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Abstract— This paper considers a distributed estimation
problem in which a sensor sporadically transmits information
to a remote observer. An event-triggered approach is used to
trigger the transmission of information from the sensor to the
remote observer. The event-trigger is chosen to minimize the
mean square estimation error at the remote observer subject
to a constraint on how frequently the information can be
transmitted. This problem was recently studied by M. Rabi et al.
[1] where the observed process was a scalar linear system over
a finite time interval. This paper extends those earlier results
by relaxing the prior assumption that the initial condition is
zero-mean and that there is no measurement noise. This is
done by adopting a dynamic programming approach to solve
the problem.

I. INTRODUCTION

Wireless networking has become an attractive method for
implementing networked control systems. The emergence of
standardized, low-cost, low power radios had made industrial
applications of wireless networks economically attractive [2].

A major challenge encountered in using such wireless
networks is that these networks have limited throughput
capacity. In addition to this, a wireless link’s capacity will
vary over time due to changes in the external environment.
These time-varying limitations in link bandwidth may have a
negative impact on overall system behavior. This is particu-
larly true in networked control systems, where the quality of
the feedback data has a direct impact on the physical plant’s
stability and performance [3], [4], [5]. This can also be seen
in embedded sensor network applications where multiple
sensors transmit data over an ad hoc wireless network to
a data fusion center [6]. In both cases, network artifacts
(such as dropouts and delays) may adversely affect the
application’s performance.

Many networked control systems presume the periodic
transmission of information across the network. Periodic
transmission, however, may consume more network band-
width than necessary. Since the period is chosen prior to
system deployment, it must be robust over all variations in
network and system behavior and this ”open-loop” approach
to period selection can be overly conservative in its use of
network bandwidth.
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The recognition of the inherent conservatism in open-loop
periodic transmission policies has led numerous researchers
to move towards the sporadic transmission of information
through event-triggered formalisms. Event-triggering has an
agent transmit information to its neighbors when some
measure of the ”novelty” in that information exceeds a
specified threshold. Early examples of event-triggering were
used in relay control systems[7] and more recent work
has looked at event-triggered PID controllers [8]. Much of
the early work in event-triggered control assumed event-
triggers in which the triggering thresholds were constant.
Recently it was shown that state-dependent event triggers
could be used to enforce stability concepts such as input-
to-state stability [9] or ℒ2 stability [10] in both embedded
control systems and networked control systems [11]. There
has been ample experimental evidence [12], [13], [14] to
suggest that event-triggering can greatly reduce communica-
tion bandwidth while preserving overall system performance.
Event-triggering therefore provides a useful approach for
reducing an application’s use of the communication network.

While much of the prior work in event-triggering has
focused on control in embedded and networked control
systems. This prior work, however, has usually assumed full
state feedback controllers. Extending this to output feedback
control is complicated by the fact that one would need
to estimate the process state. This paper therefore focuses
on the state estimation problem in networked systems. In
particular, we consider a simple ”canonical” problem that
was recently studied by M. Rabi [1]. This problem considers
a discrete-time scalar linear process over a finite interval of
time. The process is observed by a sensor that constructs
local estimates of the process state and must decide when to
transmit those local estimates to a remote observer so that
the mean square estimation error at the remote observer is
minimized. To keep the problem interesting, the decision to
transmit local estimates must satisfy a bandwidth constraint
that limits the number of messages that the sensor can send
to the remote observer. This paper extends the earlier work
in [1] by dropping the earlier assumption of zero mean initial
conditions with no measurement noise. The technique used
to obtain these results also differs from [1]. Rather than
using optimal stopping results, this paper uses stochastic
dynamic programming to derive the value function and event-
triggering thresholds. This approach is very similar to what
was used in [15] for a related infinite horizon problem. This
analysis recovers the original results in [1].

The remainder of this paper is organized as follows.
Section II discusses the prior work on event-triggered state



estimation. The problem statement, main results and simu-
lation results are in section III, IV, V, respectively. Future
directions are in section VI. Most of the paper’s proofs will
be found in section VII.

II. PRIOR WORK

It has long been recognized that the sporadic flow of
information can be incorporated into Kalman filters[16], [17]
and into multi-sensor networks [18]. Rather than simply
analyzing the impact that nondeterministic network artifacts
have on estimator performance, one can also think about
”controlling” the way in which information is transmitted. In
multi-sensor networks, for example, one may try to schedule
sensor transmissions in a manner that achieves optimal
performance while reducing overall network usage [19], [20].
If one focuses on a single remote sensor transmitting over
a throughput constrained link, then one can also control
the time when information was transmitted. The potential
benefits of controlling transmission time were experimentally
documented by Yook et al. [21]. Formal analyses of this
tradeoff were later carried out by Xu and Hespanha [15] for
infinite horizon estimation problems and later by M. Rabi
[1], [22] for finite horizon estimation problems. This paper
uses event-triggering to control transmission times across a
single communication link. This section reviews the related
prior work [21], [15], [1] cited above.

In the system architecture considered by J. Yook et al.[21],
each node can talk with other nodes. The local node estimates
the state of the other nodes. At the same time, when a local
node finds that the estimation error of the local state is
greater than a pre-specified threshold, the true local state
will be broadcasted to its neighbors. It was shown through
simulations that network bandwidth can be significantly
reduced while the performance of the system is only slightly
impacted. This paper therefore provides a good motivation
for controlling transmission times.

Based on the same system architecture, Y. Xu and J. Hes-
panha [15] derived an optimal triggering event to minimize
the sum of the total mean square estimation error (MSEE)
and the communication cost. Dynamic programming was
used to solve this problem over an infinite horizon. Comput-
ing the optimal event-triggering threshold, however, proved
to be difficult and approximate thresholds were determined
in [23].

M. Rabi et al. [1], [22] examined a problem which sought
to minimize the MSEE over a finite horizon subject to a
constraint on the maximum number of transmissions. This
work confined its attention to discrete-time scalar linear
systems with zero initial condition and no measurement
noise. For the single-sample case, the problem of minimizing
the MSEE was treated as an optimal stopping problem [24].
This approach led to a backward recursion that computed the
minimum total cost (MSEE) for the problem. This earlier
work asserted that the extension to multiple transmissions
was relatively easy. But they only provide partial characteri-
zations of the proofs and algorithms supporting this assertion.
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Fig. 1. Structure of event triggered networked state estimator

This paper adopts the dynamic programming methods to
re-examine the finite-horizon multi-sample problem treated
in [1]. Our use of dynamic programming is similar to what
was used in [15] for a related infinite horizon problem. We
recover the original results in [1] that determine an optimal
time-varying event-triggering threshold. We also generalize
the results in [1] to cases where the initial state is non-zero
mean and the sensor data is corrupted by measurement noise.
The backward recursion developed in this paper applies
to both the scalar systems treated in [1] as well as more
general vector systems. As was found in [23], however,
the computation of the optimal event-triggering thresholds
is computationally expensive, thereby suggesting that future
work should investigate methods for approximating these
optimal event-triggers.

