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Abstract— This paper examines event-triggered broadcasting NCS still maintains a desired level of performance? Early
of state information in distributed networked control systems  work analyzing scheduling of real-time network traffic was
(NCS) with transmission delays. We provide positive boundsn presented in [2] and [3]. However, the impact of communi-

transmission delays for asymptotic stability of NCS. Each gent i traint t f t add d
can compute the bound on the delays in its state transmissisn cauon constraints on system performance was not addresse

based on its local information. These results are important IN this work. [4], [5], and [6] noticed the harmful effect of
because they show the existence of strictly positive bounds communication delay on system stability and considered the

on transmission delays in NCS, which guarantee asymptotic one packet transmission problem, in which all of the system
stability of the systems. Those bounds can be used to scheelul 4,1 ts were packaged into a single packet. Thereforetagen
data transmissions. .
in the network do not have to compete for channel access.
I. INTRODUCTION One packet transmission strategies, however, require a su-

o ) pervisor to gather all subsystem data into this huge packet.

A distributed networked control system (NCS) consists OAg g result, such schemes may be impractical for large-scale
numerous loosely coupled systems, which are geograp}'ucagystemS with limited network bandwidth.
distributed. In such a system, individual subsystems (also Asynchronous transmissions were considered in [7]. In
called agents) exchange information over a communicationyis work, several sensors and actuators request access to
network. These networked systems are found throughogfe channel at the same time, but only one of them can get
our national infrastructure with specific examples being thy,ough, depending on the network protocols. The basic idea
electrical power grid and transportation networks. Noyonlig that one first designs the controllers under the assumptio
does networking refers to the communication infrastrietur,s perfect communication and then determinesrtiaaimum
§uppprting feedback control, it_also refers to .the fact thafj|owable transfer interval (MATI) between two subsequent
individual subsystems may be interconnected in a way thafessage transmissions under the network protocol so that
can be modeled as a network. The networking of contr@lissed loop system stability can still be maintained. A lbun
effort can be advantageous in terms of lower system cos{y, the MATI was derived in [7] so that system stability can
due to streamlined installation and maintenance costs.  pgo guaranteed. It led to scheduling methods [8] that were

The introduction of communication network infrastruc-gpje to assure the MATI was not violated. Further work was
ture, however, raisgs important issues regarding the iMpagne in [9], [10] to tighten bounds on the MATI. All this
that such communication has on the control system's p&fork confined its attention to control area network (CAN)
formance. In practice, communication networks, especiallyyses where centralized computers are used to coordirete th
wireless communication networks, can only broadcast @ata jnformation transmission with protocols. The length of the
discrete packets and packet loss often happens. Morebeer, /T heavily relies on the choice of network protocols.
communication media is a resource that is usually accessedy, g1 of the aforementioned work. however. the computa-
in a mutually exclusive manner by neighborhood agentgion of the MATI and the execution of the corresponding
'_rh|_s means that the throughpqt capacity of suph networks Bfotocols must be done in a highly centralized manner,
limited that can cause delays in message delivery [1]. Sughhich is impractical in large-scale systems due to its poor
delay can have a major impact on overall system stabilitycq|apility. Moreover, because the MATI is computed before
So one important issue in the implementation of such Sygne system is deployed, it must ensure adequate behavior ove
tems is to identify methods for more effectively using the, \ide range of possible input disturbances. As a result, the
limited network bandwidth available for transmitting &tat \jaT) may be conservative. Consequently, the bandwidth of
information. . ~ the network may have to be higher than necessary to ensure
_ For this reason, some researchers began investigating {§g MATI is not violated. These limitations suggest a great
timing issue in networked control. In other words, howheed of distributed approaches to address this timing issue

o . . . network bandwidth in an extremely frugal manner [11].
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to what is currently happening within the system. By event- The state equation of agents

triggering, an agent broadcasts its state information go it

neighbors only when some measure of the subsystem’s &i(t) = filzp,,w)

local state error exceeds a specified threshold. Following ui(t) = gi(rz,)

