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Abstract— This paper examines event-triggered broadcasting
of state information in distributed networked control systems
(NCS) with transmission delays. We provide positive boundson
transmission delays for asymptotic stability of NCS. Each agent
can compute the bound on the delays in its state transmissions
based on its local information. These results are important
because they show the existence of strictly positive bounds
on transmission delays in NCS, which guarantee asymptotic
stability of the systems. Those bounds can be used to schedule
data transmissions.

I. I NTRODUCTION

A distributed networked control system (NCS) consists of
numerous loosely coupled systems, which are geographically
distributed. In such a system, individual subsystems (also
called agents) exchange information over a communication
network. These networked systems are found throughout
our national infrastructure with specific examples being the
electrical power grid and transportation networks. Not only
does networking refers to the communication infrastructure
supporting feedback control, it also refers to the fact that
individual subsystems may be interconnected in a way that
can be modeled as a network. The networking of control
effort can be advantageous in terms of lower system costs
due to streamlined installation and maintenance costs.

The introduction of communication network infrastruc-
ture, however, raises important issues regarding the impact
that such communication has on the control system’s per-
formance. In practice, communication networks, especially
wireless communication networks, can only broadcast data in
discrete packets and packet loss often happens. Moreover, the
communication media is a resource that is usually accessed
in a mutually exclusive manner by neighborhood agents.
This means that the throughput capacity of such networks is
limited that can cause delays in message delivery [1]. Such
delay can have a major impact on overall system stability.
So one important issue in the implementation of such sys-
tems is to identify methods for more effectively using the
limited network bandwidth available for transmitting state
information.

For this reason, some researchers began investigating the
timing issue in networked control. In other words, how
frequently should subsystems communicate such that the
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NCS still maintains a desired level of performance? Early
work analyzing scheduling of real-time network traffic was
presented in [2] and [3]. However, the impact of communi-
cation constraints on system performance was not addressed
in this work. [4], [5], and [6] noticed the harmful effect of
communication delay on system stability and considered the
one packet transmission problem, in which all of the system
outputs were packaged into a single packet. Therefore, agents
in the network do not have to compete for channel access.
One packet transmission strategies, however, require a su-
pervisor to gather all subsystem data into this huge packet.
As a result, such schemes may be impractical for large-scale
systems with limited network bandwidth.

Asynchronous transmissions were considered in [7]. In
this work, several sensors and actuators request access to
the channel at the same time, but only one of them can get
through, depending on the network protocols. The basic idea
is that one first designs the controllers under the assumption
of perfect communication and then determines themaximum
allowable transfer interval (MATI) between two subsequent
message transmissions under the network protocol so that
closed loop system stability can still be maintained. A bound
on the MATI was derived in [7] so that system stability can
be guaranteed. It led to scheduling methods [8] that were
able to assure the MATI was not violated. Further work was
done in [9], [10] to tighten bounds on the MATI. All this
work confined its attention to control area network (CAN)
buses where centralized computers are used to coordinate the
information transmission with protocols. The length of the
MATI heavily relies on the choice of network protocols.

In all of the aforementioned work, however, the computa-
tion of the MATI and the execution of the corresponding
protocols must be done in a highly centralized manner,
which is impractical in large-scale systems due to its poor
scalability. Moreover, because the MATI is computed before
the system is deployed, it must ensure adequate behavior over
a wide range of possible input disturbances. As a result, the
MATI may be conservative. Consequently, the bandwidth of
the network may have to be higher than necessary to ensure
the MATI is not violated. These limitations suggest a great
need of distributed approaches to address this timing issue
in way that enables the networked control system to use
network bandwidth in an extremely frugal manner [11].

Recent work in [12], [13] considering event-triggered
feedback sampled-data systems shows that to maintain sys-
tem stability, the sampling rates under event-triggering are
well below those in periodic task models because the system
can adaptively adjust the rates in a manner that is sensitive



to what is currently happening within the system. By event-
triggering, an agent broadcasts its state information to its
neighbors only when some measure of the subsystem’s
local state error exceeds a specified threshold. Following
this idea, distributed event-triggered feedback schemes were
proposed in [14] and [15] for linear and nonlinear sys-
tems, respectively. An implementation of event-triggering
in sensor-network was introduced in [16] that is done in
a centralized manner. Most recently, transmission delay in
distributed event-triggered NCS was considered in [17]. This
work shows that if the transmission delay is nonzero, then
the resulting NCS is globally uniformly ultimately bounded,
provided that the system dynamic is bounded. These results,
however, are conservative.

