di

Pi
c+ 1) · Ci (2)

where Lip =
PN

i=1(Pi−Di)Ui

1−U , Ui = Ci

Pi
, U =

∑N
i=1

Ci

Pi
, K ∈ N

(the set of natural numbers including 0), H is the hyperperiod,
and Bp is the busy period [6], [13].

For an asynchronous task set, the condition in Theorem 1
can be used as a sufficient condition [6].

B. Motivation

We use a simple robotic example, similar to the one in [5],
to illustrate the deficiencies of existing approaches for delay
variation reduction. The example contains four control tasks,
i.e., the speed, strength, position and sense tasks. The tasks
and the original delay variations under EDF are shown in
columns 1 to 5 of Table I. We consider two representative
methods for delay variation reduction, which are described as
the followings.

In [2], [5], a task decomposition based method, denoted as
TDB, is proposed to reduce delay variations of final subtasks.
The algorithm replaces the deadlines of final subtasks by their
respective worst case response times in the main loop greedily
and efficiently until the algorithm converges. However, the
method neglects the subtask dependencies in the IMF task
model and tends to generate infeasible solutions in high
utilization task sets.

Another greedy algorithm presented in [4] indirectly reduces
task delay variations by the deadline scaling based technique,
denoted as DSB. The algorithm repeatedly reduces the dead-
lines of all the tasks by the same scaling factor, until the
task set becomes unschedulable. The drawback of the method
is that the blind deadline reduction may increase the delay
variations, which opposes the goal of the algorithm.

Suppose that decomposing the strength and sense tasks
in the robotic example would cause non-negligible context
switch overhead and we opt to only partition the speed and
position tasks according to the IMF model. Assume that the
IMF decomposition is made considering that the initial and
final subtasks consume 10% of the execution time of the
corresponding control task. By applying the DSB and TDB
methods, new delay variation values are obtained and are
shown as the first two values in column 6 of Table I. TDB
actually fails to find a feasible solution and employs the
original deadline assignment, while DSB actually gives worse
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TABLE I
A MOTIVATIONAL EXAMPLE CONTAINING FOUR TASKS WITH THE SECOND AND FOURTH TASKS BEING NON-DECOMPOSABLE.

Original New Delay Variations Delay Variations
Computation Delay Delay Variations (%) before Reassignment (%) after Reassignment (%)

Task Name Exec. Time Deadline Period Variations (%) DSB / TDB / DVR DSB / TDB / DVR DSB / TDB / DVR
Speed 5000 27000 27000 18.52 44.54 / Fail / 0.44 44.54 / 33.33 / 0.44 41.48 / Fail / 0.44

Strength 8000 30000 320000 1.56 3.36 / Fail / 5.94 33.59 / 28.13 / 59.4 31.25 / Fail / 15.59
Position 10000 45000 50000 32 34.75 / Fail / 1 34.75 / 44 / 1 34 / Fail / 1
Sense 13000 60000 70000 40 32.86 / Fail / 9.27 32.86 / 48.57 / 9.27 32.86 / Fail / 20

delay variations. With the DSB method, three tasks suffer more
than 30% delay variation.

Now, assume that at some time interval, the execution rate
of the strength task increases by 10 times. If the same deadline
assignments are used for the tasks/subtasks, the delay variation
of the strength task increases to 33.59% and 28.13% for DSB
and TDB, respectively (see the first two values in column 7
of Table I). Since TDB cannot find a feasible solution before
the workload change, it still employs the original deadline
assignment after the change. Suppose we apply the DSB
and TDB methods online in response to the period change,
the new delay variation values are shown as the first two
values in column 8 of Table I. It turns out that the TDB
still fails to find a feasible solution while DSB does not even
provide much improvement over the delay variations before
the reassignment.

With our proposed approach (DVR), smaller delay varia-
tions can be obtained for all the cases considered above. In
particular, for each respective scenario, we have applied our
approach and the delay variation values are shown as the third
number in columns 6-8 of Table I. Though for some tasks,
delay variations see a small increase, most of the tasks which
suffer from large delay variations due to the other methods are
now having much smaller delay variations.

III. OUR APPROACH

A. Problem Formulation

From the previous section, one can see that delay variations
could be improved significantly if more appropriate deadline
assignments can be identified. In this section, we describe our
proposed adaptive delay variation reduction (DVR) approach.
DVR is built on three basic elements. First, the general IMF
model as given in the previous section is used for both
decomposable and non-decomposable tasks. Second, the delay
variation reduction problem is formulated as an optimization
problem. Third, an efficient heuristic is developed to solve the
optimization problem. The heuristic is then incorporated into
an adaptive framework.

We adopt the generalized IMF task model described in
Section II to represent the task set under consideration.
The general IMF model allows both decomposable and non-
decomposable tasks to be treated equivalently. Given an IMF
task set, there may exist numerous sets of feasible dead-
lines (Dii, Dim, Dif ) which allow the original task set to
be schedulable. However, different sets of deadlines could
lead to different delay variations of the original tasks. To

find the particular subtask deadline assignment that results
in the minimum delay variation, we formulate the deadline
selection problem as a constrained optimization problem.
Though existing work such as [17], [21] has considered the
deadline selection problem as an optimization problem, there
are two major differences between our present formulation
and theirs. First, our formulation directly minimizes delay
variations. Second and more importantly, our formulation
leverages special properties of the IMF task model and thus
allows much more effective delay variation reduction.

