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Abstract— This paper studies the input-to-state stabilizability =~ parameter of quantization is the number of quantization
of quantized linear control systems with external noise undr |eyels Q@ (per sample or packet), or the number of quan-
feedback dropouts. A vector of feedback measurements is gona tization bits R (which is related toQ by R = log2(Q)).

tized prior to being transmitted over a communication chanrel. Th b f tizati bitg i i | to th
The transmitted data may be dropped by the channel. The € number or quantization bit& 1S proportional to the

channel dropouts are governed by a stationary model, which 0occupied network bandwidth (under the constant sampling
is quite general to include many realistic dropout models. fis  periods). SaR are often abused dbit rate” . In order to save

paper derives a lower bound on the constant bit rates which network bandwidth, it is perferred to use as low as possible
can stabilize the system under the given dropout conditionA it rate to satisfy control requirements like stabilizéibf

dynamic quantization policy is shown which can stablize the trol t s fi th b f tization bit
system at that lower rate bound. So the minimum constant control systems. sometimes the number of quantization bits

stabilizing bit rate has be obtained. The achieved theoretal ~Per packet is time-varying and the number of quantization
results are also verified through an example. bits R is understood in the average sense. Under a given

dropout condition,what is the minimumR to stabilize a
control systemis the major question to be answered in the
In recent years there has been increasing interest in impleresent paper.
menting the feedback loop of a control system over a non- Much research on guantized control systems has been
deterministic digital communication network [1]. This maydone in the last two decades [4]. Many results on quan-
have many benefits, such as lower cost, higher reliabilitgt, a tized control systems assume that the quantization bits (or
easier maintenance. These advantages are, however,etthiesymbols) areerrorlessly (dropout-freely) transmitted, which
at the cost of loss of perfect feedback information. may be violated in the situation of sharing network among
« Due to the network non-determinism, the feedbackiany control and non-control systems. The quantization
information may be dropped or erased sometimes. policies can be categorized into two groups, static one and
« Due to the digital nature of the network, all data musglynamic one.Static quantization policietake a constant
be quantized before transmission, which will incur errofluantization range, map each bit to a specific subset of that
of feedback information, i.e., quantization error. range in a fixed(static) way. The attraction of static pekci

Then the results built upon the perfect feedback assumptiéh the simplicity of their coding/decoding schemes. Their
have to be re-evaluated. As the most important properﬂ)_a'n drawba(_:k is that an infinite number of_ _quantlzat_lon
of control systems, stability is the first to check. A majooits are required to ensure asymptotic stability of noise-
concern about such systems is stabilizability, ivenether fré€ control systems [5] [6]. When only a finite number
the originally stabilizable system can still be stabilizesier ©f quantization bits are availabe, the best to expect is the
the given network dropout and quantization conditiddere  Ultimate boundedness of the state, instead of asymptotic
stability is measured by input-to-state stability (ISS)tfre ~ StaPility [7] [8]. Under the condition that an infinite nuntbe
almost sure sense, which quantitatively characterizes tQE quantization bits are allowed, the lowest quantization
system’s robustness against the input noise and the init@§nSity of memoryless policies is given in [9] [10]. ,
condition[2] . In order to stabilize a linear system, not only . Compared with static policieslynamic quantization poli-

the controller but also quantization and dropout compensSi€Smay choose a time-varying quantization range and their
tion policies will be designed. mapping between the quantization bits and the subsets of
Quantization requires the transmitted real-valued signifl® duantization range can also be time-varying. Although
to be represented with a finite number of bits, and incur@re complicated, the dynamic policies can asymptotically
quantization error, which can significantly affect stapili stabilize noise-free linear systems with a finite number