In this paper, we extend the work in [17]. Strictly positive
delay is allowed and the assumption of bounded dynamic
is relaxed. We provide state-based bounds on transmission
delays (also known asmaximal allowable delay or deadline)
in distributed event-triggered NCS that are always greater
than a positive constant. Each agent can predict the bound
on the delays in its state transmissions based on its local
information. As long as the delays are less than these bounds,
asymptotic stability can be guaranteed. These results are
important because they show that, in asynchronous trans-
mission frameworks, strictly positive bounds on transmission
delays exist, with which asymptotic stability of NCS can be
guaranteed.

The paper is organized as follows: section II formulates
the problem; a distributed scheme is introduced in section
III to predict the deadlines for transmission delay; simula-
tion results are presented in section IV; in section V, the
conclusions are drawn.

II. PROBLEM FORMULATION

Consider a distributed NCS containingN subsystems (also
called “agents”). TheseN agents are coupled together and
each agent can receive information from some of other
agents. LetN = {1, 2, · · · , N} and

• Zi ⊆ N denotes the set of agents that agenti can get
information from;

• Di ⊆ N denotes the set of agents that directly drive
agenti’s dynamics;

• Si ⊆ N denotes the set of agents who are directly
driven by agent i;

• Ui ⊆ N denotes the set of agents that can receive agent
i’s information;

• for any setΣi ⊆ N , |Σi| denotes the number of the
elements inΣi and Σ̄i = Σi ∪ {i};

• R
+ denotes all the positive real numbers andR

+
0 =

R
+ ∪ {0};

• ‖ · ‖2 denotes2-norm of a vector,‖ · ‖ denotes the
matrix norm,λmin(A) andλmax(A) denote the minimal
and maximal eigenvalues of a symmetric matrixA,
respectively.

Notice thati 6∈ Zi ∪ Di ∪ Si ∪ Ui.

The state equation of agenti is

ẋi(t) = fi(xD̄i
, ui)

ui(t) = gi(xZ̄i
)

xi(t0) = xi0

where xi : R
+
0 → R

n is the state trajectory of agenti,
ui : R

+
0 → R

m is a control input,gi : R
n|Z̄i| → R

m is
the feedback strategy of agenti satisfyinggi(0) = 0, fi :
R

n|D̄i|×R
m×R

l → R
n is continuous and locally Lipschitz

satisfying fi(0, 0) = 0, and xD̄i
= {xj}j∈D̄i

, xZ̄i
=

{xj}j∈Z̄i
. For notational convenience, we assume that the

states/inputs/disturbances of agents have the same dimension.
The results in this paper can be easily extended to the case
where the dimensions of agents’ states/inputs/disturbances
are different from each other.
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Fig. 1. The infrastructure of the real-time NCS

This paper considers a real-time implementation of this
distributed NCS. The infrastructure of such an implementa-
tion is plotted in Figure 1. In such a system, agenti can
only detect its own state,xi. If the local “error” signal
exceeds some given threshold, which can be detected by
hardware detectors, agenti will sample and broadcast its
state information to those agents inUi through a real-time
network. Meanwhile, agenti’s control, ui, at time t is
computed based on the states broadcasted by agents inZ̄i.
These broadcasted states are denoted asx̂Z̄i

(t). The control
signal used by agenti is held constant by a zero-order hold
(ZOH) unless one of the agents in̄Zi makes a successful
broadcast. This means that the state equation of agenti can
be written as

ẋi = fi(xD̄i
, ui)

ui = gi(x̂Z̄i
). (1)

Agent i’s broadcast is characterized by two monotone
increasing sequences of time instants: the broadcast release
time, {bi

k}
∞
k=1, and the broadcast finishing time{f i

k}
∞
k=1.