III. PROBLEM STATEMENT

The event-triggering problem considered in [1] assumes
that a sensor is observing a scalar linear discrete-time process
over a finite horizon of length 𝑀 . The process state 𝑥 :
[0,𝑀 ] → ℜ satisfies the difference equation

𝑥𝑘+1 = 𝑎𝑥𝑘 + 𝑤𝑘

for 𝑘 ∈ [0,𝑀 ] where 𝑎 is a real constant, 𝑤 : [0,𝑀 ] → ℜ
is a zero mean white noise process with variance 𝑄. The
initial state, 𝑥0, is assumed to be a Gaussian random variable
with mean 𝜇0 and variance Π0. The sensor generates a
measurement 𝑦 : [0,𝑀 ] → ℜ that is a corrupted version
of the process state. The sensor measurement at time 𝑘 is

𝑦𝑘 = 𝑥𝑘 + 𝑣𝑘

for 𝑘 ∈ [0,𝑀 ] and where 𝑣 : [0,𝑀 ] → ℜ is another
zero mean white noise process with variance 𝑅 that is
uncorrelated with the process noise 𝑤. The process and
sensor blocks are shown on the left hand side of figure 1. In
this figure, the output of the sensor feeds into a transmission
subsystem that decides when to transmit information to a
remote observer.

The subsystem consists of three components; an event
detector, a filter, and a local observer. The event detector
decides when to transmit information at 𝐵 ∈ [0,𝑀 + 1]
time instants to the remote observer. So 𝐵 represents the
total number of transmissions that the sensor is allowed to
make to the remote observer. We let the {𝜏 𝑙}𝐵𝑙=1 denote a
sequence of increasing times (𝜏 𝑙 ∈ [0,𝑀 ]) when information
is transmitted from the sensor to the remote observer. The
decision to transmit is based on estimates that are generated
by the ”filter” and ”local observer”.



Let 𝒴𝑘 = {𝑦0, 𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑘} denote the measurement in-
formation available at time 𝑘. The filter generates a state
estimate 𝑥 : [0,𝑀 ] → ℜ that minimizes the mean square
estimation error 𝐸

[
(𝑥𝑘 − 𝑥𝑘)

2 ∣ 𝒴𝑘

]
at each time step con-

ditioned on all of the sensor information received up to
and including time 𝑘. These estimates, of course, can be
computed using a Kalman filter. For the scalar process under
study the filter equations are,

𝑥𝑘 = 𝐸 [𝑥𝑘 ∣ 𝒴𝑘] = 𝑎𝑥𝑘−1 + 𝐿𝑘(𝑦𝑘 − 𝑎𝑥𝑘−1)

𝑃 𝑘 = 𝐸
[
(𝑥𝑘 − 𝑥𝑘)

2 ∣ 𝒴𝑘

]
= 𝑎2𝑃 𝑘−1 +𝑄− 𝐿2

𝑘(𝑎
2𝑃 𝑘−1 +𝑄+𝑅), (1)

where 𝑥0 = Π0

Π0+𝑅𝑦0 + 𝑅
Π0+𝑅𝜇0, 𝑃 0 = Π0𝑅

Π0+𝑅 and 𝐿𝑘 =
𝑎2𝑃𝑘−1+𝑄

𝑎2𝑃𝑘−1+𝑄+𝑅
.

The event detector uses the filter’s state estimate, 𝑥,
and another estimate generated by a local observer to de-
cide when to transmit the filtered state 𝑥 to the remote
observer. Given a set of transmission times {𝜏 𝑙}𝐵𝑙=1, let
𝒳 𝑘 = {𝑥𝜏1 , 𝑥𝜏2 , . . . , 𝑥𝜏ℓ(𝑘)} denote the filter estimates that
were transmitted to the remote observer by time 𝑘 where
ℓ(𝑘) = max

{
ℓ : 𝜏 ℓ ≤ 𝑘

}
. We can think of this as the

”information set” available to the remote observer at time
𝑘. The remote observer generates an a posteriori estimate
�̂� : [0,𝑀 ] → ℜ of the process state that minimizes the
MSEE, 𝐸

[
(𝑥𝑘 − �̂�𝑘)

2 ∣ 𝒳 𝑘

]
, at time 𝑘 conditioned on the

information received up to and including time 𝑘. The a priori
estimate of the remote observer, �̂�− : [0,𝑀 ] → ℜ, minimizes
𝐸
[
(𝑥𝑘 − �̂�𝑘)

2 ∣ 𝒳 𝑘−1

]
, the MSEE at time 𝑘 conditioned on

the information received up to and including time 𝑘−1. Due
to the scalar nature of the process, these estimates take the
form

�̂�−
𝑘 = 𝐸

[
𝑥𝑘 ∣ 𝒳 𝑘−1

]
= 𝑎�̂�𝑘−1

�̂�𝑘 = 𝐸
[
𝑥𝑘 ∣ 𝒳 𝑘

]
=

{
�̂�−
𝑘 don’t transmit at step 𝑘

𝑥𝑘 transmit at step 𝑘

where �̂�−
0 = 𝜇0.

The event-detection strategy that is used to select the
transmission times 𝜏 𝑙 is based on observing the gap, 𝑒−𝑘 =
𝑥𝑘 − �̂�−

𝑘 between the filter’s estimate 𝑥 and the remote
observer’s a priori estimate �̂�−. Note that even though the
gap is a function of the remote observer’s estimate, this
signal will be available to the sensor. This is because the
sensor has access to all of the information, 𝒳 𝑘, that it sent
to the remote observer. As a result, the sensor can use another
local estimator to construct a copy of �̂� that can be locally
accessed by the event-detector to compute the gap. This local
estimator is shown as part of the detection subsystem in
figure 1. The event detector’s decision to transmit is triggered
when the estimate’s gap 𝑒−𝑘 goes out of the time varying
trigger set 𝑆𝑝𝑘

𝑘 where 𝑘 ∈ [0,𝑀 ] and 𝑝𝑘 is the number of
transmissions that are remaining at step 𝑘. As noted in [1],
this type of decision logic essentially treats the transmission
time as a random variable that forms a stopping time of
the stochastic process being monitored. As Rabi showed, the
”optimal” sets can be computed using results from optimal

stopping theory [24]. The result, however, is a backward
recursion that bears great similarity to dynamic programming
recursions. So in this paper we adopt stochastic dynamic
programming to obtain these trigger sets.