and performance of control systems. The most importaff duantization bits [11] [12] . The minimum number of
guantization bits to maintain asymptotic stability is givie
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bounded exogenous noise, bounded-input-bounded-outgonstraint on the dropout sequences) more general than the
(BIBO) stability, instead of asymptotic stability, is puexd  aforementioned ones later, and proves the quantized system
and the minimum bit rate to achieve such stability is derivedan be almost surely stabilized under that dropout corditio
[13] [16][17] while the input-to-state stability is invégated at the minimum constant rate, which is an extension of the
in [18]. Due to their efficiency, dynamic quantization pslie results in [18] by explicitly taking the feedback dropouttoi
are chosen in the present paper to stabilize quantizedsgsteaccount.
with bounded noise. The rest of this paper is organized as follows. Section
Feedback dropout is less considered in the previous qudh-presents the mathematical model of the quantized linear
tization literature. It seems intuitively pleasing that ewh system, and more importantly, the stabilizing dropout nhode
the dropout rate is low, the stabilizability of the quantize Under the given dropout condition, we derive a lower bound
systems would be preserved under feedback dropouts. K., on the constant bit rates to stabilize the quantized
[19], the feedback dropout is modeled as an i.i.d. procesystem in Section Il. That lower boun#,,;, is shown to
and it was asserted that tl@most sure stabilizabilityof —be achievable, i.e., it is the minimum stabilizing constaint
guantized linear systems can be guaranteed if the averag¢e. The achievability oR,,;, is shown by constructing a

bit rate, R satisfies qguantizer in Section lll. Simulation results of an example
n system are also included to demonstrate the correctness of
R> Zmau’ﬂ(O, llogaXi|) (1) the theoretical results in Section Ill. Some final remarles ar
= included in Section IV. To improve readability, we move all
where); (i = 1,---,n) are the eigenvalues of the Open_technlcal proofs to the appendix, Section V.
loop system matrix. The above statement is, however, proven 1. MATHEMATICAL MODELS

to be incorrect in [20]. Furthermore, it is shown that thea podel of the Quantized Linear System
system state almost surely diverges for @y20]. In order
to reslove this diverging issue, one may

« Choose a weaker notion of stability such as mean K]
square stability [21] [17] [22], under the given i.i.d. ulk]
dropout condition.

« Put constraints on the dropout sequencesn [23], the pal
BIBO stabilizability of quantized systems is preserved

under some dropout conditions different from the above

This paper focuses on the system in Fig. 1. In Fig.

K]

Xk +1] = AK] + BUK] +wK] ’—‘

Encoder/Quantize! :

i.i.d. process. - 0121 |
Because mean square stable systems may still generate Digital Feedback Path ‘
sample paths with arbitrarily large state magnitude, the ‘
first approach listed above may not be appropriate for real Fig. 1. A quantized linear system
applications. This paper, therefore, mainly focuses on the
second approach. 1, z[k] € R™ is the state at time instarit (¢ Z~). For

Because the dropout sequence in [19] is i.i.d., the proksimplicity, we assume the staigk] is directly accessible by
ability of any number of consecutive dropouts is nonthe quantizer (encodery[k] is quantized into one of) (=
zero, i.e., it is almost sure that dropout patterns with any~) symbols,s[k] and sent over the digital communication
number of consecutive dropouts will occur. The consecutivigetwork. Note that the fixed length coding is employed here
dropouts are the main reason to drive the state to divergge to its bandwidth efficiency. The transmitted symbal
from its equilibrium point (the origin)[20]. One may ask s either received by the decoder with 1 step delay or dropped
a question‘whether do the real networks allow arbitrarily (with a dropout represented by receiving the empty signal
long consecutive dropoutsFortunately the answer NO.  ¢). It is assumed that there exists reliable ACK to notify the
Real-time system engineers always work hard to avoigiansmitter (encoder/quantizer) regarding dropouts.ri2efi
consecutive dropouts. They proposed different conssa@int dropout indicator
dropouts and made their best to guarantee these constaints.
One important constraint iskip-over policy [24], which 2
requires that there are at leassuccesses betwee@rfailures
(dropouts). Another one i¢m,k}firm guarantee rule [25] {d[k]} is referred to asdropout sequence’ The input of
[26], which requires that at least out of & consecutive the decoder in Fig. 1 is
attempts succeed, i.e. at mdst- m dropouts are allowed
for k consecutive steps. A new constraint proposed in [27 s[k] = sl —1], d[k] =0