The timebi
k denotes the time instant when thekth broadcast

of agenti is released. At this time, we assume there is no
delay between sampling and broadcast release. The timef i

k

denotes the time instant when thekth broadcasted data of
agent i is received by its neighbors. Notice thatx̂i(t) =



xi(b
i
k) for all t ∈ [f i

k, f i
k+1). For notational convenience, we

defineei : R
+
0 → R

n by ei(t) , xi(t) − x̂i(t) for ∀t ≥ 0.
The objective of this paper is to develop distributed event-

triggering schemes to identify{bi
k}

∞
k=1, and {f i

k}
∞
k=1 such

that the NCS defined in equation (1) is asymptotically stable.

III. E VENT-TRIGGEREDNCS WITH DELAYS

In this section, we study the NCS with transmission
delays. We provide state-based deadlines on these delays.
The NCS is asymptotically stable as long as the delay in
each transmission is less than the give bound. We also show
that these bounds are always greater than a positive constant.

Before we present the main result, we would like to
introduce three lemmas. The first lemma (Lemma 3.1) is
the result in [17], which provides sufficient condition for
asymptotic stability in event-triggered NCS. The second
lemma (Lemma 3.4) shows that if there is a bound on the
delay, then the resulting NCS is at least globally uniformly
ultimately bounded. The third lemma (Lemma 3.6) shows
that, if the bound on the delay is appropriately chosen, then
the state trajectory will fall into some known compact set.
The proofs of lemmas can be found in the appendix. For
notational convenience, we letLfi

V = ∂V
∂xi

fi(xD̄i
, ui) with

some functionV : R
nN → R

+
0 .

Lemma 3.1 ([17]): Consider theN -agent NCS in equa-
tion (1). Assume that there exist a smooth, positive-definite
function V : R

nN → R
+
0 and positive constantsp ≥ 1, αi,

βi ∈ R
+ for all i ∈ N such that

∑

i∈N

Lfi
V ≤

∑

i∈N

−αi‖xi‖
p
2 + βi‖ei‖

p
2. (2)

If for any i ∈ N ,

ci‖ei(t)‖2 ≤ ρi‖x̂i(t)‖2 (3)

holds for all t ≥ 0, whereρi ∈ (0, 1) and

ci = 1 +

(

βi

αi

)
1

p

, (4)

then the NCS is asymptotically stable.
Remark 3.2: The event for agenti is only associated with

ei andxi. Agenti just needs to use the violation of equation
(12) to trigger the broadcast such that the inequality in
equation (12) holds. If there are no transmission delay and
data dropouts, the system stability of NCS can be guaranteed.

Remark 3.3: If for given ζi, δi ∈ R
+, agenti can find

a continuous, positive-definite functionVi : R
n → R

+
0 , a

positive constantηi ∈ R
+, and control lawgi : R

n|Z̄i| → R
m

satisfying

Lfi
Vi ≤ −ηi‖xi‖

p
2 +

∑

j∈Di∪Zi

ζj‖xj‖
p
2 +

∑

j∈Z̄i

δj‖ej‖
p
2 (5)

ηi − |Si ∪ Ui|ζi > 0, (6)

then

V (x) =
∑

i∈N

Vi(xi) (7)

αi = ηi − |Si ∪ Ui|ζi (8)

βi = δ|Ūi| (9)

satisfy equation (2). Equation (5) suggests agenti is Lp

stable from{xj}j∈Di∪Zi
, {ej}j∈Z̄i

to xi. The satisfaction
of equation (6) requiresβi to be small. This implies weak
coupling among agents. By solving these two equations,
agenti can locally find the pair(αi, βi). In general, however,
it is not easy to solve them.

