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Abstract— This paper studies the input-to-state stabilizability
of quantized linear control systems with external noise under
feedback dropouts. A vector of feedback measurements is quan-
tized prior to being transmitted over a communication channel.
The transmitted data may be dropped by the channel. The
channel dropouts are governed by a stationary model, which
is quite general to include many realistic dropout models. This
paper derives a lower bound on the constant bit rates which
can stabilize the system under the given dropout condition.A
dynamic quantization policy is shown which can stablize the
system at that lower rate bound. So the minimum constant
stabilizing bit rate has be obtained. The achieved theoretical
results are also verified through an example.

I. I NTRODUCTION

In recent years there has been increasing interest in imple-
menting the feedback loop of a control system over a non-
deterministic digital communication network [1]. This may
have many benefits, such as lower cost, higher reliability, and
easier maintenance. These advantages are, however, achieved
at the cost of loss of perfect feedback information.

• Due to the network non-determinism, the feedback
information may be dropped or erased sometimes.

• Due to the digital nature of the network, all data must
be quantized before transmission, which will incur error
of feedback information, i.e., quantization error.

Then the results built upon the perfect feedback assumption
have to be re-evaluated. As the most important property
of control systems, stability is the first to check. A major
concern about such systems is stabilizability, i.e.,whether
the originally stabilizable system can still be stabilizedunder
the given network dropout and quantization conditions. Here
stability is measured by input-to-state stability (ISS) inthe
almost sure sense, which quantitatively characterizes the
system’s robustness against the input noise and the initial
condition[2] 1. In order to stabilize a linear system, not only
the controller but also quantization and dropout compensa-
tion policies will be designed.

Quantization requires the transmitted real-valued signal
to be represented with a finite number of bits, and incurs
quantization error, which can significantly affect stability
and performance of control systems. The most important
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1Among many types of stability [3], this paper investigates almost sure
stability because sample path properties are more important than the average
or moment behaviour in real applications.

parameter of quantization is the number of quantization
levels Q (per sample or packet), or the number of quan-
tization bits R (which is related toQ by R = log2(Q)).
The number of quantization bitsR is proportional to the
occupied network bandwidth (under the constant sampling
periods). SoR are often abused as“bit rate” . In order to save
network bandwidth, it is perferred to use as low as possible
bit rate to satisfy control requirements like stabilizability of
control systems. Sometimes the number of quantization bits
per packet is time-varying2 and the number of quantization
bits R is understood in the average sense. Under a given
dropout condition,what is the minimumR to stabilize a
control systemis the major question to be answered in the
present paper.

Much research on quantized control systems has been
done in the last two decades [4]. Many results on quan-
tized control systems assume that the quantization bits (or
symbols) areerrorlessly (dropout-freely) transmitted, which
may be violated in the situation of sharing network among
many control and non-control systems. The quantization
policies can be categorized into two groups, static one and
dynamic one.Static quantization policiestake a constant
quantization range, map each bit to a specific subset of that
range in a fixed(static) way. The attraction of static policies
is the simplicity of their coding/decoding schemes. Their
main drawback is that an infinite number of quantization
bits are required to ensure asymptotic stability of noise-
free control systems [5] [6]. When only a finite number
of quantization bits are availabe, the best to expect is the
ultimate boundedness of the state, instead of asymptotic
stability [7] [8]. Under the condition that an infinite number
of quantization bits are allowed, the lowest quantization
density of memoryless policies is given in [9] [10].

Compared with static policies,dynamic quantization poli-
ciesmay choose a time-varying quantization range and their
mapping between the quantization bits and the subsets of
the quantization range can also be time-varying. Although
more complicated, the dynamic policies can asymptotically
stabilize noise-free linear systems with a finite number
of quantization bits [11] [12] . The minimum number of
quantization bits to maintain asymptotic stability is given in
[13] [14], where variable length coding strategies are chosen
and the number of quantization bits is understood in the
average sense. Under the fixed length coding constraint, a
similar result is obtained in [15]. For quantized systems with

2It is helpful for improving communication efficiency to transmit a
constant number of bits in all packets, i.e., implement the fixed length
coding.



bounded exogenous noise, bounded-input-bounded-output
(BIBO) stability, instead of asymptotic stability, is pursued
and the minimum bit rate to achieve such stability is derived
[13] [16][17] while the input-to-state stability is investigated
in [18]. Due to their efficiency, dynamic quantization polies
are chosen in the present paper to stabilize quantized systems
with bounded noise.

Feedback dropout is less considered in the previous quan-
tization literature. It seems intuitively pleasing that when
the dropout rate is low, the stabilizability of the quantized
systems would be preserved under feedback dropouts. In
[19], the feedback dropout is modeled as an i.i.d. process
and it was asserted that thealmost sure stabilizabilityof
quantized linear systems can be guaranteed if the average
bit rate,R satisfies

R >

n
∑

i=1

max(0, |log2λi|) (1)

where λi (i = 1, · · · , n) are the eigenvalues of the open-
loop system matrix. The above statement is, however, proven
to be incorrect in [20]. Furthermore, it is shown that the
system state almost surely diverges for anyR [20]. In order
to reslove this diverging issue, one may

• Choose a weaker notion of stability, such as mean
square stability [21] [17] [22], under the given i.i.d.
dropout condition.