this idea, distributed event-triggered feedback schenerse w

proposed in [14] and [15] for linear and nonlinear sys-

tems, respectively. An implementation of event-trigggrinwhere z; : Rj — R" is the state trajectory of agernt

in sensor-network was introduced in [16] that is done in,; : R — R™ is a control input,g; : R7Zil 5 R™ js

a centralized manner. Most recently, transmission delay the feedback strategy of agensatisfyingg;(0) = 0, f; :

distributed event-triggered NCS was considered in [17]sThR"P:l x R™ x R} — R" is continuous and locally Lipschitz

work shows that if the transmission delay is nonzero, thegatisfying f;(0,0) = 0, and zp, = {z;};cp,, Tz, =

the resulting NCS s globally uniformly ultimately bounded {z;} ..~ . For notational convenience, we assume that the

provided that the system dynamic is bounded. These resulisates/inputs/disturbances of agents have the same donens

however, are conservative. The results in this paper can be easily extended to the case
In this paper, we extend the work in [17]. Strictly positivewhere the dimensions of agents’ states/inputs/distudsanc

delay is allowed and the assumption of bounded dynamare different from each other.

is relaxed. We provide state-based bounds on transmission

delays (also known asaximal allowable delay or deadline) P, yp,r— -+ TPy

in distributed event-triggered NCS that are always greater ‘ /4

than a positive constant. Each agent can predict the bound F ‘L?—l \ N F‘V N

Continuous

on the delays in its state transmissions based on its local [zon] [Detector] [20H]  [Detector] Time  [zoH]
information. As long as the delays are less than these bounds 1 P ‘

zi(to) = o

Uy x

N A

asymptotic stability can be guaranteed. These results are | xli | lQi | l\‘
important because they show that, in asynchronous trans- 1 cPu 1 W 1
mission frameworks, strictly positive bounds on transioiss 32, ! f 22, ! DiTs;:rete fxz !
delays exist, with which asymptotic stability of NCS can be ' v e e v
guaranteed. . . ‘
The paper is organized as follows: section Il formulates Communication Channel
the problem; a distributed scheme is introduced in section
Il to predict the deadlines for transmission delay; simula Fig. 1. The infrastructure of the real-time NCS
tion results are presented in section IV; in section V, the
conclusions are drawn. This paper considers a real-time implementation of this

distributed NCS. The infrastructure of such an implementa-
tion is plotted in Figure 1. In such a system, agérdan
only detect its own stateg;. If the local “error” signal
Consider a distributed NCS containingsubsystems (also €xceeds some given threshold, which can be detected by
called “agents”). Thes&/ agents are coupled together andhardware detectors, agentwill sample and broadcast its

each agent can receive information from some of othdtate information to those agents i through a real-time
agents. Let\V = {1,2,--- , N} and network. Meanwhile, agenf’s control, u;, at time ¢ is

computed based on the states broadcasted by agedts in
These broadcasted states are denotetl;a&). The control
signal used by ageritis held constant by a zero-order hold
?ZOH) unless one of the agents i#; makes a successful
broadcast. This means that the state equation of agesm
Ye written as

Il. PROBLEM FORMULATION

« Z; C N denotes the set of agents that ageran get
information from;

« D; C N denotes the set of agents that directly driv
agenti's dynamics;

e S; C N denotes the set of agents who are directl
driven by agent i;

« U; C NV denotes the set of agents that can receive agent
i's information; N

o for any set:; C N, |¥;| denotes the number of the ui = gi(@z,)- @)
elements inx; andy; = ¥; U {i};

« RT denotes all the positive real numbers aRg =
Rt U{0};

e || - |2 denotes2-norm of a vector,| - | denotes the
matrix Norm,A\min (A) andA,ax(A4) denote the minimal
and maximal eigenvalues of a symmetric matrix
respectively.