Lemma 3.4: Consider theN -agent NCS in equation (1).
Suppose that (2) holds. Also assume that

L‖x‖q
2 ≤ V (x) ≤ L̄‖x‖q

2 and (10)

‖fi

(

xD̄i
(t), gi

(

x̂Z̄i
(t)
))

‖2 ≤ θi, (11)

hold for all t ≥ t0 with someθi ∈ R
+. If for any i ∈ N ,

ci‖xi(t) − xi(b
i
k)‖2 ≤ ρi‖xi(b

i
k)‖2 (12)

holds for all t ∈ [bi
k, bi

k+1) for someρi ∈ (0, 1) and the
delay in thekth transmission satisfies

f i
k − bi

k ≤
1 − ρi

ciθi

max

{

‖xi(b
i
k−1)‖2

2
, ∆

}

(13)

with a given∆ ∈ R
+, then for anyφ̄ ∈ R

+ satisfyingφ̄ > φ,
there existsT ≥ t0 such that

‖x(t)‖2 ≤

(

L̄

L

)

1

q

N
1

2 φ̄∆

holds for all t ≥ T , where

φ =

(
∑

i∈N αi(1 − ρi)

mini∈N αi(1 − ςi)

)

1

p

(14)

ςi = max

{(

1 + ρi

2

)p

, ρi

}

. (15)

Remark 3.5: Lemma 3.4 suggests that, with a given∆,
the overall system is globally uniformly ultimately bounded.

Suppose equation (2) holds andfi, gi are locally Lipschitz
for all i ∈ N . Then we can define a compact set,Λ ⊂ R

nN ,
as

Λ ,
{

x ∈ R
nN | V (x) ≤ V (x0)

}

(16)

and then find positive constants,θi, Li ∈ R
+ for i =

1, 2, · · · , N such that

‖fi(xD̄i
, gi(x̂Z̄i

))‖2 ≤ Li(‖x‖2 + ‖x̂‖2), ∀x, x̂ ∈ Λ (17)

L‖x‖q
2 ≤ V (x) ≤ L̄‖x‖q

2, ∀x ∈ Λ (18)

θi = 2Li

(

V (t0)

L

)
1

q

(19)

with someq ≥ 1. For the notational convenience, we use
V (t) to denoteV (x(t)) for all t ≥ t0.

Lemma 3.6: Consider theN -agent NCS in equation (1).
Suppose that equation (2), (17), and (18) hold. Givenρi ∈
(0, 1) for all i ∈ N and φ̄ > φ, where φ is defined by
equation (14), if for anyi ∈ N , equation (12) holds for all
t ∈ [bi

k, bi
k+1) with someρi ∈ (0, 1) and the delay in thekth

transmission satisfies

f i
k − bi

k ≤ max

{

(1 − ρi)

2ciθi

‖xi(b
i
k−1)‖2,

(1 − ρi)L
1

q

2ciLiN
1

2 φ̄L̄
1

q

}

, (20)



then the statex(t) is always in the setΛ, defined in equation
(16), for all t ≥ t0.

Remark 3.7: Lemma 3.6 shows that if the bound on the
delay is small enough, the system dynamic will be in a
compact setΛ. This lemma helps us to relax the assumption
in (11).

With these lemmas, we now can present the main theorem.
Theorem 3.8: Consider theN -agent NCS in equation (1).

Suppose that equation (2), (17), and (18) hold. GivenT ∈
R

+, ρi ∈ (0, 1) for all i ∈ N andφ̄ > φ, whereφ is defined
by equation (14), if for anyi ∈ N , the k + 1st broadcast is
released by the violation of

E1 ∧ E2 (21)

for someρi ∈ (0, 1), whereE1 is the inequality in equation
(12) and

E2 : t ≤ bi
k + T, (22)

and the delay in thekth transmission satisfies equation (20),
then the NCS is asymptotically stable.

Proof: By Lemma 3.6, we know the state trajectory
x(t) ∈ Λ for all t ≥ t0. Therefore, by equation (18),

L‖x(t)‖q
2 ≤ V (t) ≤ V (t0), ∀t ≥ t0 (23)

holds.
According to equation (17), we have

fi

(

xD̄i
(t), gi(x̂Z̄i

(t))
)

≤ 2Li

(

V (t0)

L

)
1

q

= θi (24)

for all t ≥ t0.
Let φ̂ = φ+φ̄

2 . Since the hypotheses of Lemma 3.4 are

satisfied with∆ := ∆1 = θiL
1

q

2LiN
1

2 φ̄L̄
1

q

, we know that there

exists a positive numbert1 > t0, such that

‖x(t)‖2 ≤

(

L̄

L

)

1

q

N
1

2 φ̂∆1 =
φ̂

φ̄

(

V (t0)