• Put constraints on the dropout sequences. In [23], the
BIBO stabilizability of quantized systems is preserved
under some dropout conditions different from the above
i.i.d. process.

Because mean square stable systems may still generate
sample paths with arbitrarily large state magnitude, the
first approach listed above may not be appropriate for real
applications. This paper, therefore, mainly focuses on the
second approach.

Because the dropout sequence in [19] is i.i.d., the prob-
ability of any number of consecutive dropouts is non-
zero, i.e., it is almost sure that dropout patterns with any
number of consecutive dropouts will occur. The consecutive
dropouts are the main reason to drive the state to diverge
from its equilibrium point (the origin)[20]. One may ask
a question“whether do the real networks allow arbitrarily
long consecutive dropouts?”Fortunately the answer isNO.
Real-time system engineers always work hard to avoid
consecutive dropouts. They proposed different constraints on
dropouts and made their best to guarantee these constaints.
One important constraint isskip-over policy [24], which
requires that there are at leasts successes between2 failures
(dropouts). Another one is(m,k)-firm guarantee rule [25]
[26], which requires that at leastm out of k consecutive
attempts succeed, i.e. at mostk − m dropouts are allowed
for k consecutive steps. A new constraint proposed in [27]
considers the effect of dropouts on system performance and
searches the“optimal” stochastic policy with the minimum
performance degradation under the given average dropout
rate. The present paper will give a dropout model (or a

constraint on the dropout sequences) more general than the
aforementioned ones later, and proves the quantized system
can be almost surely stabilized under that dropout condition
at the minimum constant rate, which is an extension of the
results in [18] by explicitly taking the feedback dropouts into
account.

The rest of this paper is organized as follows. Section
II presents the mathematical model of the quantized linear
system, and more importantly, the stabilizing dropout model.
Under the given dropout condition, we derive a lower bound
Rmin on the constant bit rates to stabilize the quantized
system in Section II. That lower boundRmin is shown to
be achievable, i.e., it is the minimum stabilizing constantbit
rate. The achievability ofRmin is shown by constructing a
quantizer in Section III. Simulation results of an example
system are also included to demonstrate the correctness of
the theoretical results in Section III. Some final remarks are
included in Section IV. To improve readability, we move all
technical proofs to the appendix, Section V.

II. M ATHEMATICAL MODELS

A. Model of the Quantized Linear System

This paper focuses on the system in Fig. 1. In Fig.
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Fig. 1. A quantized linear system

1, x[k] ∈ Rn is the state at time instantk (∈ Z−). For
simplicity, we assume the statex[k] is directly accessible by
the quantizer (encoder).x[k] is quantized into one ofQ (=
2R) symbols,s[k] and sent over the digital communication
network. Note that the fixed length coding is employed here
due to its bandwidth efficiency. The transmitted symbols[k]
is either received by the decoder with 1 step delay or dropped
(with a dropout represented by receiving the empty signal
φ). It is assumed that there exists reliable ACK to notify the
transmitter (encoder/quantizer) regarding dropouts. Define a
dropout indicator

d[k] =

{

1, Dropout at timek
0, Success at timek

(2)

{d[k]} is referred to as“dropout sequence”. The input of
the decoder in Fig. 1 is

s[k] =

{

s[k − 1], d[k] = 0
φ, d[k] = 1

The decoder uses all received symbols{s[k], s[k −
1], · · · , s[0]} to estimate the statex[k]. The state estimate is
denoted asxq[k], which can also be viewed as a quantized



version of x[k]. The control inputu[k] ∈ Rm is then
constructed fromxq[k]. In Fig. 1, the input signal,w[k] ∈
Rn, represents an exogenous bounded noise signal satisfying

sup
k≥0

‖w[k]‖ ≤ 0.5W (3)

where‖ · ‖ denotes the infinity norm of a vector.
For mathematical convenience, we write down the differ-

ence equation of the linear system in Fig. 1 as
{

x[k + 1] = Ax[k] + Bu[k] + w[k]
u[k] = Gxq [k]

(4)

The system is assumed to be stabilizable (under the perfect
feedback). So there must exist a stabilizing gainG. The
matricesA, B andG are of appropriate dimensions.

The system in eq. 4 has bounded noise input{ω[k]}.
We are interested in the input-to-state stability (ISS) of the
system [2]

‖x[k]‖ ≤ β′(‖x[0]‖, k) + γ′(sup
j≥0

‖w[j]‖), ∀k ≥ 0 (5)

where γ′(·) is a K function which is continous, strictly
increasing andγ′(0) = 0, β′(·, ·) is a KL function which
is a K function by fixing its second arguementk and is a
decreasing function to converge to0 ask → ∞ after fixing
the first argumentx[0].