The delay variation minimization problem is to minimize
the total delay variation bounds of (1) subject to the schedu-
lability constraints as given in (2) while considering the IMF
task model. The decision variables in the problem are subtask
deadlines Dii, Dim and Dif (while L as defined in Theorem
1 is dependent on Di∗’s). Specifically, we have

min:
N∑

i=1

wi(
Dif − Cif

Pi
)2 (3)

s.t.
N∑

i=1

[(bL−Dii

Pi
c+ 1) · Cii + (bL−Dim

Pi
c+ 1) · Cim

+(bL−Dif

Pi
c+1) ·Cif ] ≤ L,∀L ∈ K · Pi + Di ≤ Lip, (4)

Dii = Dim, (5)

Cif ≤ Dif ≤ min (Dim, Di −Dim), (6)

Cim ≤ Dim ≤ Di − Cif , (7)

where Lip and K are defined in Theorem 1. If task τi is not
decomposable, (6) and (7) are replaced by

Cif ≤ Dif ≤ Di, (8)

Dim = 0. (9)

To see why the above formulation can lead to valid deadline
assignments that minimize delay variations, first note that
deadline Dif is the upper bound of the WCRT of the final
subtask of τi, and Cif is the lower bound of the BCRT of
the final subtask of τi. Hence, the objective function in (3) is
simply the weighted sum of the squares of worst-case delay
variations as defined in (1). The use of wi allows one to
capture the relative importance of control tasks in the objective
function. The choice of the objective function is based on two
observations. First, the quadratic form effectively reduces the
variation of jitter distribution. Second, the formulation leads

3



� � � � �� �
� �	 
 � �
 � � � � �

� �
Fig. 1. Feasible deadline region for mandatory/final subtasks.

to an efficient heuristic to solve the quadratic programming
problem. We do not directly optimize control performance
as such formulation can be quite expensive computationally
[15]. (Our experiments will show that the objective function
is effective in improving control performance.)

To guarantee schedulability under the IMF model, we have
introduced a set of constraints in our formulation. Constraint
(4) helps ensure the schedulability of the task set according
to Theorem 1. However, this constraint alone is not suffi-
cient since the precedence requirement must be obeyed when
executing the initial, mandatory and final subtasks of any
decomposable task. Note that ensuring the subtask dependen-
cies during task execution is straightforward. The difficulty
lies in capturing this in the schedulability test without either
introducing more variables (i.e., Oii, Oim, Oif ) or being
overly pessimistic.

To handle the unique challenges due to the IMF task model,
we have added several more constraints in addition to (4). To
capture the fact that τii is always executed before τim, we can
set Dii ≤ Dim (and hence τii has a higher priority than τim

as long as Oii = Oim = 0). For simplicity, we let Dii = Dim,
assuming that a tiebreak goes to τii, which is constraint (5).

Since τif must start after τim is completed, we let Oif =
Dim. Furthermore, to guarantee that task τi finishes by its
deadline Di, we must have Oif + Dif ≤ Di. We thus have
Dif ≤ Di−Dim, which leads to one part of (6). The other part
of (6), i.e., Dif ≤ Dim, reflects the observation that smaller
deadlines should be assigned to the final subtask compared
to that of the mandatory subtask so as to help reduce delay
variation of the final subtask (as this would be the delay
variation of interests). (7) constrains the space of Dim and
is obtained simply by combining Dim ≤ Di − Dif and
Dif ≥ Cif . Constraints (8) and (9) replace (6) and (7) for tasks
that are not decomposable. Since they are simpler than (6) and
(7), our following discussions focus more on constraints (5)-
(7).

Based on constraints (5)-(7), Figure 1 depicts the feasible
region of (Dim, Dif ), which is bounded by MABO and
corresponds to the search region for the optimal solution to (3)-
(7). To make our search more efficient, we would like to reduce
the search region as much as possible without sacrificing the
optimization solution quality. Theorem 2 provides the basis

for reducing the search region.

Theorem 2. Given a set ΓIMF of N tasks. If the necessary and
sufficient condition for schedulability in Theorem 1 is satisfied
for a synchronous task set ΓIMF with (Dii = Dim, Dim, Dif )
for i = 1, ..., N , then the same condition is satisfied for
a synchronous task set Γ

′
IMF with (D

′
ii, D

′
im, Dif ), where

D
′
ii = D

′
im ≥ Dim for i = 1, ..., N .

Proof The proof is trivial and omitted. ¤
Applying Theorem 2 to the search region depicted in

Figure 1, one can readily see that point M
′

on the segment
JI leads to a schedulable solution if point M leads to a
schedulable solution. Since Dim corresponding to M

′
is larger

than that of M , M
′

is a more desirable solution than M as
it leads to a smaller Dif . Based on this observation, we can
reduce the search region by 1/2 by replacing constraints (6)-(7)
in the optimization problem by the following:

Cif ≤ Dif ≤ Di −Dim, (10)

Di

2
≤ Dim ≤ Di − Cif . (11)

If task τi is not decomposable, constraint (11) is replaced by

Dim = 0. (12)

Hence the jitter minimization can be achieved by solving the
optimization problem defined by (3-5), (10-12).