P prop [27] k=1 dik] = 1
considers the effect of dropouts on system performance and ’
searches théoptimal” stochastic policy with the minimum The decoder uses all received symbofs[k|,s[k —
performance degradation under the given average dropdyt---,35[0]} to estimate the state[k]. The state estimate is
rate. The present paper will give a dropout model (or denoted as?[k], which can also be viewed as a quantized

k] = 1, Dropout at timek
~ 1 0, Success attimé



version of z[k]. The control inputulk] € R™ is then
constructed frome4[k]. In Fig. 1, the input signahu[k] €

R™, represents an exogenous bounded noise signal satisfying ,

must exist. Again0 < g < 1. Similarly we can show
another limit must exist

¢ = lim supg (20)

sup [[w[k]]| < 0.5W €) o001l
k20 We call¢’ in eq. 10 the average dropout rate, which may be
where|| - || denotes the infinity norm of a vector. different from the ordinary definition of the average dropou
For mathematical convenience, we write down the differrate # = 1im;_, o % ch;lo d[k] For example,{d[k]} =
ence equation of the linear system in Fig. 1 as {101100111000- - -} givese’ = 1 v.s. = 0.5.
{ alk+1) = Ax[k] + Bulk] + wlk] @ Assumption 2:There exist9) < ¢ < 1 such that
ulk] = Gai[k]

The system is assumed to be stabilizable (under the perfectlio—oco >,

feedback). So there must exist a stabilizing gé&in The
matricesA, B and G are of appropriate dimensions.

The system in eq. 4 has bounded noise inpuwtk]}.
We are interested in the input-to-state stability (ISS) e t
system [2]

(k)1 < & ({0, k) + 7 Gup el ¥ 2 0 (5)
where ~/(+) is a K function which is continous, strictly
increasing andy’(0) = 0, §'(-,-) is a KL function which
is a IC function by fixing its second arguemehtand is a
decreasing function to converge @oas k — oo after fixing
the first argument|0].

The control inputulk] in eq. 4 is computed from the

lim sup ( lim sup sl[k]) < &, almost surely.  (11)

(fcmkzko _ _
It can be verified that many real-time constraints, such as

the skip-overpolicy [24], the(m,k)}firm guarantee rule [25],
satisfy eq. 11. Under the dropout condition in eqg. 11, we can
place the following upper bound on local dropout rates. Its
proof is straightforward and omitted here.

Corollary 2.1: Assume the dropout condition in eq. 11.
For any small numbef > 0, we can find large enough/;
and ks such that it is almost sure that

em; k] < (E+9),VE > ks (12)
Under the dropout condition in eq. Mhat is the smallest
R to stabilize the systemPhe following Lemma presents a
lower bound on all constant bit rates to stabilize the system
in eq. 4. Its proof closely follows that of Proposition 3.2 in

quantized state:?[k]. The quantization error is defined as[19] and is omitted here.

elk] = x[k] — z9[k]. e[k] surely affects stabilizability of the

Lemma 2.2:For dropout sequences satisfying eq. 11, if

quantized system 4. It can be shown that the input-to-stafge quantized system in eq. 4 can be almost surely stabilized

stability in eq. 5 is equivalent to the following equatior8]2
lle[k]ll < B(lle[0][], k) + v(sgg [wls]l), V& = 0 (6)
Jj=Z

where 5(-,-) is a KL function and~(-) is a K function.
Therefore this paper establishes the input-to-state ligtabi
ability of the system in eq. 4 through proving eq. 6.

Assumption 1:The system matrix in eq. 4, takes a real
Jordan canonical form, i.e.,

A:diag(Jl,Jg,---,Jp) (7)

where J; is an n; x n; real matrix with a single real
eigenvalue\; (of the multiplicity of n;) or a pair of conjugate
eigenvalues\; and A} (of the multiplicity of n;/2). |A;| >
1,Vi.

For notational convenience, we define

P
a(A) =TTl
i=1

B. Dropout model

Based on the dropout indicatdfk] in eq. 2, we define
the local dropout rate as

l

(8)

|
-

£l [k]

o~ =

dlk + ] 9)

Il
o

It is obvious that0 < g[k] < 1. For anyl € W,

supy >, €11k| exists, is bounded betweérand1, and is non-
increasing w.r.tko. So the limitg; = limy, oo SUPL>, €1[K]

under a constant bit rate @, then

logo (a(A))J +1

1-¢ (13)
wherea(A) is defined in eq. 8, ang| stands for the flooring
operation over a real number.