The control inputu[k] in eq. 4 is computed from the
quantized statexq[k]. The quantization error is defined as
e[k] = x[k] − xq [k]. e[k] surely affects stabilizability of the
quantized system 4. It can be shown that the input-to-state
stability in eq. 5 is equivalent to the following equation [28]

‖e[k]‖ ≤ β(‖e[0]‖, k) + γ(sup
j≥0

‖w[j]‖), ∀k ≥ 0 (6)

where β(·, ·) is a KL function andγ(·) is a K function.
Therefore this paper establishes the input-to-state stabiliz-
ability of the system in eq. 4 through proving eq. 6.

Assumption 1:The system matrix in eq. 4,A, takes a real
Jordan canonical form, i.e.,

A = diag(J1, J2, · · · , JP ) (7)

where Ji is an ni × ni real matrix with a single real
eigenvalueλi (of the multiplicity ofni) or a pair of conjugate
eigenvaluesλi and λ∗

i (of the multiplicity of ni/2). |λi| ≥
1, ∀i.
For notational convenience, we define

α(A) =

P
∏

i=1

|λi|
ni (8)

B. Dropout model

Based on the dropout indicatord[k] in eq. 2, we define
the local dropout rate as

εl[k] =
1

l

l−1
∑

i=0

d[k + i] (9)

It is obvious that 0 ≤ εl[k] ≤ 1. For any l ∈ N ,
supk≥k0

εl[k] exists, is bounded between0 and1, and is non-
increasing w.r.t.k0. So the limitεl = limk0→∞ supk≥k0

εl[k]

must exist. Again,0 ≤ εl ≤ 1. Similarly we can show
another limit must exist

ε′ = lim
l0→∞

sup
l≥l0

εl (10)

We call ε′ in eq. 10 the average dropout rate, which may be
different from the ordinary definition of the average dropout
rate ε = liml→∞

1
l

∑l−1
k=0 d[k] For example,{d[k]} =

{101100111000 · · ·} givesε′ = 1 v.s. ε = 0.5.
Assumption 2:There exists0 ≤ ε̂ < 1 such that

lim
l0→∞

sup
l≥l0

(

lim
k0→∞

sup
k≥k0

εl[k]

)

≤ ε̂, almost surely. (11)

It can be verified that many real-time constraints, such as
the skip-overpolicy [24], the(m,k)-firm guarantee rule [25],
satisfy eq. 11. Under the dropout condition in eq. 11, we can
place the following upper bound on local dropout rates. Its
proof is straightforward and omitted here.

Corollary 2.1: Assume the dropout condition in eq. 11.
For any small numberδ > 0, we can find large enoughMδ

andkδ such that it is almost sure that

εMδ
[k] ≤ (ε̂ + δ), ∀k ≥ kδ (12)

Under the dropout condition in eq. 11,what is the smallest
R to stabilize the system?The following Lemma presents a
lower bound on all constant bit rates to stabilize the system
in eq. 4. Its proof closely follows that of Proposition 3.2 in
[19] and is omitted here.

Lemma 2.2:For dropout sequences satisfying eq. 11, if
the quantized system in eq. 4 can be almost surely stabilized
under a constant bit rate ofR, then

R ≥ Rmin =

⌊

1

1 − ε̂
log2 (α(A))

⌋

+ 1 (13)

whereα(A) is defined in eq. 8, andb·c stands for the flooring
operation over a real number.
The lower boundRmin on stabilizing bit rates in Lemma 2.2
can be achieved by the quantizer in Section III. SoRmin in
Lemma 2.2 is the minimum stabilizing bit rate.

III. M AIN RESULTS

A. Mathematical preliminaries of quantization policies

In order to construct the desirable quantizer, we need the
preliminaries in the following subsection.

1) Coordinate transformation:When the quantized sys-
tem 4 have complex eigenvalues, the coordinate transforma-
tion in [13] is needed.

z[k] = Hkx[k] (14)

where the transformation matrixH is defined as
H = diag(H1, H2, · · · , HP ). Each Hi is associated
with one of the Jordan blocksJi in eq. 7.
Specifcally, Hi = Ini

if λi (the eigenvalue ofJi)
is real and Hi = diag

(

r(θi)
−1, · · · , r(θi)

−1
)

with

r(θi) =

[

cos(θi) sin(θi)
−sin(θi) cos(θi)

]

if λi is complex and

λi = |λi|ejθi . By [13], eq. 14 transforms eq. 4 into

z[k + 1] = HAz[k] + Hk+1Bu[k] + w[k] (15)



wherew[k] = Hk+1w[k]. By the boundedness ofw[k] and
the structure ofH , we knoww[k] is still bounded,

‖w[k]‖ ≤ 0.5W = 0.5 × (2W ). (16)

Considering the structure ofH , we infer from eq. 14 that
0.5‖x[k]‖ ≤ ‖z[k]‖ ≤ 2‖x[k]‖ for any k ≥ 0. So the
input-to-state stability of eq. 4 (with the noise input of
{w[k]}) is equivalent to that of eq. 15. The present paper,
therefore, focuses on the boundedness ofz[k]. We usezq[k]
to denote the quantized version ofz[k], or the estimate of
z[k], at time k. The quantization error is represented as
e[k] = zq[k] − z[k]. As argued in Section II,{z[k]} satisfy
the ISS requirement in eq. 5 if and only if{e[k]} can satisfy
eq. 6.