B. DVR Heuristic

Solving the optimization problem specified in (3) together
with (4), (5), (10), (11) and (12) is not trivial as it involves
dealing with a discontinuous function (the floor function).
Heuristic techniques such as the one presented in [17] may
be leveraged to solve the problem, but it would take many
iterations to reach convergence. In addition, the simplified
sufficient condition adopted by [17] either fails to find a
solution or finds a very pessimistic solution for task sets with
high utilization. We have developed a better heuristic to avoid
such problems, which we refer to as DVR.

DVR solves the optimization problem as follows. (The high-
level process of DVR is similar to that used in [17], but there
are significant differences between DVR and that in [17] in the
way that the actual search is conducted.) For an initial solution
(Dii = Dim, Dif ), the value of L is computed, and an updated
set of D′

if is obtained by solving the optimization subproblem
defined in (3), (4), (5) and (10). The new set of D′

if is adjusted
to make the solution (Dii = Dim, D′

if ) become schedulable,
i.e., satisfy the necessary and sufficient condition in Theorem
1; and then Dim is updated to D′

im by considering not only
the constraint on Dim but also Dim’s effect on future Dif

selection. These new values, D′
ii = D′

im and D′
if , are then

used as the initial solution for the next iteration. This process
is repeated in an attempt to find the best set (Dim, Dif ) that
minimizes the objective function (3).

Algorithm 1 summarizes the main procedure of DVR. In the
algorithm, the current and best solutions found are represented
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Algorithm 1 DVR(ΓIMF , Γ, maxIter)
1: ePID = Sort in Task Exe T ime(Γ)
2: Construct Initial Solution and Subproblem(ΓIMF ,

Γ, currD)
3: L busy = Compute Busy Period(Γ)
4: state = 0
5: duplicate = 0
6: BestObjF = +∞
7: for h = 0, h < maxIter , h = h + 1 do
8: if duplicate == β then
9: break

10: end if
11: feasibility = Feasibility Test(ΓIMF ,Γ, currD,

L busy, L, time demand, h) //test whether currD
satisfies constraint (4)

12: if feasibility == 1 then //feasible
13: ObjF = Obj Compute(Γ,ΓIMF , currD)
14: if |ObjF −BestObjF | < δ then
15: duplicate = duplicate + 1
16: end if
17: if ObjF < BestObjF then
18: Record Current Solution(Γ,ΓIMF ,

bestD, currD, BestObjF, ObjF )
19: duplicate = 0
20: end if
21: if state == 1 then
22: Construct New Subproblem(Γ,ΓIMF ,

currD) //update currDim = Di − currDif

to formulate a new subproblem
23: else
24: Optimize Solution(Γ,ΓIMF , currD) //apply

Theorem 3 to compute a new set of currDif

25: end if
26: state =!state
27: else if feasibility == 0 then //not feasible
28: overload = time demand− L
29: if state == 1 then
30: adjust result = Final Deadline Adjust(Γ,

ΓIMF , currD, overload, L, ePID) //adjust
currDif to make the found solution schedulable

31: else
32: adjust result = Mandatory Deadline Adjust

(Γ,ΓIMF , currD, overload, L, ePID) //adjust
currDim to modify the new constructed
subproblem

33: end if
34: if adjust result == 0 then //the deadlines cannot

be adjusted
35: break
36: end if
37: end if
38: end for
39: return bestD

by currD and bestD, respectively. DVR starts with several
straightforward initialization procedures (Line 1-Line 6).

The main loop of DVR spans from Line 7 to Line 38,
where DVR searches the best solution bestD to minimize the
objective function (3). In each iteration of the main loop, a
schedulability check is performed to test whether the current
task set ΓIMF satisfies constraint (4) (Line 11). If the current
solution satisfies constraint (4), the corresponding objective
function value is evaluated by (3) and the new solution is either
recorded as the best solution found or discarded (Line 13-
Line 20). Furthermore, a set of currDif or currDim will be
updated according to the state variable, as shown in Lines 21
to 25. If constraint (4) is not satisfied, subtasks’ deadlines are
adjusted according to the state variable as shown in Lines 29
to 33 of Algorithm 1. More details about the deadline updates
and the use of ”state” will be given later.

In each iteration of the main loop, DVR updates the
final subtasks’ deadlines or mandatory subtasks’ deadlines
according to the state value. DVR updates the final subtasks’
deadlines to search an optimal set of Dif in the optimization
problem described by (3-5) and (10) for a fixed L value,
where the most obvious difficulty is how to deal with the
discontinuous function (4). Instead of simply adopting the
strategy introduced in [17], i.e., removing the floor operator
from (4), we propose to use a less pessimistic way to tackle
the difficulty. Specifically, we replace constraint (4) by the
following two related constraints

N∑

i=1

[(
L−Dii

Pi
+ 1) · Cii + (

L−Dim

Pi
+ 1) · Cim

+(
L−Dif

Pi
+ 1) · Cif ] = L,L = Lip, (13)