The lower boundR,,,;,, on stabilizing bit rates in Lemma 2.2
can be achieved by the quantizer in Section Ill. BgQ;, in
Lemma 2.2 is the minimum stabilizing bit rate.

I1l. M AIN RESULTS

A. Mathematical preliminaries of quantization policies

In order to construct the desirable quantizer, we need the
preliminaries in the following subsection.

1) Coordinate transformationWhen the quantized sys-
tem 4 have complex eigenvalues, the coordinate transforma-
tion in [13] is needed.

(14)

where the transformation matrixdd is defined as

H diag(H,, Hs,---,Hp). Each H; is associated

with  one of the Jordan blocksJ; in eq. 7.

Specifcally, H; I,, if X\ (the eigenvalue of.J;)

is real and H; diag (r(0;)~1, -+ r(6;)"") with
cos(6;)  sin(6;)

r(:) = L—sm(é‘i) cos(6;)

i = |\ile??i. By [13], eq. 14 transforms eq. 4 into

z[k + 1] = HAz[k] + H"™ Bu[k] + @[k]

if \; is complex and

(15)



wherew[k] = H**'w[k]. By the boundedness af[k] and A 10 -0

the structure off, we knoww[k] is still bounded, N .
K; = : .. ) when ); is real,
|@[k]|| < 0.5W = 0.5 x (2W). (16) o 0 0 NI
Considering the structure dff, we infer from eq. 14 that nfl B0 -0
0.5|z[k]|| < ||z[k]|| < 2||z[k]|| for any k& > 0. So the . | O [N E -0 or complex
input-to-state stability of eq. 4 (with the noise input of " : : Do : P
{wl[k]}) is equivalent to that of eq. 15. The present paper, 0 0 0 - NI
therefore, focuses on the boundedness[bf. We usez?[k] frix
. . . 11
to denote the quantized version of], or the estimate of Ai andE = { 11 ]

z[k], at time k. The quantization error is represented as
e[k] = 29[k] — z[k]. As argued in Section II{z[k]} satisfy B. A stabilizing quantizer a? = R..n
the ISS requirement in eq. 5 if and only{ié[k]} can satisfy ~ Lemma 2.2 places a lower bouift},,;,, on all constant bit
eq. 6. rates which may be able to stabilize the system in eGah

2) Uncertainty set:Any closed set inR™ can be over- we stabilize the system under that dropout condition at the
bounded by a rectangl®’, which is characterized by its minimum constant bit rate? = R,,;,? This section gives
centerz” and its side length vectdt = [Ly, Lo, ---, Ly]T.  an affirmative answer to the above question. A quantizer at
A rectangle with the center of the origin and the side lengtl® = R,,.;,, is constructed. It is proven that under the dropout
vector L is denoted asect(L). So P can be expressed ascondition in eq. 11, the proposed quantizer can stabilize

P =2 4 rect(L). the system in eq. 4. So we know the lower bouRg;,
Corresponding to the block diagonal structure Afin is achievable and is, therefore, the minimum stabilizing

eq. 7, we relabell with a 2-dimensional index ad. = constant bit rate.

[Li1,- Limy, - Lp1,--, Lpnp]’, where L; ; corre- Now we start to build the desired quantizer. L@t =

sponds to then — th entry of L with m = Zf;i n; + j. 2Fmin  Considering the definition aR,,.;,, in eq. 13, we can

The system in eq. 15 is perturbed by the unknown boundéiéd a positive parameter such that
noise{w|k]}. Although it is impossible to exactly know the ) 3\ "
statez[k], we can know the set which[k] lies within. That Q' > a(A) (1 + Q—) (20)
set is referred to as thincertainty set”. The uncertainty P
set is usually a closed set. We can, therefore, over-boundVMe first assume both the encoder and the decoder agree upon
with a rectangleP[k]. Without confusion P[] is also called that

the “uncertainty set” at timek. It is reasonable to estimate

Pl0] = 2¢ t(L 21
z[k] by the center ofP[k], z9[k] (the quantized version of z[0] € P[0] = 29[0] + rect(L[0]) (21)
z[k]). The gquantization (estimation) error is The quantizer chooses the “longest” sidekat= 0 by the

following rule
elk] = 29k] — z[k] € rect(L[k])