2) Uncertainty set:Any closed set inRN can be over-
bounded by a rectangleP , which is characterized by its
centerzP and its side length vectorL = [L1, L2, · · · , LN ]T .
A rectangle with the center of the origin and the side length
vector L is denoted asrect(L). So P can be expressed as
P = zP + rect(L).

Corresponding to the block diagonal structure ofA in
eq. 7, we relabelL with a 2-dimensional index asL =
[L1,1, · · · , L1,n1

, · · · , LP,1, · · · , LP,nP
]T , where Li,j corre-

sponds to them − th entry of L with m =
∑i−1

l=1 nl + j.
The system in eq. 15 is perturbed by the unknown bounded

noise{w[k]}. Although it is impossible to exactly know the
statez[k], we can know the set whichz[k] lies within. That
set is referred to as the“uncertainty set”. The uncertainty
set is usually a closed set. We can, therefore, over-bound it
with a rectangleP [k]. Without confusion,P [k] is also called
the “uncertainty set” at timek. It is reasonable to estimate
z[k] by the center ofP [k], zq[k] (the quantized version of
z[k]). The quantization (estimation) error is

e[k] = zq[k] − z[k] ∈ rect(L[k])

whereL[k] is the side length vector ofP [k]. By the above
equation, we know{e[k]} satisfies eq. 6 if and only if

‖L[k]‖ ≤ βL(‖L[0]‖, k) + γL(sup
j≥0

‖w[j]‖), ∀k ≥ 0 (17)

whereβL(·, ·) is aKL function andγL(·) is aK function.
3) Evolution of uncertainty sets:As time moves forward,

we need to updateP [k], more specificallyzq[k] and L[k].
The general updating rule is given as followes. Suppose
z[k] ∈ P [k] = zq[k] + rect(L[k]) and the control at time
k is u[k]. We want to determine a rectangleP [k + 1] =
zq[k + 1] + rect(L[k + 1]) within which z[k + 1] lies.

By eq. 4 and the property of{w[k]} in eq. 3, we can
updatezq[k] andL[k] as

zq[k + 1] = HAxq[k] + Hk+1Bu[k] (18)

L[k + 1] = KL[k] +
[

W, W, · · · , W
]T

(19)

where H is defined in eq. 14, and K =
diag (K1, K2, · · · , KP ) with

Ki =











|λi| 1 0 · · · 0
0 |λi| 1 · · · 0
...

...
...

...
...

0 0 0 · · · |λi|











ni×ni

when λi is real,

Ki =











|λi|I E 0 · · · 0
0 |λi|I E · · · 0
...

...
...

...
...

0 0 0 · · · |λi|I











ni×ni

for complex

λi andE =

[

1 1
1 1

]

.

B. A stabilizing quantizer atR = Rmin

Lemma 2.2 places a lower boundRmin on all constant bit
rates which may be able to stabilize the system in eq. 4.Can
we stabilize the system under that dropout condition at the
minimum constant bit rateR = Rmin? This section gives
an affirmative answer to the above question. A quantizer at
R = Rmin is constructed. It is proven that under the dropout
condition in eq. 11, the proposed quantizer can stabilize
the system in eq. 4. So we know the lower boundRmin

is achievable, and is, therefore, the minimum stabilizing
constant bit rate.

Now we start to build the desired quantizer. LetQ =
2Rmin . Considering the definition ofRmin in eq. 13, we can
find a positive parameterρ such that

Q1−ε̂ > α(A)

(

1 + Q
3

ρ

)n

(20)

We first assume both the encoder and the decoder agree upon
that

z[0] ∈ P [0] = zq[0] + rect(L[0]) (21)

The quantizer chooses the “longest” side atk = 0 by the
following rule

(Ik, Jk) = arg max
i,j

(

Q2ρ
)j

Li,j [k] (22)

Partitioning side(Ik, Jk) into Q equal parts, we get a
modified side length vectorLIk,Jk [k]

LIk,Jk

i,j [k] =

{

Li,j [k], (i, j) 6= (Ik, Jk)
Li,j [k]/Q, (i, j) = (Ik, Jk)

Now the original setP [k] = zq[k] + U [k] is partitioned into
Q smaller setsPs[k] (s = 0, · · · , Q − 1)

Ps[k] = zq
s [k] + rect(L(Ik,Jk)[k])

where zq
s [k] = zq[k] + z

(Ik,Jk)
s and z

(Ik,Jk)
s is an n-

dimensional vector with the(Ik, Jk)-th element equal to
−Q+(2s+1)

2Q
LIk,Jk

[k] and other elements of0.