For later convenience, the following notational conven-
tions are used throughout this paper,

𝑒𝑘 = 𝑥𝑘 − �̂�𝑘 estimation error at step 𝑘 (2)
𝑒𝑘 = 𝑥𝑘 − 𝑥𝑘 filtered state error at step 𝑘 (3)
𝑒−𝑘 = 𝑥𝑘 − �̂�−

𝑘 a priori gap at step 𝑘 (4)
𝑒𝑘 = 𝑥𝑘 − �̂�𝑘 a posteriori gap at step 𝑘 (5)

We let 𝑝𝑘 denote the number of transmissions that are re-
maining at step 𝑘. This number must be an integer between 0
and 𝐵. The apriori information available to the event detector
at time 𝑘 is denoted as 𝐼−𝑘 = (𝑒−𝑘 , 𝑝𝑘), an ordered pair
consisting of the a priori gap and the number of transmissions
remaining to be made. The a posteriori information available
to the event-detector is 𝐼𝑘 = (𝑒𝑘, 𝑝𝑘+1).

We are now in a position to formally state the problem
being addressed in this paper. Consider a cost function of
the form

𝐽𝑀 (𝐵;𝒮0∣𝑝0=𝐵 , ⋅ ⋅ ⋅ ,𝒮𝑀 ∣𝑝0=𝐵) = 𝐸

[
𝑀∑
𝑘=0

𝑒2𝑘 ∣ 𝑝0 = 𝐵

]
(6)

where the expectation is taken over 𝑒0, . . . , 𝑒𝑀 ,
𝜏1, ⋅ ⋅ ⋅ , 𝜏𝐵and 𝒮𝑘∣𝑝𝑟=𝑏 =

{
𝑆
𝑏−𝑚𝑎𝑥{0,𝑏−(𝑘−𝑟)}
𝑘 , ⋅ ⋅ ⋅ , 𝑆𝑏

𝑘

}
is

the collection of all possible trigger sets needed at time step
𝑘, given 𝑏 transmissions remaining at step r. The objective is
to find the optimal trigger sets minimizing the cost function:

𝐽∗
𝑀 (𝐵) = min

𝒮0∣𝑝0=𝐵 ,⋅⋅⋅ ,𝒮𝑀∣𝑝0=𝐵

𝐽𝑀 (𝐵,𝒮0∣𝑝0=𝐵 , ⋅ ⋅ ⋅ ,𝒮𝑀 ∣𝑝0=𝐵).

(7)

IV. MAIN RESULTS

The problem in equation (7) can be treated as the optimal
control of a stochastic process. In our case, the control
variable is the trigger set 𝑆𝑏

𝑟 , rather than some ”control
signal”. Since this is a dynamic optimization problem, we can
use a stochastic version of Bellman’s principle of optimality
to obtain a backward recursion that generates the value
function for our problem. That value problem characterizes
the cost (as measured by the MSEE at the remote observer)
from any initial system state. This section introduces the
recursion used to compute the value function and discusses
some properties of the value function and the optimal trigger
sets.

The value function for our problem is defined in a manner
that is analogous to what is commonly done in stochastic
dynamic programming. In particular, our value function is
defined as

𝑣(𝜁, 𝑏; 𝑟) = min
𝒮𝑟∣𝑝𝑟=𝑏,⋅⋅⋅ ,𝒮𝑀∣𝑝𝑟=𝑏

𝐸

(
𝑀∑
𝑘=𝑟

𝑒2𝑘 ∣ 𝐼−𝑟 = (𝜁, 𝑏)

)
,

(8)
which is the minimal expected cost conditioned on the in-
formation 𝐼−𝑟 = (𝑒−𝑟 , 𝑝𝑟) at time 𝑟. Because the information



sequence {𝐼−0 , 𝐼0, ..., 𝐼
−
𝑀 , 𝐼𝑀} is Markov (lemma 7.2), the

value function in equation (8) is only conditioned on the
current information, rather than all past information. The
main result of this section is stated below. This theorem
provides a backward recursion that can be used to calculate
the value function defined in equation (8). The theorem’s
proof is given in the appendix.

Theorem 4.1: The value function (8) satisfies the back-
ward recursive equation:

𝑣(𝜁, 𝑏; 𝑟) =

min
{
𝑃𝑟 + 𝜁2 + 𝐸𝑒−𝑟+1

(𝑣(𝑒−𝑟+1, 𝑏; 𝑟 + 1)∣𝐼𝑟 = (𝜁, 𝑏)) ,

𝑃𝑟 + 𝐸𝑒−𝑟+1
(𝑣(𝑒−𝑟+1, 𝑏− 1; 𝑟 + 1)∣𝐼𝑟 = (0, 𝑏− 1))

}
, (9)

with initial condition:

𝑣(𝜁, 0; 𝑟) =⎧⎨⎩
𝑄(𝑀+1−𝑟)

1−𝑎2 + (𝑃𝑟 + 𝜁2 − 𝑄
1−𝑎2 )

1−𝑎2(𝑀+1−𝑟)

1−𝑎2 ,

if ∣𝑎∣ ∕= 1;
𝑄(𝑀+𝑟)(𝑀+1−𝑟)

2 + (𝑃𝑟 + 𝜁2 − 𝑟𝑄)(𝑀 + 1− 𝑟),
if ∣𝑎∣ = 1,

(10)

for 𝑟 = 1, . . . ,𝑀 and

𝑣(𝜁, 𝑏; 𝑟) =
𝑀∑
𝑘=𝑟

𝑃𝑘 (11)

where 𝑟 = 𝑀 + 1− 𝑏 for a given 𝑏 ∈ [1, . . . , 𝐵]. where 𝑃𝑟

and 𝑒𝑟 are defined in equations (1) and (5) respectively. The
optimal triggering sets are

𝑆𝑏∗
𝑟 = {𝜁 : 𝜁2 + 𝐸𝑒−𝑟+1

(𝑣(𝑒−𝑟+1, 𝑏; 𝑟 + 1)∣𝐼𝑟 = (𝜁, 𝑏)) ≤
𝐸𝑒−𝑟+1

(𝑣(𝑒−𝑟+1, 𝑏− 1; 𝑟 + 1)∣𝐼𝑟 = (0, 𝑏− 1)}, (12)

with 𝑆0∗
𝑟 = ℛ,∀𝑟 = 0, 1, ...,𝑀 and 𝑆𝑏∗

𝑟 = {0},where 𝑟 =
𝑀 + 1− 𝑏.