(I, Ji) = argmax (Q%p)” L; ;[] (22)
where L[k] is the side length vector aP[k]. By the above w
equation, we knowe[k]} satisfies eq. 6 if and only if Partitioning side (I, Ji) into @ equal parts, we get a
modified side length vectak s/ [k]
LKl < L k sup ||lw|j k> 17
ILIEN < Br(IL[O]]], )+7L(j213 [wjll), vk =0 (17) . { Lkl (o) # (T )
v Li;[kl/Q, (i,5) = (Ix, Jk)

whereS (-, ) is a KL function andy(+) is a K function. o ) - )
3) Evolution of uncertainty setsAs time moves forward, Now the original set’[k] = z[k] + U|[k] is partitioned into
we need to updaté[k], more specificallyz¢[k] and L[k]. @ smaller sets[k] (s =0,---,@ — 1)

The general updating rule is given as followes. Suppose P,[k] = 29[k] + rect(LUx7%) [k])
z|k] € Plk] = 29k] + rect(L[k]) and the control at time
k is u[k]. We want to determine a rectangl]k + 1] = where zI[k] = 29k] + 27 and 2" is an n-
29[k 4+ 1] + rect(L[k + 1]) within which z[k + 1] lies. dimensional vector with the€Iy, J)-th element equal to
By eq. 4 and the property ofw[k]} in eq. 3, we can %éfrl)hk,‘]k [k] and other elements df.
updatez?[k] and L[k] as BecauseP[k] = UY"' P,[k] and z[k] € P[k], there must
exist sp € {0,---,Q — 1} such thatz[k] € P, [k]. Set
2k +1] = HAzk]+ H*" Bulk] (18)  s[k] = so, code s[k] into Ry, bits (or a symbol with
Lk+1] = KL[k|+ [W,W,...,W}T (19) @ levels) and send these bits to the decoder through the
network. Upon receiving|k], decoder sends ACK back to
where H is defined in eq. 14, and K = the encoder to confirm the receipt gf|. Due to ACK, the

diag (K1, Ka,---, Kp) with encoder and the decoder always agree upon the information



of z[k|: either z[k] € z9[k] + rect(L[k]) (when s[k] is in the prior literature [23], input-to-state stability detbes
dropped, i.e.d[k] = 1) or z[k] € zj[k] [k] +rect(LUx7x)[k])  more precisely the dependence of the state on the bounded
(whenslk] is successfully transmitted, i.el[k] = 0). Based noise and the initial condition [18]. Moreover, the inpat-t

on the system equation 18, the encoder and decoder updsitate stability in Theorem 3.1 unifies both the asymptotic
the state setP[k + 1] (= 29[k + 1] + rect(L[k + 1])), as stability of noise-free quantized systems [15] and the BIBO
stability of quantized systems perturbed by bounded noise

Whend[k] = L: — —r [23] at the minimum bit rate. Compared with [18], Theorem
B et , . plicitly takes the dropouts into account.
29k + 1] = HA29[k] + H"" Bu[k]
Whend[k] = 0: (23) C. Simulation results
Lk+1]= KL%k +[W, .. W|T Here we verify the obtained theoretical results
29k +1] = HAzk] + H* Bulk] _ through an example system. Its parameters are
+HAZ(Ik-,Jk) 1.1 1 0 0
where the control variable is computed as 0 0 1.1 1
kg [-1.29, —3.56, —3.27]. The dropout sequence is governed
ulk] = G (H™"2"[k]). (24) by a (2,3)-firm model, i.e., among any3 consecutive
The quantization policy is summarized into the followingP2cKets, at least ones are transmitted successfully. So
algorithm. ¢ =1/3, Rmin = 1 and@ = 2. According to eq. 20, we
Algorithm 1: Quantization algorithm: choosep = 109.1. Initial conditions areL[0] = [1,1,1]7,
Encoder/Decoder initialization: z[0] = [0,0,0]", 27[0] = [0,0,0]" _The_simulation results
Initialize 22[0] and L[0] so thatz[0] € 29[0] +rect(L[0]) and for W_: 1 andW =0 are Sh(_)W” in Fig. 2. Note that the
seth — 0. zoom-in versions of the two figures are also shown. It can