BecauseP [k] = ∪Q−1
s=0 Ps[k] and z[k] ∈ P [k], there must

exist s0 ∈ {0, · · · , Q − 1} such thatz[k] ∈ Ps0
[k]. Set

s[k] = s0, code s[k] into Rmin bits (or a symbol with
Q levels) and send these bits to the decoder through the
network. Upon receivings[k], decoder sends ACK back to
the encoder to confirm the receipt ofs[k]. Due to ACK, the
encoder and the decoder always agree upon the information



of z[k]: either z[k] ∈ zq[k] + rect(L[k]) (when s[k] is
dropped, i.e.,d[k] = 1) or z[k] ∈ zq

s[k][k]+ rect(L(Ik,Jk)[k])

(whens[k] is successfully transmitted, i.e.,d[k] = 0). Based
on the system equation 18, the encoder and decoder update
the state set,P [k + 1] (= zq[k + 1] + rect(L[k + 1])), as










































Whend[k] = 1:
{

L[k + 1] = KL[k] + [W, · · · , W ]T

zq[k + 1] = HAzq[k] + Hk+1Bu[k]
,

Whend[k] = 0:










L[k + 1] = KLIk,Jk [k] + [W, · · · , W ]T

zq[k + 1] = HAzq[k] + Hk+1Bu[k]

+HAz
(Ik,Jk)
s[k]

.

(23)

where the control variable is computed as

u[k] = G
(

H−kzq[k]
)

. (24)

The quantization policy is summarized into the following
algorithm.

Algorithm 1: Quantization algorithm:
Encoder/Decoder initialization:
Initialize zq[0] andL[0] so thatz[0] ∈ zq[0]+rect(L[0]) and
setk = 0.
Encoder Algorithm:

1) Selectthe indices(Ik, Jk) by eq. 22.
2) Quantize the statez[k] by settings[k] = s if z[k] ∈

zq[k] + z
(Ik,Jk)
s + rect(L(Ik,Jk)[k]).

3) Transmit the quantized symbols[k] and wait for ACK.
If ACK is received before timek + 1, d[k] = 0;
otherwise,d[k] = 1.

4) Update zq[k + 1] andL[k + 1] by eq. 23 immediately
before timek + 1. Update time index,k = k + 1 and
return to step 1.

Decoder Algorithm:
1) Compute control for timek by eq. 24.
2) Wait for the quantized data,s[k], from the encoder. If

s[k] is received before timek, send ACK to decoder
and setd[k] = 0; otherwise, setd[k] = 1.

3) Update zq[k + 1] andL[k + 1] by eq. 23 immediately
before timek + 1. Update time index,k = k + 1 and
return to step 1.

Remark: Note that when a symbols[k] is dropped, it will
not be re-transmitted. Instead, a new symbol at the next
time s[k + 1] is generated from the new statex[k + 1] and
transmitted.

Under the quantizer in Algorithm 1, the quantized system
in eq. 4 is input-to-state stable in the almost sure sense. That
result is formally presented by Theorem 3.1. Its proof is
moved to Section V to improve readability.

Theorem 3.1:Let Rmin =
⌊

1
1−ε

log2 (α(A))
⌋

+ 1 and

Q = 2Rmin . The dropout model in eq. 11 is assumed. The
quantized linear system in eq. 4 is almost surely input-to-
state stable under the quantizer in Algorithm 1.
Remark: Algorithm 1 can guarantee the input-to-state sta-
bility in the almost sure sense at theminimumconstant bit
rate Rmin. Compared with the ultimate state boundedness

in the prior literature [23], input-to-state stability describes
more precisely the dependence of the state on the bounded
noise and the initial condition [18]. Moreover, the input-to-
state stability in Theorem 3.1 unifies both the asymptotic
stability of noise-free quantized systems [15] and the BIBO
stability of quantized systems perturbed by bounded noise
[23] at the minimum bit rate. Compared with [18], Theorem
3.1 explicitly takes the dropouts into account.

C. Simulation results

Here we verify the obtained theoretical results
through an example system. Its parameters are

A =





1.1 1 0
0 1.1 1
0 0 1.1



, B =





0
0
1



, G =

[−1.29,−3.56,−3.27]. The dropout sequence is governed
by a (2, 3)-firm model, i.e., among any3 consecutive
packets, at least2 ones are transmitted successfully. So
ε̂ = 1/3, Rmin = 1 and Q = 2. According to eq. 20, we
chooseρ = 109.1. Initial conditions areL[0] = [1, 1, 1]T ,
x[0] = [0, 0, 0]T , xq[0] = [0, 0, 0]T . The simulation results
for W = 1 and W = 0 are shown in Fig. 2. Note that the
zoom-in versions of the two figures are also shown. It can
be seen that the quantization error‖e[k]‖ is bounded by
‖L[k]‖ (confirming there is no overflowing in quantization),
and ‖L[k]‖ and ‖x[k]‖ are bounded forW = 1 and are
asymptotically converging to0 for W = 0 (verifying
Theorem 3.1).
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Fig. 2. ‖L[k]‖, ‖e[k]‖ and‖x[k]‖ with : (top) W = 1; (bottom)W = 0.