;= fi(vp,,u)

Agent i's broadcast is characterized by two monotone
increasing sequences of time instants: the broadcastseclea
time, {b:}%2,, and the broadcast finishing timgf;}22,.
The timeb:, denotes the time instant when thth broadcast
of agent: is released. At this time, we assume there is no
delay between sampling and broadcast release. The ffime
denotes the time instant when tl¢h broadcasted data of
Notice thati ¢ Z; U D; U S; U U;. agent: is received by its neighbors. Notice thaf(t) =



z,;(bl) for all t € [f{, f,§+1). For notational convenience, we satisfy equation (2). Equation (5) suggests agend £,

definee; : Rf — R™ by e;(t) £ z;(t) — 44(t) for vt > 0. stable from{z;};ep,uz;, {€j};ez tO x;. The satisfaction
The objective of this paper is to develop distributed eventf equation (6) requireg; to be small. This implies weak

triggering schemes to identifybi }°,, and {fi}?°, such coupling among agents. By solving these two equations,

that the NCS defined in equation (1) is asymptotically stabl@gent; can locally find the paif«;, 8;). In general, however,

it is not easy to solve them.

”_l' EVE_NT_TRIGGEREDNCSWITH D.ELAYS o Lemma 3.4: Consider theN-agent NCS in equation (1).
In this section, we study the NCS with transm|SS|orSuppose that (2) holds. Also assume that

delays. We provide state-based deadlines on these delays. -
The NCS is asymptotically stable as long as the delay in L|jz||3 < V(z) < Ll|lz[|3 and (10)
each transmission is less than the give bound. We also show I fi (zp, (1), 9 (22,(1)) |2 < 65, (11)
that these bounds are always greater than a positive cénstan .
Before we present the main result, we would like td1old for allt >t with somed; € R*. If for any i € N,
Lﬂtroduce t.hree Iemmgs. The_flrst Iemma (Lemm.a} 3.1) is cillzi(t) — 2 (bL) |2 < pillas (L) (12)
e result in [17], which provides sufficient condition for
asymptotic stability in event-triggered NCS. The secondolds for allt € [b},b} ) for somep; € (0,1) and the
lemma (Lemma 3.4) shows that if there is a bound on thdelay in thekth transmission satisfies

delay, then the resulting NCS is at least globally uniformly (i
ultimately bounded. The third lemma (Lemma 3.6) shows fi—bi < 1—pi ma M,A (13)
that, if the bound on the delay is appropriately chosen, then Cili 2

the state trajectory will fall into some known compact set. . . n — 4 caticfinn T
The proofs of lemmas can be found in the appendix. FWIth agvenA € R, then foranyy € R satisfyingg > ¢,

notational convenience, we Iét;,V = &¥ fi(xp,, u;) with there existsr> fo such that

some function/’ : R™Y — R{. ' I\ .-
Lemma 3.1 ([17]): Consider theN-agent NCS in equa- z(®)ll2 < (Z) NzoA

tion (1). Assume that there exist a smooth, positive-definit a

function V : R™N — R and positive constants > 1, a;, holds for allt > T', where

, + ; s

B; € R* for all i € A such that 5 ( Sien @il = pi) )p 14)
YLV <Y —aslwllf 4 Billeill (@) minien (L — <)

ey N _ 1+p;\" 15

If for any i € NV, ¢ = max 5 y Pi - (15)

Remark 3.5: Lemma 3.4 suggests that, with a givén

cillei®)llz < pillZ:(t)ll2 ®)  the overall system is globally uniformly ultimately bournide
holds for allt > 0, wherep; € (0,1) and Suppose equation (2) holds ayfid g; are locally Lipschitz
5, 1 for all i € V. Then we can define a compact sktC R™Y,
q=1+(j), (4) as
then the NCS is asymptotically stable. A= {z eR™ | V(2) < V(z0)} (16)
Remark 3.2: The event for agentis only associated wWith gnq then find positive constants;, L, € R* for i =
e; andz;. Agenti just needs to use the violation of equation; o ... N such that

(12) to trigger the broadcast such that the inequality in
equation (12) holds. If there are no transmission delay and fi(p,,9i(22,))ll2 < Li(lz]l2 + [|2[2), Vz,2 € A (17)

data dropouts, the system stability of NCS can be guaranteed L||z|3 < V(z) < Lljz[3, Yz e A (18)
Remark 3.3: If for given ¢;,; € R*, agenti can find 1
a continuous, positive-definite functiorj : R* — R{, a 0, = 2L; (V(t‘))) (19)
positive constany; € R*, and control lawg; : R™%:l — R™ L
satisfying with somegq > 1. For the notational convenience, we use
» » » V(t) to denoteV (x(t)) for all t > .
Ly, Vi < =nillzillb +je[;JZ Gillz;llz + gz: Ojlleslls (5) (L()emma 3.6: Cc(méider theN-agent NCS in equation (1).