be seen that the quantization err#[k]|| is bounded by
||L[k]|| (confirming there is no overflowing in quantization),
and ||L[k]|| and ||z[k]| are bounded foW = 1 and are
asymptotically converging td) for W = 0 (verifying
Theorem 3.1).

10°

Encoder Algorithm:

1) Selectthe indices(y, Ji) by eq. 22.

2) Quantize the statez[k]| by settings[k] = s if z[k] €
29k] + 2Tk rect(LUx7K)[k]).

3) Transmit the quantized symbalk] and wait for ACK.
If ACK is received before timek + 1, d[k] = 0;
otherwise d[k] = 1.

4) Update z?[k + 1] and L[k + 1] by eq. 23 immediately
before timek 4 1. Update time indexk = k + 1 and

return to step 1. ? : //////////
Decoder Algorithm: 2 1 o T
1) Compute control for timek by eq. 24. M o
2) Wait for the quantized data%], from the encoder. If 10 7::::}::‘” ]
s[k] is received before timé, send ACK to decoder Il s o]
and setd[k] = 0; otherwise, seti[k] = 1. T ‘ ‘ e e e
3) Update Zq[k-‘r 1] and L[k+ 1] by eq. 23 |mmed|ate|y 0 1000 2000 3000 4000 5?(00 6000 7000 8000 9000 10000
before timek 4 1. Update time indexk = k£ + 1 and : :
return to step 1. = wha
Remark: Note that when a symbei[k] is dropped, it will W e, ; A
not be re-transmitted. Instead, a new symbol at the next |l . “%. T I
time s[k + 1] is generated from the new staték + 1] and Sleman % ERE R
transmitted. Ibdkll, ®
Under the quantizer in Algorithm 1, the quantized system 1°°f W aeTeg s o s B Be T |
in eq. 4 is input-to-state stable in the almost sure sensa Th @sz;;;(;&m
result is formally presented by Theorem 3.1. Its proof is ’ N@@@% )
moved to Section V to improve readability. - t e,
Theorem 3.1:Let R,,;, = L%Elogg (a(A))J + 1 and 50 100 150 B0 e

Q = 2Fmin_ The dropout model in eq. 11 is assumed. The

guantized linear system in eq. 4 is almost surely input-tarig. 2. ||L[]||, le[k]|| and ||z [k]|| with : (top) W = 1; (bottom) W = 0.
state stable under the quantizer in Algorithm 1.

Remark: Algorithm 1 can guarantee the input-to-state sta- IV. CONCLUSIONS

bility in the almost sure sense at th@nimumconstant bit This paper studies input-to-state stabilizability of quan
rate R,,;,. Compared with the ultimate state boundednesized systems with feedback dropouts and bounded noise at
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Sketch of proof: We prove eq. 31 for a complek; as an Now we partition the time instants into windows with the
example. Mathematical induction method is applied. Wheduration of N (see Lemma 5.1 for the definition éf). We
7 = n;, Algorithm 1 tells us get an upper bound op{mN + k1] (m =0,1,---).

Lemma 5.5:1t is almost sure that

Link+1] < |Xi|Lin,[K] + W b

1, — P
= Wil K+ (77 plmN + k] < @V [ [ (@%™ 7' W) ,¥m > 0. (36)
i=1j=1
< (14 3Q rim K] Proof: We prove it by mathematical induction. Eq. 36 is
’ b trivially true for m = 0 because| L[k ]|| < W. Suppose eq.