IV. CONCLUSIONS

This paper studies input-to-state stabilizability of quan-
tized systems with feedback dropouts and bounded noise at



constant bit rates. It derives a lower bound on the constant
bit rates required to stabilize the system. That lower bound
can be achieved by a dynamic quantization policy. Due to
its achievability, that lower bound is actually the minimum
constant bit rate to stabilize the quantized system.

In this paper, only boundedness of the state is of interest.
The achieved bound on the quantization error may be used to
measure the quantization policy’s performance. The bound in
this paper may, however, be too loose to adequately measure
that performance. Future work will look for a better bound.
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V. A PPENDIX:PROOF OFTHEOREM 3.1

Theorem 3.1 is proven through constructing the following
bound onL[k]

‖L[k]‖ ≤ c1‖L[0]‖ηk + c2W, ∀k (25)

wherec1 and c2 are two constants to be determined, andη
is a positive constant less than1.

The dropout sequence satisfies the condition in eq. 11. By
Corollary 2.1 and eq. 13, we can place the following upper
bound on the local dropout rateεl[k].

Lemma 5.1:There existsδ > 0, N ∈ N andk1 ∈ N to
almost surely guarantee that, for∀l ≥ N, ∀k ≥ k1,

{

εl[k] ≤ ε̂ + δ

Q1−ε̂−δ ≥ α(A)
(

1 + 3Q
ρ

)n (26)

η =
n

√

√

√

√

α(A)
(

1 + 3Q
ρ

)n

Q1−ε̂−δ
< 1. (27)

By comparingW and‖L[k1]‖, we see there are two cases:
(i). W ≥ ‖L[k1]‖; (ii). W < ‖L[k1]‖. We will find upper
bounds on‖L[k]‖ (k ≥ k1) for both cases, respectively. By
combining these bounds, together with a bound on‖L[k]‖
for k < k1, we will get eq. 25.

A. WhenW ≥ ‖L[k1]‖

Define

ri,j [k] =

{

max
(

Li,j[k], ρW
)

, j = ni

max (Li,j [k], ρri,j+1[k]) , j < ni
(28)

p[k] =

P
∏

i=1

ni
∏

j=1

ri,j [k] (29)

It is straigtforward to get
{

ri,j [k] ≥ Li,j [k]

ri,j [k] ≥ ρni−j+1W ≥ ρW ≥ W
. (30)

where the parameterρ is defined in eq. 20. There are two
bounds on the growth rate ofri,j [k].

Lemma 5.2:For ∀k, ∀i = 1, · · · , P ; j = 1, · · · , ni,

ri,j [k + 1]

ri,j [k]
≤ |λi|

(

1 +
3Q

ρ

)

. (31)



Sketch of proof: We prove eq. 31 for a complexλi as an
example. Mathematical induction method is applied. When
j = ni, Algorithm 1 tells us

Li,ni
[k + 1] ≤ |λi|Li,ni

[k] + W

= |λi|Li,ni
[k] +

1

ρ

(

ρW
)

< |λi|

(

1 +
3Q

ρ

)

ri,ni
[k]

Similar procedure can be applied toj = ni−1. Now suppose
eq. 31 holds forj ≤ j0 (≤ ni − 1). We want to verify eq.
31 for j = j1 = j0 − 1. Assumej1 is even. By Algorithm
1, we know

Li,j1 [k + 1] ≤ |λi|Li,j1 [k] + Li,j1+1[k] + Li,j1+2[k] + W

≤ |λi|

(

1 +
3Q

ρ

)

ri,j1 [k] (32)

If ri,j1 [k +1] = Li,j1 [k +1], eq. 32 yields eq. 31. Otherwise
ri,j1 [k + 1] = ρri,j1+1[k + 1], and we get the conclusion
from ri,j1 [k] ≥ ρri,j1+1[k] and the assumption that eq. 31
holds for j ≥ j1 + 1 = j0. The other cases, such as realλi

and complexλi with odd j1, can be similarly proven.♦
The upper bound in Lemma 5.2 is quite loose. The

following Lemma presents a tighter one.
Lemma 5.3:Suppose side(Ik, Jk) is the longest at time

k according to the criterion in Algorithm 1. Whend[k] = 0
andLIk,Jk

[k] ≥ Q2ρnIk
−Jk+1W ,

rIk,Jk
[k + 1]

rIk,Jk
[k]

≤
|λi|

Q

(

1 +
3Q

ρ

)

. (33)

Sketch of proof: Under the condition ofLIk,Jk
[k] ≥

Q2ρnIk
−Jk+1W , we can show thatrIk,Jk

[k] = LIk,Jk
[k]

based on the selection rule of(Ik, Jk) (i.e.,
(

Q2ρ
)Jk LIk,Jk

[k] ≥
(

Q2ρ
)j

LIk,j[k], j = Jk + 1, · · · , nIk
).