N∑

i=1

[(bL−Dii

Pi
c+ 1) · Cii + (bL−Dim

Pi
c+ 1) · Cim

+(bL−Dif

Pi
c+1)·Cif ] ≤ L,∀L ∈ K · Pi + Di < Lip, (14)

where Lip and K are as defined in Theorem 1, and constraint
(13) is guaranteed by Lip’s definition in Theorem 1. It is easy
to see that (4) is equivalent to (13) plus (14). We utilize (13)
and (14) as follows. Constraint (13) replaces (4) to form a
new optimization subproblem defined by (3), (5), (10), (13).
Compared with L∗ employed in [17], Lip in constraint (13) is
simpler to be computed and able to derive less pessimistic
solution. Solving the optimization subproblem defined by
(3), (5), (10), (13) can be done efficiently by leveraging
the Karush-Kuhn-Tucker (KKT) Theorem [26]. Specifically,
function Optimize Solution() in Line 24 finds the solution
according to Theorem 3 for given L = Lip and Dim values.

Theorem 3. Given the constrained optimization problem as
specified in (3), (5), (10), (13), for fixed values of L = Lip

and mandatory subtask deadlines Dim,∀i, let

D̃ =
N∑

i=1

L · Ui −
N∑

i=1

Dim · (Uii + Uim) +
N∑

i=1

Ci − L

5



−
∑

Dif 6=Difmax

DifminUif −
∑

Dif =Difmax

DifmaxUif , (15)

S̃ =
∑

Dif 6=Difmax

U2
if

wi
P 2

i . (16)

A solution, D∗
if , is optimal, if and only if

D∗
if =

D̃Uif

S̃wi

P 2
i + Difmin, (17)

where Ui = Ci

Pi
, Uii = Cii

Pi
, Uim = Cim

Pi
, Uif = Cif

Pi
,

Difmin = Cif and Difmax = Di −Dim.
Proof Theorem 3 can be proved by applying the KKT
conditions. We omit the proof due to the page limit.

Solving this problem for given Lip and Dim values results
in a set of Dif values. However, tasks with this set of deadlines
may or may not be schedulable since constraint (13) itself is
not equivalent to (4). To check whether the set of deadlines
can indeed satisfy the feasibility condition in Theorem 1, we
apply (14) to every scheduling point L < Lip to determine
if the deadlines found can be satisfied by the tasks. If the
solution leads to a schedulable task set, the solution will be
used for deriving the deadlines in the next iteration. Otherwise,
adjustments to the found deadlines will be made.

In order to make the found solution schedulable, DVR
incrementally extends the final subtasks’ deadline, which is
implemented in function Final Deadline Adjust() of Al-
gorithm 1 (Line 30). The Dif ’s value of task τif is adjusted
to a new value such that the activation number of τif ’s jobs
within the time interval Lip will be decreased by 1. Such
a deadline adjustment is in the decreasing order of the task
execution times, and stops as soon as all the job deadlines
within Lip can be satisfied by the tasks. If DVR uses any
other order of the tasks, e.g., to randomly select a task, to
adjust the deadlines, it will take lots of iterations to make the
solution schedulable and cause the schedulable solution very
pessimistic.

In addition to the final subtasks’ deadline update, DVR also
updates mandatory subtasks’ deadline values by increasing
mandatory subtasks’ deadlines Dim to D′

im = Di − Dif in
order to construct a new optimization subproblem contain-
ing better solutions than the solved subproblems, which is
implemented in function Construct New Subproblem() of
Algorithm 1 (Line 22). By setting D′

im = Di−Dif , constraint
(10) is satisfied. More importantly, DVR skips all D′′

im values
that satisfy Dim < D

′′
im < D′

im, because D′
im leads to a

smaller Dif than D
′′
im according to Theorem 2. Additionally,

DVR does not increase Dim beyond D′
im = Di−Dif , because

it misses the optimal solution contained in the subproblem of
D
′
im. In all, the new subproblem formulation, together with

the solution initialization described below, makes our search
process focus on the subproblems that have a high likelihood
of containing the optimal solution. If the constructed new
subproblem does not contain any schedulable solution, DVR
will incrementally extend the mandatory subtasks’ deadlines,

which is implemented in Mandatory Deadline Adjust()
and similar to adjusting the final subtasks’ deadlines.

To make the best utilization of the new subproblem for-
mulation in the search process, it is important to make
the subtasks’ deadline initialization corporate well with the
update of Dim. We let DVR to start the search pro-
cess from the minimum value of Dim and the maxi-
mum value of Dif , which is implemented in function
Construct Initial Solution and Subproblem() of Algo-
rithm 1 (Line 2). Specifically, the Dim of a decomposable task
is set to Di

2 , which satisfies constraint (11), while Dim of a
non-decomposable task is set to 0 according to constraint (12).
The initial deadline of the final subtask of any task τi is set
to Di − Dim, according to constraint (10). With the update
of Dim described above, the upper bound of Dif becomes
smaller as the number of iterations increases, implying a
possible smaller Dif by Theorem 3 (and leads to smaller
jitter). To accelerate the search process and make DVR more
flexible, we also allow user-defined deadlines to be used as an
initial solution.