The first term in equation (9) is the minimum conditional
cost of not transmitting at step 𝑟 whereas the second term is
the cost incurred if the sensor does transmit at time step 𝑟 to
the remote observer. This first term consists of the predicted a
priori cost, 𝐸𝑒−𝑟+1

[
𝑣(𝑒−𝑟+1, 𝑏; 𝑟 + 1)∣𝐼𝑟 = (𝜁, 𝑏)

]
, at step 𝑟+1

plus the additional cost, 𝑃𝑟+𝜁2, incurred by the current step.
The second term has a similar structure with some important
differences since this term characterizes the cost that’s in-
curred if the sensor transmits at step 𝑟. If such a transmission
occurs, then the gap, 𝑒−𝑟 , equals zero and there are 𝑏 − 1
transmissions remaining. The predicted a priori cost therefore
becomes, 𝐸𝑒−𝑟+1

[
𝑣(𝑒−𝑟+1, 𝑏− 1; 𝑟 + 1)∣𝐼𝑟 = (0, 𝑏− 1)

]
, and

the cost increment reduces to 𝑃 , the two terms that are seen
in the second term of equation (9).

What should be apparent in examining equation (9) is that
the optimal cost at time step 𝑟 is based on the choice between
the costs of transmitting or not transmitting at step 𝑟. The
actual values that those two costs take is conditioned on the
value, 𝜁, that the a priori gap, 𝑒−𝑟 , takes at time step 𝑟. This
means we can use the choice in equation (9) to identify two
mutually disjoint sets; the trigger set 𝑆𝑏∗

𝑟 and its complement.

r
b

0 1 2 3 M=4

0

1

2

B=3

Fig. 2. Order of calculating value function with M=4, B=3

If 𝑒−𝑟 is not in the set 𝑆𝑏∗
𝑟 , then we trigger a transmission

otherwise the sensor decides not to transmit its information.
Equation (9) is a backward recursion that recurses over

two set of indices; the time steps, 𝑟, and the remaining
transmissions 𝑏. The value function, 𝑣(𝜁, 𝑏; 𝑟), at time step
𝑟 with 𝑏 remaining transmissions is computed from the
value functions, 𝑣(𝜁, 𝑏; 𝑟 + 1) and 𝑣(𝜁, 𝑏 − 1; 𝑟 + 1), at
time step 𝑟 + 1 with 𝑏 and 𝑏 − 1 remaining transmissions,
respectively. The initial conditions for this recursion are
given in equations 10 and 11 in the theorem. Equation 10
specifies the value function when at time step 𝑟 ∈ [0,𝑀 ]
there are no transmissions remaining (𝑏 = 0). These initial
conditions are easily computed as the total MSEE assuming
no further measurement updates. Equation 11 specifies the
value function when there are 𝑏 ∈ [0, 𝐵] transmissions
remaining at time step 𝑀 + 1 − 𝑏. This initial condition
equals the MSEE assuming an update at each remaining time
step. We can picture the recursion as shown in figure 2 .
This picture plots the indices (𝑏, 𝑟) and identifies the initial
conditions and the order of computation. The blue dots in
the graph show the initial value functions given in equations
10 and 11. The arrows show the computational dependencies
in the recursion.

If we let 𝑅 = 0, 𝜇0 = 0, and Π0 = 0, then theorem 4.1’s
result is equivalent to the backward recursion derived by Rabi
in [22]. In particular for the single sample case (𝐵 = 1), the
cost function, 𝑉 1

𝑟 (𝜁) introduced in [22] is related to our value
function through the relation

𝑣(𝜁, 1; 𝑟) =
1− 𝑎2(𝑀+1−𝑟)

1− 𝑎2
𝜁2 +

𝑀∑
𝑘=𝑟

𝑘−1∑
𝑖=𝑛

𝑎2(𝑖−𝑟)𝑄− 𝑉 1
𝑟 (𝜁).

Substituting the above equation into equation (9) yields a
backward recursion for 𝑉 1

𝑟 (𝜁) of the form

𝑉 1
𝑟 (𝜁) = max

{
𝜁2

1− 𝑎2(𝑀+1−𝑟)

1− 𝑎2
, 𝐸
[
𝑉 1
𝑟+1(𝜁) ∣𝑥𝑟 = 𝜁

]}
,

which is identical to the recursion used in [22] to compute
Rabi’s cost function 𝑉 1

𝑟 (𝜁).



The backward recursion in theorem 4.1 is used to compute
the minimum cost associated with solving our problem. That
cost is formally given in the following corollary.

Corollary 4.2: 𝐽∗
𝑀 (𝐵) = 𝐸𝑒−0

(𝑣(𝑒−0 , 𝐵; 0)).
Proof:

𝐸𝑒−0
(𝑣(𝑒−0 , 𝐵; 0))

= 𝐸𝑒−0

[
min

𝒮0∣𝑝0=𝐵 ,...,𝒮𝑀∣𝑝0=𝐵

𝐸

(
𝑀∑
𝑘=0

𝑒2𝑘∣𝐼−0 = (𝜁,𝐵)

)]

= min
𝒮0∣𝑝0=𝐵 ,...,𝒮𝑀∣𝑝0=𝐵

𝐸𝑒−0

[
𝐸

(
𝑀∑
𝑘=0

𝑒2𝑘∣𝑒−0 = 𝜁, 𝑝0 = 𝐵

)]

= min
𝒮0∣𝑝0=𝐵 ,...,𝒮𝑀∣𝑝0=𝐵

𝐸

(
𝑀∑
𝑘=0

𝑒2𝑘∣𝑝0 = 𝐵

)
= 𝐽∗

𝑀 (𝐵).

We can use equations (9) and (12) to identify properties
of the value functions that help us obtain a simple form of
the optimal triggering set. These properties are stated in the
following corollaries which are presented without proof.

Corollary 4.3: With 𝑏 fixed, the value function 𝑣(𝜁, 𝑏; 𝑟)
is symmetric about the y-axis and nondecreasing with respect
to ∣𝜁∣.

Corollary 4.4: The optimal trigger set 𝑆𝑏∗
𝑟 is in the form

of [−𝜃𝑏𝑟, 𝜃
𝑏
𝑟].

With corollary 4.4, we can change our triggering event
into ∣𝑒−𝑟 ∣ > 𝜃𝑏𝑟. Instead of finding the optimal set 𝑆𝑏∗

𝑟 , we
can search for the optimal threshold 𝜃𝑏𝑟.