By the updating rule ofLi,j [k], we knowLIk,Jk
[k + 1] ≥

|λi|
Q

LIk,Jk
[k], which, together with the previous lower

bound onLIk,j [k + 1] (j ≥ Jk + 1), the selection rule of
(Ik, Jk) and Lemma 5.2, produces

{

LIk,Jk
[k + 1] = rIk,Jk

[k + 1]

LIk,Jk
[k + 1] ≤ |λi|

Q

(

1 + 3Q
ρ

)

rIk,Jk
[k]

So eq. 33 is reached.♦
By eq. 29,p[k] is just the product of allri,j [k]. Combining

Lemmas 5.2 and 5.3, we get
Lemma 5.4:

p[k + 1] ≤ α(A)

(

1 +
3Q

ρ

)n

p[k] < Qp[k], ∀k. (34)

Whend[k] = 0 andp[k] ≥
∏P

i=1

∏ni

j=1

(

Q2ρni−j+1W
)

,

p[k + 1] ≤
1

Q
α(A)

(

1 +
3Q

ρ

)n

p[k] (35)

Sketch of proof: Eq. 34 simply comes from Lemma 5.2.
When p[k] ≥

∏P
i=1

∏ni

j=1

(

Q2ρni−j+1W
)

, we can show
LIk,Jk

[k] ≥ Q2ρnIk
−Jk+1W by the contradition method.

Combining eq. 31 and 33 gives eq. 35.♦

Now we partition the time instants into windows with the
duration ofN (see Lemma 5.1 for the definition ofN ). We
get an upper bound onp[mN + k1] (m = 0, 1, · · ·).

Lemma 5.5:It is almost sure that

p[mN + k1] ≤ QN

P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1W
)

, ∀m ≥ 0. (36)

Proof: We prove it by mathematical induction. Eq. 36 is
trivially true for m = 0 because‖L[k1]‖ ≤ W . Suppose eq.
36 holds form = m1 − 1. Now we try to prove it works for
m = m1. By Lemma 5.1, we know it is almost sure that

εN [k] ≤ ε̂ + δ, ∀k ≥ k1.

Let T = N − bN(ε̂ + δ)c. There are at leastT successfully
transmitted packets from time(m1−1)N +1+k1 to m1N +
k1. Denote the time instants of successful transmissions as
k1, k2, · · · , kT . If at one of these instants, to saykj ,

p[kj ] <
P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1W
)

(37)

By implementing eq. 34 fromk = kj to k = m1N + k1, we
get

p[m1N + k1] ≤ Qm1N+k1−kj p[kj ]

≤ QN

P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1W
)

If for all k ∈ {k1, k2, · · · , kT }, eq. 37 is false, i.e.,

p[kj ] ≥
P

∏

i=1

ni
∏

j=1

(

Q2ρni−j+1W
)

, ∀kj (38)

Implementing eq. 35 atk = kj (j = 1, · · · , T ) and eq. 34 at
other time instants yields

p[m1N + k1] ≤

(

α(A)
(

1 + 3Q
ρ

)n)N

QT
p[(m1 − 1)N + k1]

≤





α(A)
(

1 + 3Q
ρ

)n

Q1−ε̂−δ





N

p[(m1 − 1)N + k1]

≤ p[(m1 − 1)N + k1]

By the assumption that eq. 36 holds atm = m1 − 1, we
know from the above inequality that eq. 36 is also valid for
m = m1. The proof has been completed.♦.

For mN + k1 ≤ k < (m + 1)N + k1, we can implement
eq. 34 frommN + k1 to k, together with Lemma 5.5, to
reach

Corollary 5.6: It is almost sure that

p[k] ≤ Q2N

P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1W
)

, ∀k ≥ k1 (39)

p[k] is the product ofn terms,ri′,j′ [k](i′ = 1, · · · , P ; j′ =
1, · · · , ni′ ). Among these terms, we consider a particular one
with i′ = i, j′ = j. With the lower bounds ofri′,j′ [k](i′ 6=



i orj′ 6= j) in eq. 30 and the upper bound ofp[k] in Corollary
5.6, we obtain

Proposition 5.7:For ∀k ≥ k1,

Li,j [k] ≤ ri,j [k] ≤ Q2N





P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1
)



 W. (40)

B. WhenW < ‖L[k1]‖

There existk2 (k2 > k1) such that‖L[k1]‖ηk2−k1 ≥ W
and‖L[k1]‖ηk2−k1+1 < W , whereη is defined in eq. 27.