In the main loop, DVR needs stopping criteria to end its
search process. We choose variables BestObjF and duplicate
to set up the stopping criteria for DVR. BestObjF is the
objective function value of the best solution found so far,
and duplicate records the number of the found feasible
solutions whose objective function values satisfy |ObjF −
BestObjF | < δ, where δ is a user-defined parameter. If
|ObjF − BestObjF | < δ, duplicate is incremented by 1,
as shown in Lines 14 to 16. When the number of ”duplicated”
solutions is equal to a user-defined parameter β, the program
exits from the main loop (Line 9). To handle the case where
final subtasks’ deadlines do not converge to some fixed values
(or when it may take too long for the solution to converge),
the algorithm uses another user-defined parameter, maxIter,
to limit the maximum number of iterations.

The time complexity of DVR is dominated by the busy
period computation in Line 3 and the main for loop starting
at Line 7 of Algorithm 1. The time complexity of the busy
period computation algorithm proposed in [31] is O(Lbusy

Cmin
),

where Lbusy is the first busy period and Cmin is the minimum
task computation time. Inside the for loop, the most timing
consuming operations appear in the Feasibility Test() in
Line 11. Let N be the number of tasks, |A| be the number of
scheduling points inside the first busy period, and maxIter
be the maximum iteration count set by the user. The time
complexity of the for loop is O(N · |A| ·maxIter). Thus, the
time complexity of DVR is O(max(Lbusy

Cmin
, N ·|A|·maxIter)).

We end this section by demonstrating the application of
DVR to illustrate the example introduced in Section II-B.
Recall that when the strength task increases its execution rate
by 10 times, its delay variation also increases by 10 times. We
would like to use DVR to find a better set of final subtasks’
deadlines. In the initialization phase of DVR, the deadlines are
set as {currD1m=26349.9, currD1f =640.8; currD2m=0,
currD2f =30000; currD3m=43444, currD3f =1521.48;
currD4m=0, currD4f =22491}, and state is 0. Since the
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Fig. 2. Adaptive framework for delay variation reduction.

second and fourth tasks are non-decomposable, currD2m

and currD4m are 0. In the first iteration of the main
loop, the initial task set is tested to be shedulable, and
the value of the objective function is 0.49. In addition,
currD is recorded in bestD. DVR attempts to find
a better set of final subtasks’ deadlines by applying
Theorem 3 in Line 24. The resultant subtasks’ deadlines
are {currD1m=26349.9, currD1f =640.8; currD2m=0,
currD2f =15951.2; currD3m=43444, currD3f =1521.48;
currD4m=0, currD4f =22491} and state is changed to 1.
In the second and third iteration, currD is checked to be
infeasible, and the final subtasks’ deadlines are adjusted in
function Final Deadline Adjust(). Then in the fourth
iteration, the solution {currD1m=26349.9, currD1f =640.8;
currD2m=0, currD2f =15951.2; currD3m=43444,
currD3f =1521.48; currD4m=0, currD4f =27049.9}
obtained in the previous iteration is found to be feasible and
the objective function value is 0.10. Then a new subproblem
with {currD1m=26359.2; currD2m=0; currD3m=43478.5;
currD4m=0} is constructed in Line 22 and state becomes 0.
Such a process is repeated until the algorithm converges.

C. Adaptive Delay Variation Reduction

As we have seen from the motivational example, dynamic
workload changes could cause larger delay variations if the
original task/subtask deadlines were used. It is desirable to
deploy an on-line adaptive framework to adjust task/subtask
deadlines when workloads change significantly. The key to
such an adaptive framework is an efficient method of solving
the optimization problem posed earlier. Based on preliminary
results, our heuristic, DVR, seems to satisfy such a require-
ment. Hence, we propose an adaptive framework built on
DVR.

Our proposed framework is similar to the one in [12] and is
shown in Figure 2. In this framework, an on-line monitoring
mechanism in Kernel measures the mean execution time ĉi and
the maximum execution time Ĉi, and sends these measured
data to Execution Time Estimator. Execution Time Estimator
computes the current execution time estimate Qi, which is a
function of ĉi and Ĉi, and forwards it to Trigger. Meanwhile,
Plant also reports its error, i.e., the difference between the
actual and ideal performances of Plant, and task period Pi to
Trigger. When the error and the changes of Qi and Pi reach
some thresholds, e.g., the allowed maximum degradation of

the Plant’s performance, Trigger will signal DVR algorithm
to recompute the deadlines and send the results to Kernel. With
these new results, Kernel adjusts Plant so as to reduce delay
variations. The problem of the threshold formulation is under
study using techniques in [22], [27], [32].

IV. EXPERIMENTAL RESULTS

In this section, we first evaluate the performance and
efficiency of our heuristic DVR based on randomly generated
task sets and compare DVR with the iterative method TDB
in [5] and the greedy method DSB in [4]. Then, we illustrate
the use of our heuristic in solving real-world problems. Last,
we demonstrate the effectiveness of our adaptive framework
through the simulation of actual control systems. Our heuristic
was implemented in C++, running on a Sun Ultra 20 (x86-64)
workstation with Red Hat Enterprise Linux 4.

A. Performance of DVR

We present the following comparisons in this section. First,
we demonstrate the performance of DVR by comparing the
number of problems it is able to solve with what can be solved
by TDB and DSB. Second, to assess the solution quality of
DVR, we compare the solutions obtained by DVR with the
results by TDB and DSB. Third, to show the efficiency of our
heuristic, we compare the DVR’s execution time for solving
a batch of problems with those of TDB and DSB.