V. SIMULATION RESULTS

This section presents simulation results characterizing the
performance of the event-triggered estimation problem. We
first introduce an algorithm to compute the value function
and optimal trigger sets. We then use these triggers in a
simulation and compare the performance of optimal event-
triggered transmissions against periodically triggered trans-
missions.

The value functions characterized in theorem 4.1 cannot
usually be computed in closed form. We must therefore
determine the value function (and associated event-triggers)
using algorithmic methods. We now describe that algorithm.

From theorem 4.1 we know that the value function
𝑣(𝜁, 𝑏; 𝑟) may be computed as the minimum of two functions

𝑓 𝑏
𝑟 (𝜁) = 𝑃 𝑟 + 𝜁2 + 𝐸𝑒−𝑟+1

[
𝑣(𝑒−𝑟+1, 𝑏; 𝑟 + 1) ∣ 𝐼𝑟(𝜁, 𝑏)

]
and

𝑔𝑏𝑟 = 𝑃 𝑟 = 𝐸𝑒−𝑟+1

[
𝑣(𝑒−𝑟+1, 𝑏− 1; 𝑟 + 1) ∣ 𝐼𝑟 = (0, 𝑏− 1)

]
.

For the scalar systems under consideration, these two func-
tions may be rewritten as

𝑓 𝑏
𝑟 (𝜁) = 𝑃𝑟 + 𝜁2 + 𝐸𝑒−𝑟+1

(𝑣(𝑒−𝑟+1, 𝑏; 𝑟 + 1)∣𝐼𝑟 = (𝜁, 𝑏))

= 𝑃𝑟 + 𝜁2 + 𝑔𝑏𝑟+1

−
∫ 𝜃𝑏

𝑟+1

−𝜃𝑏
𝑟+1

(𝑔𝑏𝑟+1 − 𝑓 𝑏
𝑟+1(𝑥))𝑝𝑒−𝑟+1∣𝑒𝑟=𝜁(𝑥)𝑑𝑥

Fig. 3. flowchart of calculating the value function and optimal threshold

and

𝑔𝑏𝑟 = 𝑃𝑟 + 𝐸𝑒−𝑟+1

[
𝑣(𝑒−𝑟+1, 𝑏− 1; 𝑟 + 1)∣𝐼𝑟 = (0, 𝑏− 1)

]
= 𝑃𝑟 + 𝑔𝑏−1

𝑟+1 −
∫ 𝜃𝑏−1

𝑟+1

−𝜃𝑏−1
𝑟+1

(
𝑔𝑏−1
𝑟+1 − 𝑓 𝑏−1

𝑟+1 (𝑥)
)
𝑝𝑒−𝑟+1∣𝑒𝑟=0(𝑥)𝑑𝑥.

where 𝑝𝑥∣𝑦 denotes the probability density function of 𝑥
conditioned on 𝑦. At step 𝑟 with 𝑏 samples remaining, we
first calculate 𝑔𝑏𝑟, and then use a bisection algorithm to search
for the optimal threshold 𝜃𝑏𝑟 such that 𝑓 𝑏

𝑟 (𝜃
𝑏
𝑟) = 𝑔𝑏𝑟. We then

evaluate the value function at a number of points between
[−𝜃𝑏𝑟, 𝜃

𝑏
𝑟].

The flowchart in figure 3 illustrates the algorithmic steps
used in evaluating the value function and event thresholds.
With remaining samples 𝑏 fixed, we first initialize the value
functions and the optimal thresholds for 𝑟 = 𝑀 +1− 𝑏, and
then calculate the value functions and the optimal threshold
for step 𝑀 − 𝑏 backward to step 0. After finishing the
calculation for 𝑏 remaining samples at all steps, we go on
with the calculation for the 𝑏 + 1 remaining samples until
𝑏 > 𝐵.

Consider a scalar system with 𝑎 = 1.2, 𝜇0 = 1, Π0 = 2
and 𝑄 = 𝑅 = 1. Fix the terminal step M to be 8.
Figure 4 plots the MSEE for optimal event-triggered and
periodically triggered transmissions as a function of the
total number of transmissions, 𝐵. The plot shows that the
experimentally observed MSEE equals the predicted MSEE,
thereby validating the correctness of our analysis. The plot
also shows that optimal event-triggered transmissions always
generate a smaller total MSEE than comparable periodically
triggered systems.

Figure 5 shows two plots for the single sample case where
𝐵 = 1. The top plot graphs the event threshold 𝜃1𝑟 as a
function of the time step 𝑟 for different initial covariances,
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Π0. This plot shows that larger initial covariances will ini-
tially result in larger optimal thresholds. At later time steps,
however, the thresholds asymptotically approach each other.
The bottom plot in figure 5 graphs the mean transmission
time 𝜏1 as a function of the initial covariance, Π0. This
plot shows that large initial covariances cause the system to
transmit (on average) more quickly than systems with small
initial covariances.
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VI. FUTURE WORK

This paper discussed the design of optimal event-triggers
for distributed state estimation problems with finite terminal
time and a fixed number of transmissions. This paper solves
the problem using stochastic dynamic programming and
recovers the earlier results in [1] that were derived using
optimal stopping arguments. This paper extends the results
in [1] to account for nonzero mean initial conditions with
measurement noise. Such extensions could have also been
achieved using optimal stopping methods.

Future work will try to extend our approach to vector
systems. Backward recursions similar to those in theorem
4.1 may be obtained for vector systems. This recursion takes
the following form

𝑣(𝜁, 𝑏; 𝑟) =

min{𝑡𝑟𝑎𝑐𝑒(𝑃𝑟) + 𝜁𝑇 𝜁 + 𝐸𝑒−𝑟+1
(𝑣(𝑒−𝑟+1, 𝑏; 𝑟 + 1)∣𝐼𝑟 = (𝜁, 𝑏)),

𝑡𝑟𝑎𝑐𝑒(𝑃𝑟) + 𝐸𝑒−𝑟+1
(𝑣(𝑒−𝑟+1, 𝑏− 1; 𝑟 + 1)∣𝐼𝑟 = (0, 𝑏− 1))},

and the optimal set is

𝑆𝑏∗
𝑟 = {𝜁 : 𝜁𝑇 𝜁 + 𝐸𝑒−𝑟+1

(𝑣(𝑒−𝑟+1, 𝑏; 𝑟 + 1)∣𝐼𝑟 = (𝜁, 𝑏)) ≤
𝐸𝑒−𝑟+1

(𝑣(𝑒−𝑟+1, 𝑏− 1; 𝑟 + 1)∣𝐼𝑟 = (0, 𝑏− 1))}.
Using this recursion to compute the value function and
triggering sets is much more difficult than the scalar case. As
the system’s dimension increases, the number of points used
to evaluate the 𝑣(𝜁, 𝑏; 𝑟) increases in an exponential manner.
Moreover, the triggering set can no longer be described by a
simple one dimensional interval. The only practical approach
may be to compute good approximations to the triggering
thresholds, in much the same way as was done in [23].