L

)
1

q

, ∀t ≥ t1 (25)

By E2, we know each agent will broadcast aftert1. Let s1

be the time when each agent inN broadcasts at least once
after t1. Then

‖x̂(t)‖2 ≤
φ̂

φ̄

(

V (t0)

L

)
1

q

, ∀t ≥ s1 > t1 (26)

holds. Applying the preceding two equations into equation
(17) yields

fi

(

xD̄i
(t), gi(x̂Z̄i

(t))
)

≤
φ̂

φ̄
θi, ∀t ≥ s1. (27)

We now set∆ := ∆2 = φ̂

φ̄
∆1 and use the preceding

equation to bound the behavior offi over [s1,∞). Then
Lemma 3.4 suggests that there existst2 ≥ s1 such that

‖x(t)‖2 ≤

(

L̄

L

)

1

q

N
1

2 φ̂∆2 =

(

φ̂

φ̄

)2
(

V (t0)

L

)
1

q

, ∀t ≥ t2.

Let s2 be the time when each agent inN broadcasts at
least once aftert2. Then

‖x̂(t)‖2 ≤=

(

φ̂

φ̄

)2
(

V (t0)

L

)
1

q

, ∀t ≥ s2.

holds. With the preceding equation, we can re-compute the
bound forfi over [s2,∞) and re-apply Lemma 3.4 to get
new bounds on‖x(t)‖2 and ‖x̂(t)‖2, so on and so forth.
Then there existssk > t0 such that

‖x(t)‖2 ≤

(

φ̂

φ̄

)k
(

V (t0)

L

)
1

q

(28)

fi

(

xD̄i
(t), gi(x̂Z̄i

(t))
)

≤

(

φ̂

φ̄

)k

θi (29)

hold for all t ≥ sk.
Since φ̂

φ̄
∈ (0, 1), as k → ∞, the preceding equation

implies x(t) → 0, which means the NCS is asymptotically
stable.

Remark 3.9: The introduction ofT is the safety require-
ment of systems. It requires each agent broadcast at least
everyT unit-time so that some accidents can be detected.T

is arbitrarily chosen.
Remark 3.10: It is easy to see that the state-based bounds

on the delays defined in equation (20) are always greater
than a positive constant,

(1 − ρi)L
1

q

2ciLiN
1

2 φ̄L̄
1

q

. (30)

which is known as theworst-case execution time (WCET)
of agenti.

Remark 3.11: From equation (20), we can see that the
farther the state is away from the equilibrium, the larger
the bound on the delay can be. The WCET dominates the
deadline only when the state is very close to the equilibrium.

Let us now re-visit the distributed scheme described by
(5) and (6). In this distributed approach, agenti may require

Li‖xi‖
q
2 ≤ Vi(xi) ≤ L̄i‖xi‖

q
2, ∀x ∈ Λ. (31)

Since the inequality
(

∑

i

‖xi‖
b
2

)
1

b

≤

(

∑

i

‖xi‖
a
2

)
1

a

≤ N
1

a
− 1

b

(

∑

i

‖xi‖
b
2

)
1

b

holds for any1 ≤ a ≤ b < ∞, we have

L‖x‖q
2 ≤ min

i∈N
Li

∑

i∈N

‖xi‖
q
2 ≤ V (x)

≤ max
i∈N

L̄i

∑

i∈N

‖xi‖
q
2 ≤ L̄‖x‖q

2

where

L =

{

mini∈N Li

N
q
2
−1

q ≥ 2

mini∈N Li 1 ≤ q ≤ 2
(32)

L̄ =

{

maxi∈N L̄i q ≥ 2

N1− q

2 maxi∈N L̄i 1 ≤ q ≤ 2.
(33)



Therefore, for a distributed consideration, agenti is required
to find Li and L̄i satisfying equation (31) and̄L, L are
defined in equation (33) and (32), respectively.