To perform the aforementioned comparisons, similar to [17],
1000 task sets consisting of 5 tasks each were randomly gen-
erated for 9 different utilization levels (Ulevel = 0.1, ..., 0.9)
with a total of 9000 task sets. The utilization level is defined to
be Uleveli =

∑5
j=1

Cj

Pj
, i = 0.1, ..., 0.9. Each task is initially

schedulable with (Cj , Dj , Pj), using the necessary and suffi-
cient condition (2) in Theorem 1. In our experiment, we set
the maximum hyperperiod, minimum period, and maximum
period to 500, 000, 10, 000, and 40, 000, respectively. The
precision was specified to be 100, whereas the maximum
number of tries was set to 10, 000. The precision denotes the
minimum increment in any task period. For example, if the
precision is set to 100, a task period could be 5200, but not
5010. For the details of the task set generation, readers can
refer to [17].

To allow the decomposable task model adopted by both
DVR and TDB to be investigated, we randomly select 3 tasks
out of each task set to be decomposable, and assume that the
initial and final subtasks consume 10% of the execution time
of the corresponding control task. Furthermore, because the
constraints of the subtask dependencies in the decomposable
task model makes it harder to construct initially feasible task
sets, we increase each task’s deadline to Dj+Pj

2 .
In the first experiment, we compare the percentage of

solutions found by our heuristic, as opposed to those by TDB
and DSB. Figure 3 compares the number of solutions found
by DVR, TDB and DSB, respectively. If a task set cannot be
solved by a method, its solution is said to be not found by
this method. The x-axis shows the different utilization levels,
whereas the y-axis shows the percentage of solutions found.
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TABLE II
NUMBER OF ITERATIONS FOR SOLVING A TASK SET BY DVR.

Utilization Level 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Average Number of Iterations 9.43 9.29 9.21 9.33 9.59 9.5 11.43 16.31 25.98

Maximum Number of Iterations 19 19 19 19 19 19 38 58 106
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Fig. 3. Comparison of DVR, TDB and DSB in terms of percentage of
feasible solutions found.

It is clear from the plot that DVR is able to find solutions
for all task sets with utilization levels 0.1 to 0.8, while for
utilization level 0.9 DVR finds 995 solutions out of 1000
task sets. In constrast, TDB and DSB suffer from various
degrees of degradation. With increasing utilization levels, more
and more solutions found by TDB cannot satisfy the subtask
dependency constraint, i.e., the found solutions are infeasible,
because TDB blindly reduces deadlines of final subtasks,
neglecting the deadlines of mandatory subtasks. DSB works
better than TDB, but it cannot find solutions of many task sets
for utilization levels 0.6 to 0.8. Compared with TDB and DSB,
DVR performs excellently in obtaining a schedulable solution
while guaranteeing subtask dependencies.

The second experiment examines the quality of the solutions
found by our heuristic with respect to the original delay
variations and that of the solutions found by TDB and DSB.
Figure 4 illustrates the solution quality of DVR as well as TDB
and DSB. As before, the x-axis shows the different utilization
levels. The y-axis shows the average delay variations of the

found solutions at each utilization level, i.e.,
P5

j=1
DVj

5
1000 , where

DVj is the delay variation of task τj in a task set. To guarantee
the fairness of the comparision, the average delay variation
of a task set that cannot be solved by a specific method
is set to the original average delay variation. The first, and
most obvious, observation is that the average delay variations
resulted from applying DVR are much smaller than the values
by DSB and the original average delay variations. In addi-
tion, with increasing utilization levels, such a delay variation
difference becomes greater. Actually, DSB gives worse delay
variations than the original delay variations at each utilization
level, because its blind deadline reduction increases the delay
variations. Second, for utilization levels less than or equal
to 0.7, TDB performs a little worse than DVR, while for
utilization levels greater than 0.7, the performance of TDB
degrades drastically. The reason for this is that the numbers
of found solutions by TDB for utilization levels greater than
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Fig. 4. Comparison of DVR, TDB and DSB in terms of solution quality.
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Fig. 5. Comparison of DVR, TDB and DSB in terms of average execution
time.

0.7 decrease greatly (see Figure 3), and the average delay
variations for these task sets without a solution by TDB are
the original delay variations. The results of the first and second
experiments show that DVR performs best in applications with
various utilizations among the three methods.

To exam whether DVR is suitable for online dynamic
deadline adjustments, we study the execution times of DVR
and compare them with TDB and DSB in the third experiment.
Figure 5 compares the execution times of DVR, TDB and
DSB. The x-axis shows the different utilization levels, whereas
the y-axis shows the average execution time which it takes for
an algorithm to solve the delay variation reduction problem. As
shown in Figure 5, TDB spends 24.5 milliseconds on average
in searching a solution at utilization level 0.9, and only finds 1
solution out of 1000 task sets finally. DVR and DSB only take
6.58 and 6.21 milliseconds on average to search a solution at
utilization level 0.9, respectively, which is almost 4 times faster
than TDB. Furthermore, at all utilization levels, TDB always
spends longer execution time than DVR and DSB, and DVR
has the execution time comparable with that of the greedy
method DSB.