VII. APPENDIX

The following two lemmas are used in the proof of
theorem 4.1. These lemmas are presented without proof.

Lemma 7.1: 𝑒𝑘 is independent with 𝑒−𝑗 and 𝑒𝑗 for any
𝑗 ≤ 𝑘.

Proof: This follows direction from the fact that 𝑒−𝑗 , 𝑒𝑗 ,
and 𝑒𝑘 are Gaussian and our use of a MSE estimator.

Lemma 7.2: The sequence {𝐼−0 , 𝐼0, 𝐼
−
1 , 𝐼1, ..., 𝐼𝑘−1, 𝐼

−
𝑘 ,

𝐼𝑘, ..., 𝐼𝑀} is a Markov chain.
Proof: The dynamics of 𝑒−𝑘 and 𝑒𝑘 are summarized

below

𝑒−𝑘 = 𝑥𝑘 − �̂�−
𝑘

= 𝑎𝑒𝑘−1 + 𝐿𝑘𝑎𝑒𝑘−1 + 𝐿𝑘(𝑤𝑘 + 𝑣𝑘) (13)

𝑒𝑘 =

{
𝑒−𝑘 𝑒−𝑘 ∈ 𝑆𝑏

𝑘

0 otherwise (14)

From lemma 7.1, we know that 𝑒𝑘−1 is independent of
𝑒𝑘−1, 𝑒

−
𝑘−1, . . . , 𝑒

−
0 . We also know that 𝑤𝑘 and 𝑣𝑘 are

independent of 𝑒𝑘−1, 𝑒
−
𝑘−1, . . . , 𝑒

−
0 . Therefore

𝑢𝑘 = 𝐿𝑘𝑎𝑒𝑘−1 + 𝐿𝑘(𝑤𝑘 + 𝑣𝑘)

is also independent of 𝑒𝑘−1, 𝑒
−
𝑘−1, . . . , 𝑒

−
0 . Note that the

number of transmissions

𝑝𝑘+1 =

{
𝑝𝑘 − 1 if 𝑒−𝑘 /∈ 𝑆𝑝𝑘

𝑘

𝑝𝑘 otherwise

with 𝑝0 = 𝐵. So 𝑝𝑘+1 is a function of 𝑝0 and 𝑒−𝑗 for 𝑗 ≤ 𝑘.
This means that 𝑢𝑘 is also independent of 𝑝𝑗 for 𝑗 ≤ 𝑘+1.
So we can conclude 𝑢𝑘 is independent of the information
sets, 𝐼𝑘−1, 𝐼

−
𝑘−1, . . . , 𝐼

−
0 .

Consider the conditional probability density function
𝑓(𝐼−𝑘 ∣ 𝐼𝑘−1, 𝐼

−
𝑘−1, 𝐼𝑘−2, . . . , 𝐼

−
0 ). From equation (13) and



since 𝐼−𝑘 = (𝑒−𝑘 , 𝑝𝑘), we see that

𝑓(𝐼−𝑘 ∣ 𝐼𝑘−1, 𝐼
−
𝑘−1, . . . , 𝐼

−
0 )

= 𝑓(𝑒−𝑘 , 𝑝𝑘 ∣ 𝐼𝑘−1, 𝐼
−
𝑘−1, . . . , 𝐼

−
0 )

= 𝑓(𝑎𝑒𝑘−1 + 𝑢𝑘, 𝑝𝑘 ∣ 𝐼𝑘−1, 𝐼
−
𝑘−1, . . . , 𝐼

−
0 )

This shows that 𝐼−𝑘 = (𝑎𝑒𝑘−1 + 𝑢𝑘, 𝑝𝑘) is a linear combi-
nation of 𝐼𝑘−1 = (𝑒𝑘−1, 𝑝𝑘) and 𝑢𝑘. We showed above that
𝑢𝑘 is independent of 𝐼𝑘−1, 𝐼

−
𝑘−1, . . . , 𝐼

−
0 . So the conditional

probability may be written as

𝑓(𝐼−𝑘 ∣ 𝐼𝑘−1, 𝐼
−
𝑘−1, . . . , 𝐼

−
0 ) = 𝑓(𝐼−𝑘 ∣ 𝐼𝑘−1)

which implies that 𝐼−𝑘 , 𝐼𝑘−1, 𝐼
−
𝑘−1, . . . , 𝐼

−
0 are Markov.

Notice that 𝑆𝑝𝑘

𝑘 is not a function of 𝑒−𝑗 or 𝑒𝑗 for
all 𝑗. Eq.(14) shows that 𝑒𝑘 is only a function of 𝐼−𝑘 .
𝑝𝑘+1 is also a function of 𝐼−𝑘 . So the conditional PDF of
𝐼𝑘 = (𝑒𝑘, 𝑝𝑘+1) over 𝐼−𝑘 , 𝐼𝑘−1, ..., 𝐼

−
0 , can be written as

𝑓(𝐼𝑘∣𝐼−𝑘 , 𝐼𝑘−1, ..., 𝐼
−
0 ) = 𝑓(𝐼𝑘∣𝐼−𝑘 ).