IV. SIMULATIONS

This section presents simulation results demonstrating the
distributed event-triggering scheme. The system under study
is a collection of carts coupled by softening springs [18]
(Figure 2). Theith subsystem state is the vectorxi =
[

yi ẏi

]T
whereyi is the ith cart’s position. We assume

that at the equilibrium of the system, all springs are un-
stretched.

u1 u2
u3

Fig. 2. Three carts coupled by springs

The state equation for theith cart is equation (1), where

ẋi =

[

ẏi

ui + κ1
i tanh(yi+1 − yi) + κ2

i tanh(yi−1 − yi)

]

.

Here κ2
1 = κ1

N = 0. Otherwise,κ1
i = κ2

i = 1. The control
input of agenti is

ui = Kix̂i − κ1
i tanh(ŷi+1 − ŷi) − κ2

i tanh(ŷi−1 − ŷi),

whereKi =
[

−2 −2
]

for i = 1, · · · , N .
According to the distributed design scheme in [17], we

have

ci = 10.2852, Li = 8.3630, Li = 2.2214, L̄i = 10.7523

for i = 2, · · · , N − 1 and

ci = 5.9638, Li = 6.6310, Li = 5.2826, L̄i = 18.4751

for i = {1, N}. With ρi = 0.5, the triggering events are

−0.5‖x̂i(t)‖2 + 5.9638‖ei(t)‖2 = 0, for i = 1, N

−0.5‖x̂i(t)‖2 + 10.2852‖ei(t)‖2 = 0, otherwise.

We setN = 3 and ran the event-triggered NCS for 6
seconds. We assume that transmission delay is equal to the
predicted deadline (the bound on the delay in (20)). The
initial statex0 was randomly generated satisfying‖x0‖∞ ≤
1. From the top plot of Figure 3, we can see that the system
is asymptotically stable. The successful broadcast periods
of agent1 (cross), agent2 (diamond), and agent3 (dot)
are shown in the middle plot of Figure 3 that vary in a
wide range. It demonstrates the ability of event-triggering
in adjusting broadcast periods in response to variations in
the system’s states. The bottom plot in Figure 3 shows the
history of agents’ predicted deadlines, which were reducedto
fixed constants as the state is very close to the equilibrium .
This is because as the states get small, the WCET dominates
the deadlines as shown in equation (20). The detailed data
of this simulation is listed in table I.
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Fig. 3. State trajectory, broadcast periods, and predicteddeadlines in an
event-triggered NCS

TABLE I

RESULTS ONRUNNING A DISTRIBUTED EVENT-TRIGGEREDNCS

Agent 1 Agent 2 Agent 3

Number of Broadcasts 111 189 107
Average Broadcast Period 0.0541 0.0317 0.0561
Maximal Predicted Deadline 0.0009 0.0006 0.0012
WCET 0.0005 0.0002 0.0005

We then considered the relation between the WCET and
the average broadcast period as the parameterρi changes.
In this simulation, we assume that the delays in agents are
equal to their WCETs.ρ1 varied from 0.001 to 0.99.ρ2 = ρ3

are set to be 0.5. For eachρ1, the system ran for 6 seconds.
Figure 4 shows the simulation results. Asρ1 increases, the
average period increases and the WCET decreases. This
simulation, therefore, suggests a tradeoff between broadcast
periods and transmission deadlines.

V. CONCLUSIONS

This paper examines event-triggered broadcasting of state
information in distributed networked control systems with
transmission delays. State-based bounds on transmission
delays for asymptotic stability of the overall system are
provided. These bounds are always greater than a positive
constant and can be derived in a distributed manner.

APPENDIX

Proof: [Proof of Lemma 3.4]
Consider the derivative of

∥

∥xi(t) − xi(b
i
k)
∥

∥

2
over the time

interval [bi
k, f i

k).

d

dt

∥

∥xi(t) − xi(b
i
k)
∥

∥

2
≤ ‖ẋi(t)‖2

= ‖fi

(

xD̄i
, gi

(

x̂Z̄i

))

‖2 ≤ θi

holds for all t ∈ [bi
k, f i

k).
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Fig. 4. Agent 1’s average broadcast period versus the WCET when ρ1

varies from 0.001 to 0.99

Solving the preceding inequality with the initial condition
∥

∥xi(t) − xi(b
i
k)
∥

∥

2
|t=bi

k
= 0 implies

‖xi(t) − xi(b
i
k)‖2 ≤ θi(t − bi

k)

≤
1 − ρi

ci

max

{

‖xi(b
i
k−1)‖2

2
, ∆

}

(34)

holds for all t ∈ [bi
k, f i

k), where the second inequality is
obtained by applying equation (13).