To further investigate the convergence characteristics of
DVR, the average and maximum numbers of iterations to
search for a solution by DVR at various utilization levels
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are summarized in Table II. As shown in Table II, DVR
converges very fast at utilization levels 0.1 to 0.6 with the
average number of iterations less than 10 and the maximum
number of iterations 19. For higher utilization levels 0.7 to
0.9, the maximum number of iterations increase obviously.
However, most of the task sets at high utilization levels can
be solved within 50 iterations. For example, 894 task sets at
utilization level 0.9 can be solved within 50 iterations, 568 out
of which only need 25 iterations or less. The relatively high
number of iterations at higher utilization levels is caused by
the increased amount of preemption, which requires the ad-
justment of subtasks’ deadlines repeatedly in DVR. However,
the execution time of the deadline adjustment is very short,
which effectively restrains the average execution time at high
utilization levels from increasing drastically.

The experimental results on the execution time and con-
vergence rate of DVR demonstrate that DVR can solve prob-
lems with various utilization levels efficiently and have an
acceptable convergence rate even for task sets with a high
utilization level. The power of DVR lies in its effective
problem formulation as well as its efficient search strategy.

B. Experimental data for real-world workloads

Using a large number of randomly generated task sets, we
have shown that our heuristic can reduce delay variations
greatly in almost all the task sets at various utilization levels.
However, it is important to quantify the performance of DVR
under real-world workloads. In this section, we compare DVR
with TDB and DSB using three real-world applications. The
applications we consider are a videophone application, a
computerized numerical control (CNC) application, and an
avionics application. We will describe the benchmarks one by
one, and compare the results obtained by the three methods.

1) Videophone Application: A benchmark for a typical
videophone application is presented in [30]. The task set
is composed of four real-time tasks: video encoding, video
decoding, speech encoding, and speech decoding. Delay vari-
ations in such an application would degrade the user perceived
quality of voice or images. The worst-case execution time and
period for each task is given. Task deadlines are randomly
generated to be at least 95% of the period by using a uniform
distribution. Since the videophone application was proposed
in 2001, it is reasonable to reduce each task execution time
by 10%. Thus, the utilization of the task set becomes 0.89.
Assume that the context switch overhead of partitioning the
encoding tasks is non-negligible, so only the video decoding
and speech decoding tasks are decomposed based on the IMF
model, where the initial and final subtasks consume 10% of
the execution time of the corresponding control task.

DVR, TDB and DSB are applied to the application to reduce
delay variations. DVR takes 7 iterations to reduce average
delay variations from 58.05% to 5.96%, while both TDB and
DSB fail to find a feasible solution.

2) Computerized Numerical Control Application A bench-
mark is presented in [20], consisting of eight tasks with
measured execution times and derived periods and deadlines

of some CNC controller tasks. Consider the situation where
the system is overloaded (e.g., the primary computer is down
and the backup computer is less powerful). The increased
task execution times can cause much higher delay variations
and degrade the controller performance significantly. Thus, it
is necessary to employ an efficient method to reduce delay
variations. To model such a scenario, we multiply each task
execution time by a factor of 1.6 and increase the utilization
of the task set to 0.78. We assume that all the tasks in the
application are decomposed based on the IMF model where
the initial and final subtasks consume 10% of the execution
time of the corresponding control task.

DVR can reduce the average delay variation from 69.9%
to 2.17%, requiring 23 iterations in total, while TDB fails to
find a feasible solution and DSB reduces the average delay
variation only to 67.8%.

3) Generic Avionics Application The authors in [25] present
a benchmark containing one aperiodic task and 17 periodic
tasks with given period and execution time for each task, for
a Generic Avionics Platform (GAP). We randomly assign the
task deadlines to be between 50% and 60% of the periods
using a uniform distribution. The aperiodic task arrives with a
specific deadline and a minimum inter-arrival time. In addition,
since the GAP benchmark dates back to 1991, it is reasonable
to reduce each task execution time by 20%. The utilization
of the task set becomes 0.72. In this application, we still
assume that all the tasks are decomposed based on the IMF
model where the initial and final subtasks consume 10% of
the execution time of the corresponding control task.

DVR reduces the average delay variation from 23.42%
to 1.63% within 22 iterations. TDB is unable to find a
feasible solution, and DSB actually increases the average delay
variation to 30.64% after 324 iterations.

According to the experimental results of the three real-world
benchmarks, we show that DVR is capable of reducing delay
variations greatly within a limited number of iterations. In
contrast, TDB always fails to find a feasible solution for such
high utilization level applications, while DSB cannot guarantee
to find a satisfactory solution even after quite a few iterations.

C. Performance of Adaptive-DVR

We use a simple system composed of one hard real-time
task and three control tasks, similar to the systems employed
in [7], [8], [11], to illustrate the efficiencies of DVR for delay
variation reduction and control performance improvement. The
hard real-time task is a non-control task without jitter and
delay requirement except for schedulability, while each control
task τi actuates a continuous-time system of two stable poles
Pi. In order to vary the sensitivity towards delay variations,
we employ the method presented in [9] to generate random
plants Pi, which are given by

P1(s) =
1000

(s + 0.5)(s− 0.2)
,

P2(s) =
1000

(s + 0.5)(s− 0.3)
, (18)
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TABLE III
A CASE STUDY OF CONTROL TASK DELAY VARIATIONS AND THEIR CONTROL PERFORMANCE BY ADAPTIVELY APPLYING DVR.