1) Under the conditionk ≤ k2,: we redefineri,j [k] and
p[k] into r′i,j [k] andp′[k] as







r′i,j [k] =

{

max(Li,ni
[k], ρηk−k1‖L[k1]‖), j = ni

max(Li,j [k], ρri,j+1[k]), j < ni

p′[k] =
∏P

i=1

∏ni

j=1 r′i,j [k]

Similar to Lemmas 5.2 and 5.3, we can get
Lemma 5.8:For ∀k ∈ {k1, k1 + 1, · · · , k2},






r′

i,j [k+1]

r′

i,j
[k] ≤ |λi|

(

1 + 3Q
ρ

)

p′[k + 1] ≤ α(A)
(

1 + 3Q
ρ

)n

p[k] < Qp′[k]
. (41)

When LIk,Jk
[k] ≥ Q2ρnIk

−Jk+1ηk−k1‖L[k1]‖ and d[k] =
0,

r′Ik,Jk
[k + 1]

r′Ik,Jk
[k]

≤
|λi|

Q

(

1 +
3Q

ρ

)

. (42)

When p′[k] ≥
∏P

i=1

∏ni

j=1

(

Q2ρni−j+1ηk−k1‖L[k1]‖
)

and
d[k] = 0,

p′[k + 1] ≤
1

Q
α(A)

(

1 +
3Q

ρ

)n

p′[k] (43)

Under the condition in eq. 26,

p′[k] ≤ Q2N

P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1ηk−k1‖L[k1]‖
)

(44)

Similar to eq. 30, we get, for∀k ∈ {k1, k1 + 1, · · · , k2},
{

r′i,j [k] ≥ Li,j [k]

r′i,j [k] ≥ ρni−j+1ηk−k1‖L[k1]‖ > ηk−k1‖L[k1]‖
. (45)

Considering the definition ofp′[k] and applying eq. 45 to eq.
44, we get whenk1 ≤ k ≤ k2,

Li,j [k] ≤ Q2N





P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1
)



 ηk−k1‖L[k1]‖. (46)

2) Under the conditionk ≥ k2+1: Starting fromk ≥ k1,
the time intants are grouped into epoches with the duration of
N . Let m0 = b(k2 − k1)/Nc. Because‖L[k1]‖η

k2+1−k1 ≤
W andk2 + 1 − k1 ≤ (m0 + 1)N , we know

ηm0N‖L[k1]‖ ≤
1

ηN
W

Becausem0N + k1 ≤ k2, eq. 46 is applicable and yields

Li,j[m0N + k1]

≤ Q2N





P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1
)



 ηm0N‖L[k1]‖ (47)

≤ Q2N





P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1
)





W

ηN
(48)

Define W
′

= Q2N

ηN

(

∏P
i=1

∏ni

j=1

(

Q2ρni−j+1
)

)

W . Note

that W
′
≥ W . Similar to ri,j [k] and p[k], we define, for

k ≥ m0N + k1,

r′′i,j [k] =

{

max
(

Li,j[k], ρW
′
)

, j = ni

max
(

Li,j [k], ρr′′i,j+1[k]
)

, j < ni

(49)

p′′[k] =

P
∏

i=1

ni
∏

j=1

r′′i,j [k] (50)

So we can repeat the previous procedure for the case of
‖L[k1]‖ ≤ W to get a result similar to eq. 40

Li,j [k]

≤ Q2N





P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1
)



W
′

=



Q2N





P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1
)









2

1

ηN
W (51)

for ∀k ≥ m0N + k1. Of course, the above inequality holds
for k ≥ k2 due tok2 ≥ m0N + k1.

C. Final proof to Theorem 3.1

From time0 to k1, we can easily deduce the following
inequality on‖L[k]‖ by the updating rule ofL[k]

‖L[k + 1]‖ ≤ (α(A) + 2) ‖L[k]‖ + W

So it is straightforward to reach

‖L[k]‖ ≤ (α(A) + 2)
k1 ‖L[0]‖ + (α(A) + 2)

k1 W, (52)

for ∀k ∈ {0, 1, · · · , k1}. Eq. 40, 46, 51 and 52 provide4
upper bounds onLi,j [k] under4 different conditions. These
4 bounds can be bounded byc1‖L[0]‖ηk+ 1

2c2W from above
for ∀k ≥ 0 with














c1 = Q2N
(

∏P
i=1

∏ni

j=1

(

Q2ρni−j+1
)

)

η−k1 (α(A) + 2)
k1

c2 = 2
(

Q2N
(

∏P
i=1

∏ni

j=1

(

Q2ρni−j+1
)

))2

×η−k1−N (α(A) + 2)
k1

Then it is almost sure that

‖L[k]‖ ≤ c1‖L[0]‖ηk +
1

2
c2W

≤ c1‖L[0]‖ηk + c2W, ∀k ≥ 0

where the relationshipW = 2W is utilized. The proof of
Theorem 3.1 has been completed.♦