Suppose that equation (2), (17), and (18) hold. Gipere
i —1S: VUilG >0, (6) (0,1) for all i € N and ¢ > ¢, where ¢ is defined by

then equation (14), if for anyi € A/, equation (12) holds for all
_ L t € [b,, b}, ;) with somep; € (0,1) and the delay in théth
V(z) = _GZNVZ(%) (7) transmission satisfies
o SO O it < mad S, LR 20y
Bi = 6|Ui] 9) 2¢;0; 2¢;,LiN=z¢L%4



then the state(¢) is always in the sed, defined in equation  Let s, be the time when each agent .M broadcasts at
(16), for allt > tg. least once aftety. Then

Remark 3.7: Lemma 3.6 shows that if the bound on the 2 1
delay is small enough, the system dynamic will be ina 34|, <= <¢>> <V(t0)) s

¢

holds. With the preceding equation, we can re-compute the
Bound for #; over [s2,00) and re-apply Lemma 3.4 to get
new bounds on|x(¢)||2 and ||Z(t)||2, so on and so forth.
Then there exists, > ¢y such that

compact sef\. This lemma helps us to relax the assumption L
in (11).
With these lemmas, we now can present the main theore
Theorem 3.8: Consider theV-agent NCS in equation (1).
Suppose that equation (2), (17), and (18) hold. Gi¥er
R+, p; € (0,1) for all i € A and¢ > ¢, where¢ is defined

by equation (14), if for any € NV, the k + 1st broadcast is ¢ ¥ V(to) a
released by the violation of [z(@)ll2 < 3 (T) (28)
E1 A E2 (21) Q,A) k
iI’,t,iCE’,t S = 91 29
for somep; € (0, 1), whereF; is the inequality in equation filep,(0),9422,1) <¢> (29)
(12) and hold for all £ > sy.
Ey:t <bi+T, (22) Since% € (0,1), ask — oo, the preceding equation
) o o . implies z(t) — 0, which means the NCS is asymptotically
and the delay in théth transmission satisfies equation (20)staple. -
then the NCS is asymptotically stable. _ Remark 3.9: The introduction off is the safety require-
Proof: By Lemma 3.6, we know the state trajectoryment of systems. It requires each agent broadcast at least
z(t) € A for all t > #o. Therefore, by equation (18), everyT unit-time so that some accidents can be detecfed.
q - < > is arbitrarily chosgn.
Llz(t)||3 < V(t) < V(to), Vt>to (23) Remark 3.10: It is easy to see that the state-based bounds
holds. on the delays defined in equation (20) are always greater
According to equation (17), we have than a positive constant,
1—pi)Ls
R V to) # 30
i (@, (0, 9407, (1))) < 2L ( ( ) —0 (28) e LNV ILE (30)
for all ¢ > t. which is known as thevorst-case execution time (WCET)

Let  — 222 Since the hypotheses of Lemma 3.4 ar@f agenti.

o _ 2 ! Remark 3.11: From equation (20), we can see that the
satisfied withA := A; = —5—=, we know that there farther the state is away from the equilibrium, the larger
exists a positive numbes iL%ﬁzgjgh that the bound on the delay can be. The WCET dominates the

deadline only when the state is very close to the equilibrium

lz(t)]2 < <£) N oA, = ¢ (V(to)) " st (25) Let us now re-visit the distributed scheme described by

L o L (5) and (6). In this distributed approach, agémay require

By E», we know each agent will broadcast after Let s, Lil|zi)|3 < Vi(z:) < Lillai||§, Va € A. (31)
be the time when each agent.M broadcasts at least once
aftert;. Then