Theorem 4.1 Proof The value function satisfies

𝑣(𝜁, 𝑏; 𝑟) = min
𝒮𝑟∣𝑝𝑟=𝑏

min
𝒮𝑟+1,𝑀∣𝑝𝑟=𝑏

𝐸

[
𝑀∑
𝑘=𝑟

𝑒2𝑘∣𝐼−𝑟 = (𝜁, 𝑏)

]
where 𝒮𝛼,𝛽∣𝑝𝑘=𝑏 = {𝒮𝛼∣𝑝𝑟=𝑏 ⋅ ⋅ ⋅ 𝒮𝛽∣𝑝𝑟=𝑏}. Notice that
𝒮𝑟∣𝑝𝑟=𝑏 = {𝑆𝑏

𝑟}. If 𝑒−𝑟 ∈ 𝑆𝑏
𝑟 , �̄�𝑟 isn’t transmitted to the

remote estimator, so that 𝑒𝑟 = 𝑒−𝑟 = 𝜁 and 𝑝𝑟+1 = 𝑏.
Otherwise, �̄�𝑟 will be transmitted, and 𝑒𝑟 = 0, 𝑝𝑟+1 = 𝑏−1.
Therefore,

𝑣(𝜁, 𝑏; 𝑟) =

min
𝑆𝑏
𝑟

{[
min

𝑆𝑟+1,𝑀∣𝑝𝑟+1=𝑏

𝐸

[
𝑀∑
𝑘=𝑟

𝑒2𝑘∣𝐼𝑟 = (𝜁, 𝑏)

]]
1𝜁∈𝑆𝑏

𝑟

+

[
min

𝑆𝑟+1,𝑀∣𝑝𝑟+1=𝑏−1

𝐸

[
𝑀∑
𝑘=𝑟

𝑒2𝑘∣𝐼𝑟 = (0, 𝑏− 1)

]]
1𝜁 /∈𝑆𝑏

𝑟

}
(15)

Let’s consider the first term in the above equation. This is
the term associated with ”not” transmitting at step 𝑟. Recall
that 𝑒𝑟 is independent of 𝒮𝑟+1,𝑀 ∣𝑝𝑟+1=𝑏 so that

min
𝑆𝑟+1,𝑀∣𝑝𝑟+1=𝑏

𝐸

[
𝑀∑
𝑘=𝑟

𝑒2𝑘∣𝐼𝑟 = (𝜁, 𝑏)

]
= 𝐸

[
𝑒2𝑟∣𝐼𝑟 = (𝜁, 𝑏)

]
+ min

𝑆𝑟+1,𝑀∣𝑝𝑟+1=𝑏

𝐸

[
𝑀∑

𝑘=𝑟+1

𝑒2𝑘∣𝐼𝑟 = (𝜁, 𝑏)

]
= 𝐸

[
𝑒2𝑟∣𝐼𝑟 = (𝜁, 𝑏)

]
+ min

𝑆𝑟+1,𝑀∣𝑝𝑟+1=𝑏

𝐸𝑒−𝑟+1
[ℎ∣𝐼𝑟 = (𝜁, 𝑏)] ,

where

ℎ = 𝐸

[
𝑀∑

𝑘=𝑟+1

𝑒2𝑘∣𝐼−𝑟+1 = (𝑒−𝑟+1, 𝑏), 𝐼𝑟 = (𝜁, 𝑏)

]
.

From equations (2), (3) and (5), we can see that 𝑒𝑟 = 𝑒𝑟+𝑒𝑟.
Lemma 7.1 asserts that 𝑒𝑟 is independent with 𝑒𝑟. We also

know that 𝑒𝑟 is independent from 𝑝𝑟+1, so that

𝐸
[
𝑒2𝑟∣𝐼𝑟 = (𝜁, 𝑏)

]
= 𝐸

[
𝑒2𝑟 + 𝑒2𝑟∣𝐼𝑟 = (𝜁, 𝑏)

]
(16)

= 𝑃𝑟 + 𝜁2. (17)

Expanding 𝑒2𝑘 in our expression for ℎ yields

ℎ = 𝐸

[
𝑀∑

𝑘=𝑟+1

𝑒2𝑘 + 𝑒2𝑘 + 2𝑒𝑘𝑒𝑘∣𝐼−𝑟+1 = (𝑒−𝑟+1, 𝑏), 𝐼𝑟

]

= 𝐸

[
𝑀∑

𝑘=𝑟+1

𝑒2𝑘∣𝐼−𝑟+1 = (𝑒−𝑟+1, 𝑏), 𝐼𝑟

]
(18)

+𝐸

[
𝑀∑

𝑘=𝑟+1

𝑒2𝑘∣𝐼−𝑟+1 = (𝑒−𝑟+1, 𝑏), 𝐼𝑟

]
(19)

The Markov nature of the information sets then yields

ℎ = 𝐸

[
𝑀∑

𝑘=𝑟+1

𝑒2𝑘∣𝐼−𝑟+1 = (𝑒−𝑟+1, 𝑏)

]
(20)

The first term of eq.(15) can therefore be rewritten as

min
𝑆𝑟+1,𝑀∣𝑝𝑟+1=𝑏

𝐸

[
𝑀∑
𝑘=𝑟

𝑒2𝑘∣𝐼𝑟 = (𝜁, 𝑏)

]

= 𝑃𝑟 + 𝜁2 + 𝐸𝑒−𝑟+1

[
min

𝑆𝑟+1,𝑀∣𝑝𝑟+1=𝑏

ℎ∣𝐼𝑟 = (𝜁, 𝑏)

]
= 𝑃𝑟 + 𝜁2 + 𝐸𝑒−𝑟+1

[
𝑣(𝑒−𝑟+1, 𝑏; 𝑟 + 1)∣𝐼𝑟 = (𝜁, 𝑏)

]
.

where ℎ is given in equation 20.
Following almost the same steps, we show that the second

term of eq.(15) equals

min
𝑆𝑟+1,𝑀∣𝑝𝑟+1=𝑏−1

𝐸

[
𝑀∑
𝑘=𝑟

𝑒2𝑘∣𝐼𝑟 = (0, 𝑏− 1)

]
= 𝑃𝑟 + 𝐸𝑒−𝑟+1

[
𝑣(𝑒−𝑟+1, 𝑏− 1; 𝑟 + 1)∣𝐼𝑟 = (0, 𝑏− 1)

]
,

thereby yielding the backward recursive equation with the
specified optimal trigger sets

The initial condition given in equation 10 is obtained as
follows. 𝑣(𝜁, 0; 𝑟) means that no transmissions occur between
step 𝑟 to step 𝑀 . Since 𝑒𝑘 = 𝑎𝑒𝑘−1 + 𝑤𝑘 then for all 𝑘 ≥
𝑟 + 1 we can see that

𝐸
[
𝑒2𝑘∣𝐼−𝑟 = (𝜁, 0)

]
= 𝐸

[
𝑎2𝑒2𝑘−1 + 𝑤2

𝑘 + 2𝑎𝑤𝑘𝑒𝑘−1∣𝐼−𝑟 = (𝜁, 0)
]

= 𝑎2𝐸
[
𝑒2𝑘−1∣𝐼−𝑟 = (𝜁, 0)

]
+𝑄

Using equation (17) and some algebra, we see that

𝐸
[
𝑒2𝑘∣𝐼−𝑟 = (𝜁, 0)

]
= 𝑎2(𝑘−𝑟)(𝑃𝑟 + 𝜁2) +

𝑘∑
𝑖=𝑟+1

𝑎2(𝑘−𝑖)𝑄.