36 holds form = m; — 1. Now we try to prove it works for

Similar procedure can be appliedte= n; —1. Now suppose !
P pplied o= n bp m = my. By Lemma 5.1, we know it is almost sure that

eg. 31 holds forj < jo (< n; — 1). We want to verify eq.
31 for j = ji = jo — 1. Assumey; is even. By Algorithm enlk] <&+ 6,k > k.
1, we know

__ LetT =N—|N(é+6)]. There are at leasf’ successfully
Liji[k+1] < |XilLigy (K] + Liji1a[k] + Lijiv2[kl + W transmitted packets from timen; —1)N +1+k; to mi N+

Q k1. Denote the time instants of successful transmissions as
< . - .
S (1 + p Tigi [ (32) ki, ko, -+, kr. If at one of these instants, to say,
If v [k+1] = L; ;, [k +1], eq. 32 yields eq. 31. Otherwise P ny S
rijq [k + 1] = prij+1lk + 1], and we get the conclusion plk;] < H H (Q*p" I TIW) (37)
from r; ;, [k] > pri j,+1[k] and the assumption that eq. 31 i=1j=1
holds forj > j; t1= jo'_The other cases, such as réal By implementing eq. 34 fromk = k; to k = my N + ky, we
and complex); with odd j;, can be similarly proversy et '
The upper bound in Lemma 5.2 is quite loose. The
following Lemma presents a tighter one. plmiN + k1] < QmMNThi—Fipk]
Lemma 5.3:Suppose sidély, Ji.) is the longest at time P
k according to the criterion in Algorithm 1. Whetjk] = 0 < QY H H (Qp™7HW)
andle,J,c [k] > sznlk_Jk+1W, i=1j=1
If for all k € {k1,ko,---,kr}, €q. 37 is false, i.e.,
rlk.,,lk[k+1] < Al <1+£ (33) {k1, ko T} eq
Sketch of pot ind % dition ofL;, s, [] T
etch of proof: Under the condition ofLy, j, > plki] > Q2™ I Vk; 38
Q*p v —+ T, we can show thaty, s, [k] = Ly, j,[k] ] = EE( g ) ki (38)

based on the selection rule of(l;,Jx) (i.e.,

J j .
(@%p)"" Ly, 5. [K] = (Q%p)’ Ly, jkl,j = Jp+ 1, nz).
By the updating rule ofZ; ;[k], we know Ly, j [k + 1] >

Implementing eq. 35 & =k; (j=1,---,7) and eq. 34 at
other time instants yields

R the saucton o (00 (15 9)")”
(I, i) andlkljemma 5.%, Broéuces' PN+ k] < QT plima = DN + k]
Lk +1] = 11 e+ 1 a(4) (1+22)"
{ L] < A (1 YL S |\ Tgree | Plm o DNk
So eq. 33 is reached; < pl(m1 —1)N + k]

By eq. 29,p[k] is just the product of alt; ;[k]. Combining
Lemmas 5.2 and 5.3, we get
Lemma 5.4:

By the assumption that eq. 36 holdsat= m; — 1, we
know from the above inequality that eq. 36 is also valid for
30\ m = my. The proof has been complete@.
plk+1] < a(A) (1 + _Q) plk] < Qplk],Vk.  (34) FormN + k1 <k < (m+ 1)N + k1, we can implement

P eq. 34 frommN + k; to k, together with Lemma 5.5, to
reach

Whend[k] = 0 andp[k] > [T/, [T/, (Q2p™—7H1W), :
end[k] = 0 andplk] = [T, H =1 (Q P W) Corollary 5.6: It is almost sure that

1 3Q P n
k+1]< —a(d) [1+ = k 35 i L
Pl s et o) P (99 plk] < VT T (@70 W) Wk =k (39)
Sketch of proof: Eq. 34 simply comes from Lemma 5.2. =121
When p[k] > TT.., T, (Q*p™~7*'W), we can show p[k] is the product ofn terms,ry j [k](i’ = 1,---, P;j' =
L, .1kl > Q*p™~7**1IW by the contradition method. 1,---,n;). Among these terms, we consider a particular one

Combining eq. 31 and 33 gives eq. 35. with ¢ = 4,5’ = j. With the lower bounds of; ; [k](i" #



1orj’ # 7) in eq. 30 and the upper boundgk| in Corollary BecausenoN + ki < ko, €q. 46 is applicable and yields
5.6, we obtain