Since the inequality

1
b

2(t)]]2 < ¢ <m)a L VE> s>t (26) (; ||£Cz'|3> < <; ||£Ci||§> <N <; |I$i|3>

o\ L
holds. Applying the preceding two equations into equatioRolds for anyl < a <b < oo, we have
(17) yields Liel§ < minL; " flail§ < Via)
R ¢A> ) iEN )
filen, (), g(@z, (1) < 500 VEZ s (@D) < maxLi Y llaillg < Lialg
N 1EN
We now setA := A, = 2A,; and use the preceding where
equation to bound the behavior ¢gf over [s1,00). Then mingen L,
. e = > 92
Lemma 3.4 suggests that there exists> s; such that L= N3-1 7= (32)

mingen L; 1<¢g<2

_ 1 AN\ 2 1
L\7 o 1- ¢ V(to))a _ en' Li > 2
zB)|2 < (=] N2pAy=|[ = < , Vit >t maXjen L 4=
el <L) ’ <¢>> L ’ L {ngmaxieNLi 1<g<2 &3




Therefore, for a distributed consideration, ageistrequired
to find L, and L, satisfying equation (31) and, L are 1
defined in equation (33) and (32), respectively. e —

"
IV. SIMULATIONS —

This section presents simulation results demonstratiag
distributed event-triggering scheme. The system undelystt
is a collection of carts coupled by softening springs [1¢
(Figure 2). Theith subsystem state is the vectoy =
[ vi s }T wherey; is theith cart's position. We assume
that at the equilibrium of the system, all springs are ul
stretched.

State
o

u U
1 U% 3

(@) WO O W() (@)
P i

Fig. 2. Three carts coupled by springs

Deadline

Fig. 3. State trajectory, broadcast periods, and predideatilines in an

The state equation for théh cart is equation (1), where ©venttriggered NCS

. s TABLE |
Tq = w; -+ "‘%1 tanh(ylurl _ %) + KZZ tanh(yi,l _ %) . RESULTS ONRUNNING A DISTRIBUTEDEVENT-TRIGGEREDNCS
| | Agent 1] Agent 2 | Agent 3]
Here x? = k) = 0. Otherwise,x} = x? = 1. The control Number of Broadcasts 111 189 107
input of agent; is Average Broadcast Period | 0.0541 | 0.0317 | 0.0561
Maximal Predicted Deadling 0.0009 | 0.0006 | 0.0012
u; = K;Z; — 1111 tanh(giJrl — @z) — ,L;? tanh(yifl — :Qz), WCET 0.0005 | 0.0002 | 0.0005

whereK; = | =2 —2 ] fori=1,--- N.
According to the distributed design scheme in [17], we

have We then considered the relation between the WCET and

- the average broadcast period as the paramgtehanges.
c; = 10.2852, L; =8.3630, L, =2.2214, L; =10.7523  In this simulation, we assume that the delays in agents are
fori—9 ... N—1and equal to their WCETsp; varied from 0.001 to 0.9%, = p3
L are set to be 0.5. For eagh, the system ran for 6 seconds.
ci =5.9638, L; =6.6310, L, =5.2826, L; = 18.4751 Figure 4 shows the simulation results. As increases, the
N average period increases and the WCET decreases. This
for i = {1, N}. With p; = 0.5, the triggering events are  gsimulation, therefore, suggests a tradeoff between besidc

—0.5]:(t) |2 + 5.9638|es(t)[|2 = 0, for i = 1, N periods and transmission deadlines.
—0.5)|2i(t)]|2 + 10.2852||e;(t)||2 = 0, otherwise V. CONCLUSIONS