We know

‖xi(t) − xi(b
i
k−1)‖2 ≤

ρi

ci

‖xi(b
i
k−1)‖2. (35)

for all t ∈ [bi
k−1, b

i
k).

Combining equation (34) and (35) implies

‖ei(t)‖2 = ‖xi(t) − xi(b
i
k−1)‖2

≤ ‖xi(t) − xi(b
i
k)‖2 + ‖xi(b

i
k) − xi(b

i
k−1)‖2

≤
1 − ρi

ci

max

{

‖xi(b
i
k−1)‖2

2
, ∆

}

+
ρi

ci

‖xi(b
i
k−1)‖2

≤ max
{

(1+ρi)‖xi(b
i
k−1

)‖2

2ci
,

(1−ρi)∆+ρi‖xi(b
i
k−1

)‖2

ci

}

holds for t ∈ [f i
k−1, f

i
k).

The preceding equation then suggests that

(

βi

αi

)
1

p

‖ei(t)‖2 = (ci − 1)‖xi(t) − xi(b
i
k−1)‖2

≤ max
{

(1+ρi)‖xi(b
i
k−1

)‖2

2 , (1 − ρi)∆ + ρi‖xi(b
i
k−1)‖2

}

−‖xi(t) − xi(b
i
k−1)‖2

≤ max

{

1 + ρi

2
‖xi(t)‖2, (1 − ρi)∆ + ρi‖xi(t)‖2

}

holds for t ∈ [f i
k−1, f

i
k). Therefore,

βi

αi

‖ei(t)‖
p
2 (36)

≤ max
{

(

1+ρi

2

)p
‖xi(t)‖

p
2, ((1 − ρi)∆ + ρi‖xi(t)‖2)

p
}

≤ max
{

(

1+ρi

2

)p
‖xi(t)‖

p
2, (1 − ρi)∆

p + ρi‖xi(t)‖
p
2

}

We now considerV̇ for any t ≥ 0. Equation (2) implies
that

V̇ ≤
∑

i∈N

−αi‖xi(t)‖
p
2 + βi‖ei(t)‖

p
2

Applying equation (36) into the preceding equation yields

V̇ ≤
∑

i∈N

αi(−‖xi(t)‖
p
2 +

max
{

(

1+ρi

2

)p
‖xi(t)‖

p
2, (1 − ρi)∆

p + ρi‖xi(t)‖
p
2

}

).

Let Ωt = {i ∈ N |
(

1+ρi

2

)p
‖xi(t)‖

p
2 > (1 − ρi)∆

p

+ρi‖xi(t)‖
p
2}. Therefore, the preceding equation is equiva-

lent to

V̇ ≤
∑

i∈Ωt

αi

((

1 + ρi

2

)p

− 1

)

‖xi(t)‖
p
2

+
∑

i∈N\Ωt

(1 − ρi)αi∆
p +

∑

i∈N\Ωt

αi(ρi − 1)‖xi(t)‖
p
2

According to equation (15), the preceding equation implies

V̇ ≤
∑

i∈N\Ωt

αi(1 − ρi)∆
p +

∑

i∈N

αi(ςi − 1)‖xi(t)‖
p
2

≤
∑

i∈N

αi(1 − ρi)∆
p −

∑

i∈N

αi(1 − ςi)‖xi(t)‖
p
2 (37)

≤
∑

i∈N

αi(1 − ρi)∆
p − min

i∈N
αi(1 − ςi)

∑

i∈N

‖xi(t)‖
p
2

= min
i∈N

αi(1 − ςi)

(

φp∆p −
∑

i∈N

‖xi(t)‖
p
2

)

whereφ is defined in equation (14). This inequality means
that if there existsi ∈ N such that‖xi(t)‖2 ≥ ∆φ̄ for any
φ̄ > φ, then