Proposition 5.7: For Vk > ki, LijlmoN + k]
P ng
P o < Q@ [TITI (@) | wmeN Lkl 47)
Lij[k] < rijlk] < Q*N [ T TT (@%™ ) | W. (40) (i—lj—l
i=1j5=1 P n; W
- S QQN Q2 n;—j+1 s 48
B. WhenTV < || L[ki]]| (1:[1}:[1( ARl B (48)
There existky (ko > k1) such that| L[k]||n*> % > W o QN [P ym - _
and || L[ki]|[n*2~*1+1 < W, wheren is defined in eq. 27. Define W' = S5 (Hi:l [T, (@2 JH)) W. Note
1) Under the conditiork < k.,: we redefiner; ;[k] and that W' > W. Similar to r;,j|k] and p[k], we define, for
plk] into 7} ;[k] andp’[k] as k> moN + ki,
— ,
vk = § max(Lin, (K], =M | LlRall), 5 = I (Li,j[k]apW ) : I=7i (49
- max(L; ;[k], pri j+1[k]), J<n ’ max (Lq k], pr ;1 [k]) , 5 <n
[ ] Hz 1H7 1 7,7_][ ] " Pn; ”
PR = TTTI+5M (50)

Similar to Lemmas 5.2 and 5.3, we can get

i=1j=1
Lemma 5.8:ForVk € {ki, k1 +1,---, ka}, ’

So we can repeat the previous procedure for the case of
{ L] <A (1 i 3@) [IL[k1]]| < W to get a result similar to eq. 40

alH n . 41
Pk +1] < a(4) (1+22)" plk] < Qu/[K ) Lislk]

QZN (lp‘[ ﬁ (szm—jﬂ)) W’

i=1j=1

2
LR N O _ TTT (02— 1
T S Q <”7> (42) = (Q” (HH(Q% J“))) W 6D

IN

When Ly, s, [k] = @p"e =0 =" || L[k, ][| and d[k] =
01

i=1j=1

When p'[k] > 1, T2, (Q2pm—i+ nk=k1||L[k4]||) and for Vk > moN + ki. Of course, the above inequality holds

d[k] =0, for k > ko due toky > moN + k;.
1 A 3Q C. Final proof to Theorem 3.1
Plk+1] < Q“ a(4) <1 + 7) P'[k] (43) From time0 to k1, we can easily deduce the following

inequality on||L[k]|| by the updating rule of[k]
o L+ 1)1l < (a(4) +2) | LIk | +T7
<Q*N H H (Q2*p™ It " ||L[k1]||)  (44) So itis straightforward to reach

Under the condition in eq. 26,

1=1j5=1 ) -
Similar to eq. 30, we get, fovk € {ki, k1 +1,---, ka}, LK) < (a(A) +2)" [[L[0]]| + (a(A) +2) W, (52)
r! (k] > Li;[k] for Vk € {0,1,---,k}. Eq. 40, 46, 51 and 52 provide
i,j 0] = g i . . .
{ k] > oM R Lk ]| > o ]| (45) upper bounds oi; ;[k] under4 different conditions. These

4 bounds can be bounded byi| L[0] || 7*+ 4 c; W from above
Considering the definition gf'[k] and applying eq. 45 to eq. for Vk > 0 with
<k< n; ni—j — 1
44, we get wherk; < k < ks, ¢ = QN (HZ{; I, (@2 ,7+1)) 1 (a(A) +2)F
pon . ey = 2 (Q2N (HP 1" (Q2pm—j+1)))2
K <@ [ TTTI @7 | w* = IL k]l (46) L
x~ N (a(4) +2)7
Then it is almost sure that

i=1j=1

2) Under the conditiork > ko +1: Starting fromk > kq,
the time intants are grouped into epoches with the durafion o ILIK]| < el]lL]0]|n" + ECQW
N. Letmg = | (ks — k1)/N|. Becausd| L[k ]||nF2 1+ < 2
W andks +1 —k; < (mo + 1)N, we know

IN

|| LI0]||n* + oW, Wk >0

N 1 where the relationshipl’ = 2W is utilized. The proof of
NN Lkl < H_NW Theorem 3.1 has been completgyd.