Delay Variations (%) New Delay Variations (%)
Computation Control Performance Computation New Control Performance

Task Name Exec. Time Deadline Period Original / DSB / TDB / DVR Exec. Time Deadline Original / DSB / TDB / DVR
Hard 33.7 / 33.7 / Fail / 37.82 7.27 / 23.12 / Fail / 29.52

Real-time Task 570 3810 3810 NA / NA / NA / NA 1140 2290 NA / NA / NA / NA
Control 18.54 / 18.54 / Fail / 12.84 59.87 / 56.84 / Fail / 8.08
Task τ1 1570 10000 10000 153.3 / 153.3 / Fail / 112.5 3140 10000 2089.49 / 1246.6 / Fail / 105.2
Control 6.25 / 6.25 / Fail / 1.16 45.58 / 48.52 / Fail / 4.17
Task τ2 855 1500 6860 82.2 / 82.2 / Fail / 71.9 1710 5710 123.8 / 130.2 / Fail / 74.2
Control 9.98 / 9.98 / Fail / 3.83 68.14 / 67.94 / Fail / 1.98
Task τ3 429 1500 8570 95.3 / 95.3 / Fail / 86.6 857 7570 240.5 / 240.5 / Fail / 86.6
Average

Delay Variation 11.59 / 11.59 / Fail / 5.94 57.86 / 57.77 / Fail / 4.74
Total

Performance Cost 330.8 / 330.8 / Fail / 271 2453.79 / 1617.3 / Fail / 266

P3(s) =
1000

(s + 0.2)(s− 0.7)
.

In [9], [14], the control performance cost Ji of each system
is defined to be

Ji = lim
T−→∞

∫ T

0

(yi(t)2 + ui(t)2)dt, (19)

where yi(t) and ui(t) are the system output and input
controlled by task τi, respectively. Thus, the total control
performance cost of the continuous-time system is

J =
3∑

i=1

Ji. (20)

In addition, the hard real-time task and the three control tasks
are generated by the method presented in [9], as shown in
columns 1 to 4 of Table III. All the tasks have a transient and
location dependent deadlines, similar to the cases presented in
[28], [29].

We compare the delay variation values of the control tasks
by applying DVR with those obtained by TDB and DSB.
Furthermore, given delay variation and sampling period of a
control system, we are able to compute control performance
cost by using Jitterbug proposed in [15], [23].

The delay variation value and control performance cost of
each control task in the original task set and the corresponding
values obtained by applying DSB, TDB and DVR are shown
in column 5 of Table III. For each task, two rows of data
are shown in columns 5 and 8. The top row corresponds
to delay variation while the bottom corresponds to control
performance. The data clearly show that DVR reduces the
average delay variation from 11.59% to 5.94% and improves
the total performance cost from 330.8 to 271. However,
DSB neither reduces the delay variations nor improves the
corresponding total control performance cost at all. TDB fails
to find a feasible solution for the task set.

Now, assume that at some time interval, the execution times
of all the tasks increase by 2 times, due to the reason that the
primary processor is down and the backup processor is much
slower. Meanwhile, the state-dependent deadlines of the hard
real-time task and the control tasks τ2 and τ3 also change

to satisfy the user’s requirement. The new execution times
and deadlines of the tasks are shown in columns 6 and 7
of Table III. If the previous deadline assignments generated
by DSB and DVR are reused for the tasks/subtasks, the
deadlines of the hard real-time task and the control tasks will
be missed. If no delay variation reduction method is applied to
the current case, the delay variation and control performance
cost of each control task are shown as the first numbers of
column 8 of Table III. The average delay variation and total
control performance cost increase to 57.86% and 2453.79,
respectively, which may not be acceptable to the system.

Suppose we apply the DSB, TDB and DVR methods online
in response to the workload and deadline change, the new
delay variation values and control performance costs are
shown as the second to the fourth numbers in column 8 of
Table III. With our proposed approach (DVR), smaller average
delay variation 4.74% and total control performance cost 266
can be obtained in the current situation, which overcomes the
negative effects on the system caused by the workload and
deadline change. However, TDB fails to find a feasible solution
while DSB gives average delay variation 57.77% and total
control performance cost 1617.3, much worse than the results
obtained by DVR.

V. SUMMARY AND FUTURE WORK

We have presented a new approach to reduce delay varia-
tions of control tasks. The approach formulates the delay vari-
ation reduction problem as an optimization problem that can
effectively handles both decomposable and non-decomposable
tasks. Based on several key observations, we have devised
an efficient heuristic to solve the optimization problem. The
efficiency of the heuristic leads to an adaptive framework that
can dynamically readjust task/subtask deadlines to keep delay
variations small and improve control system performance
in the presence of environment perturbations. Experimental
results show that our heuristic performs well in delay vari-
ation reduction for randomly generated task sets at various
utilization levels and three real-world workloads. In addition,
we have applied our adaptive framework to a real-time control
system and improved its control performance greatly.
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As future work, we will further evaluate the proposed
approach by implementing it in a real-time operating system
and applying it to actual control application. We will explore
other kinds of objective functions and constraints that may be
more influential on control system performance.
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