V̇ ≤ min
i∈N

αi(1 − ςi)(φ
p − φ̄p)∆p < 0

holds. This implies that the preceding inequality holds when

‖x(t)‖q
2 =

(

∑

i∈N

‖xi(t)‖
2
2

)

q

2

≥ N
q

2 ∆qφ̄q

since the inequality above implies‖xi(t)‖2 ≥ ∆φ̄.
Combining this with equation (10) is sufficient to show

that there existsT ≥ t0 such that

‖x(t)‖q
2 ≤

L̄

L
N

q

2 φ̄q∆q

holds for all t ≥ T , as shown in [19].
Proof: [Proof of Lemma 3.6]



Consider the set

Γ =
{

x ∈ Λ | L̄‖x‖q
2 ≤ V (x0)

}

. (38)

It is easy to see that equation (18) impliesΓ ⊆ Λ and
L̄
L
≥ 1.
We now show thatV (t) ≤ V (t0) holds for allt > t0. We

prove it by contradiction. Suppose that there is time instant
t̂ > t0 such thatV (t̂) > V (t0).

Notice that before the first time the inequality in equation
(12) is violated, the inequality

V̇ ≤
∑

i∈N

−(1 − ρ
p
i )αi‖xi‖

p
2

holds. Therefore, there must exist time instantt̄ > t0 such
thatV (t) < V (t0) for all t ∈ (t0, t̄]. SinceV (t) is continuous
and V (t̂) > V (t0), we know there must exist at least one
time interval(s − ǫ1, s + ǫ1) ⊂ (t̄, t̂) such that

V (s) = V (t0) (39)

V̇ (t) ≥ 0, ∀t ∈ (s − ǫ, s). (40)

Assume thats is the first time in(t0, t̂) satisfying equation
(39), (40) with a parameterǫ. Then we have

t0 < t̄ < s < t̂ (41)

V (t) ≤ V (t0), ∀t ∈ [t0, s). (42)

Equation (42) implies

x(t) ∈ Λ and ‖x(t)‖q
2 ≤

V (t0)

L
(43)

for all t ∈ [t0, s) according to equation (17). Combining this
inequality with equation (17), we have

fi

(

xD̄i
(t), gi(xZ̄i

(t))
)

≤ 2Li

(

V (t0)

L

)
1

q

= θi

for all t ∈ [t0, s). Also equation (20) means

f i
k − bi

k ≤ max

{

(1 − ρi)

2ciθi

‖xi(b
i
k−1)‖2,

(1 − ρi)

ciθi

∆

}

. (44)

with

∆ =
θiL

1

q

2LiN
1

2 φ̄L̄
1

q

. (45)

Therefore, following the same reasoning in Lemma 3.4,
we have

V̇ ≤ min
i

αi(1 − ςi)}

[

∆pφp −
∑

i∈N

‖xi(t)‖
p
2

]

(46)

for all t ∈ [t0, s), whereςi is defined in equation (15).
SinceV̇ (t) ≥ 0 for all t ∈ (s− ǫ, s) according to equation

(40), we know by equation (46) that

∆pφp ≥
∑

i∈N

‖xi(t)‖
p
2 ≥ ‖xi(t)‖

p
2, ∀t ∈ (s − ǫ, s), (47)

holds, which implies

N
q

2 ∆qφq =
(

N∆2φ2
)

q
2 ≥

(

∑

i∈N

‖xi(t)‖
2
2

)

q

2

= ‖x(t)‖q
2, ∀t ∈ (s − ǫ, s), (48)

and therefore, implementing equation (45) into the preceding
equation implies

N
q

2 ∆qφq =
V (t0)φ

q

φ̄qL̄
≥ ‖x(t)‖q

2, ∀t ∈ (s − ǫ, s). (49)

Sincex(t) is continuous, equation (49) implies

V (t0)φ
q

φ̄qL̄
≥ lim

t→s
‖x(t)‖q

2 = ‖x(s)‖q
2.

Becauseφ̄ > φ, we have

V (t0)

L̄
>

V (t0)φ
q

φ̄qL̄i

≥ ‖x(s)‖q
2,

which implies that

V (t0) > L̄‖x(s)‖q
2 ≥ V (s), (50)

which contradicts equation (39). Therefore, we conclude
V (t) ≤ V (t0) holds for all t ≥ t0.
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