Note that 𝑣(𝜁, 0; 𝑟) = 𝐸
[∑𝑀

𝑘=𝑟 𝑒
2
𝑘∣𝐼−𝑟 = (𝜁, 0)

]
. So with

some algebra, we obtain the initial condition in equation (10)
.



The initial condition in equation 11 is obtained as follows.
This condition is the MSEE from time step 𝑟 assuming there
is a transmission in each of the remaining time steps. This
means that �̂�𝑘 = 𝑥𝑘 for these remaining time steps. Since
the covariance of 𝑥𝑘 is 𝑃 𝑘, the total MSEE from 𝑟 to the
last time step is simply

∑𝑀
𝑘=𝑟 𝑃 𝑘 as given in equation 11.

Corollary 4.3 Proof: This result can be established through
mathematical induction.
Corollary 4.4 Proof: 𝑆0∗

𝑟 = ℛ,∀𝑟 = 0, 1, ...,𝑀 , and 𝜃0𝑟 =
∞. 𝑆𝑏∗

𝑟 = {0},∀𝑟 = 𝑀 + 1 − 𝑏, ...,𝑀 , and 𝜃𝑏𝑟 = 0, ∀𝑟 =
𝑀 + 1− 𝑏, ...,𝑀 . For the other cases,

𝑆𝑏∗
𝑟 = {𝜁 : 𝜁2 + 𝐸𝑒−𝑟+1

(𝑣(𝑒−𝑟+1, 𝑏; 𝑟 + 1)∣𝐼𝑟 = (𝜁, 𝑏)) ≤
𝐸𝑒−𝑟+1

(𝑣(𝑒−𝑟+1, 𝑏− 1; 𝑟 + 1)∣𝐼𝑟 = (0, 𝑏− 1))}.
From corollary 4.3 we can show that the second term is
a constant and the first term is symmetric about y-axis
and increasing about ∣𝜁∣. So 𝑆𝑏∗

𝑟 must be in the form of
[−𝜃𝑏𝑟, 𝜃

𝑏
𝑟].

REFERENCES

[1] M. Rabi, G. Moustakides, and J. Baras, “Multiple sampling for
estimation on a finite horizon,” in Decision and Control, 2006 45th
IEEE Conference on, 2006, pp. 1351–1357.

[2] K. Koumpis, L. Hanna, M. Andersson, and M. Johansson, “Wireless
industrial control and monitoring beyond cable replacement,” in 2nd
Profibus International Conference, 2005.

[3] G. Walsh, H. Ye, and L. Bushnell, “Stability analysis of networked
control systems,” in American Control Conference, 1999. Proceedings
of the 1999, vol. 4, 1999.

[4] W. Zhang, M. Branicky, and S. Phillips, “Stability of networked
control systems,” IEEE Control Systems Magazine, vol. 21, no. 1, pp.
84–99, 2001.

[5] D. Nesic and A. Teel, “Input-output stability properties of networked
control systems,” IEEE Transactions on Automatic Control, vol. 49,
no. 10, pp. 1650–1667, 2004.

[6] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan,
and S. Sastry, “Kalman filtering with intermittent observations,” IEEE
Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464,
2004.

[7] Y. Tsypkin, Relay Control Systems. Cambridge University Press,
1984.

[8] K. E. Arzen, “A simple event based pid controller,” in Proc. 14th IFAC
World Congress, 1999.

[9] Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE transactions on automatic control, vol. 52, no. 9, p. 1680,
2007.

[10] X. Wang and M. Lemmon, “Self-triggered feedback control systems
with finite-gain l 2 stability,” IEEE transactions on automatic control,
vol. 54, p. 452, 2009.

[11] ——, “Event-triggering in distributed networked systems with data
dropouts and delays,” in Proceedings of Hybrid Systems: computation
and control, 2009.

[12] K. Astrom and B. Bernhardsson, “Comparison of riemann and
lebesgue sampling for first order stochastic systems,” in Proceedings
of the IEEE Conference on Decision and Control, vol. 2, 2002, pp.
2011–2016.

[13] J. Sandee, W. Heemels, and P. van den Bosch, “Case studies in
event-driven control,” in Hybrid Systems: Computation and Control.
Springer, 2007, pp. 762–765.

[14] P. Wan and M. D. Lemmon, “Distributed network utility maximization
using event-triggered augmented lagrangian methods,” in Submitted to
American Control Conference, 2009.

[15] Y. Xu and J. Hespanha, “Optimal communication logics in networked
control systems,” in 43rd IEEE Conference on Decision and Control,
2004. CDC, vol. 4, 2004.

[16] A. Matveev and A. Savkin, “The problem of state estimation via
asynchronous communication channels with irregular transmission
times,” IEEE transactions on automatic control, vol. 48, no. 4, pp.
670–676, 2003.

[17] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and
S. Sastry, “Kalman filtering with intermittent observations,” Automatic
Control, IEEE Transactions on, vol. 49, no. 9, pp. 1453–1464, Sept.
2004.

[18] X. Liu and A. Goldsmith, “Kalman filtering with partial observation
losses,” in Decision and Control, 2004. CDC. 43rd IEEE Conference
on, vol. 4, Dec. 2004, pp. 4180–4186 Vol.4.

[19] B. Zhu, B. Sinopoli, K. Poolla, and S. Sastry, “Estimation over wireless
sensor networks,” in American Control Conference, 2007. ACC ’07,
July 2007, pp. 2732–2737.

[20] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic
sensor selection algorithm with applications in sensor scheduling and
sensor coverage,” Automatica, no. 2, pp. 251–260, 2 2006.

[21] J. Yook, D. Tilbury, N. Soparkar, E. Syst, and E. Raytheon, “Trading
computation for bandwidth: reducing communication indistributed
control systems using state estimators,” IEEE transactions on control
systems technology, vol. 10, no. 4, pp. 503–518, 2002.

[22] M. Rabi, G. Moustakides, and J. Baras, “Adaptive sampling for
linear state estimation,” Submitted to SIAM Journal on Control and
Optimization, http://www.ee.kth.se, 2008.

[23] R. Cogill, S. Lall, and J. Hespanha, “A constant factor approximation
algorithm for event-based sampling,” in American Control Conference,
2007. ACC’07, 2007, pp. 305–311.

[24] S. Dayanik and I. Karatzas, “On the optimal stopping problem for one-
dimensional diffusions,” Stochastic processes and their applications,
vol. 107, no. 2, pp. 173–212, 2003.