We setN = 3 and ran the event-triggered NCS for 6 This paper exgm@nes event-triggered broadcasting of state
seconds. We assume that transmission delay is equal to tRformation in distributed networked control systems with
predicted deadline (the bound on the delay in (20)). Thikansmission delays._ State_-l_)ased bounds on transmission
initial statez, was randomly generated satisfyifigo||o < delays for asymptotic stability of the overall system are
1. From the top plot of Figure 3, we can see that the SysteH{OVIded. These bounds. are _alway_s greater than a positive
is asymptotically stable. The successful broadcast perio§onstant and can be derived in a distributed manner.
of agent1 (cross), agenk (diamond), and agent (dot)
are shown in the middle plot of Figure 3 that vary in a
wide range. It demonstrates the ability of event-trigggrin ~ Proof: [Proof of Lemma 3.4] _
in adjusting broadcast periods in response to variations in Consider the derivative dfz;(t) — =:(b},)||, over the time
the system’s states. The bottom plot in Figure 3 shows tHeterval [b, f7.).
history of agents’ predicted deadlines, which were reddced ‘
fixed constants as the state is very close to the equilibrium . i ||56i(t) - xi(bZ)Hg
This is because as the states get small, the WCET dominates
the deadlines as shown in equation (20). The detailed data
of this simulation is listed in table I. holds for allt € [b%, ).

APPENDIX

IN

[l (£l
= fi(zp,59i (22,)) 2 < 0:
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varies from 0.001 to 0.99

Solving the preceding inequality with the initial conditio

i (t) = i (B})]], li=py = 0 implies
s () — i (b )l|2 < 0:(t — b},)
< Lo max{ i (O 2 ”m} 34)

holds for allt € [bi, f}), where the second inequality is
obtained by applying equation (13).
We know

Jaes(t) = iBh ) ll2 < s b (35)

forall t € [b; _,,b}).
Combining equation (34) and (35) implies
Iz( Z_

lei®)l2 = ll=i(t) — 1ll2

< i) = @i(bp)ll2 + [l (0) — @i(bj—1) 2

1 —pi i ()12 pi ;
= ¢ max{% Art C_Z_”xi( k—1)l2
< max { (1+pi)“§;§b271)”27 (1*Pi)A+P;Umi(b§;71)H2 }

holds fort € [fi_,, f}).
The preceding equation then suggests that

(@) lea®ll2 = (e — Dlla(t) — st

1 1 11 b"' i
= [l (t) — bk 1)||2
1+pi
< {22 Ol (1= )8+ pilli(0

holds fort € [fj_,, fi). Therefore,

[EAO]

1+pi

(36)
max { (542)” s (D)8, (1= p) A + pule(®)l2)”}
max { (152)” ()], (1 = p)A” + pi (1)}

We now conside/ for any ¢ > 0. Equation (2) implies
that

%

IN

+w

< 1

Vo< Y —ailla@llb + Billeat)s
1EN
Applying equation (36) into the preceding equation yields
V< a5 +
1EN
ma { (B2 ()5, (1= pi) AP + pilla (015 ).

Let © = {i € N | (32)" (Il > (1 - p)a?
+pillz;i(t)||5}. Therefore, the preceding equation is equiva-

lent to
. 1+ p; P
Vv o< i = 1) [zl
+ Z (1 — pi)aiAp + Z ai(Pz - I)sz(t)Hg

1EN\Q 1EN\Q

According to equation (15), the preceding equation implies

V< > il —p)AP+ Y ais — Dl|a(t)]13

1€EN\Q, 1EN
< D a(l=p)A” =Y (1 —)|z®)]E (37)
ieN ieEN
< Z a;(1— p;))AP — nnnozZ (1-g Z llz: ()15
ieN ieEN
— minau(l- ) <¢PAP - EZNmiu)nz’)

where ¢ is defined in equation (14). This inequality means
that if there exists € A such that||z;(t)[2 > A¢ for any
¢ > ¢, then

V< 11@16%1041-(1 —Gi)(¢f —

F)AP <0

holds. This implies that the preceding inequality holds whe

(z sl
ieEN

since the inequality above implidiss;(t)[|2 > Ag.
Combining this with equation (10) is sufficient to show
that there exist§” > ¢, such that

()

) > N%Aqq;q

holds for allt > T, as shown in [19].
Proof: [Proof of Lemma 3.6]



Consider the set

F={zeA|Ljz|}<V(zo)}- (38)

It is easy to see that equation (18) impliEsC A and
L>1.

~ We now show that/(¢) < V(¢y) holds for allt > t,. We
prove it by contradiction. Suppose that there is time irtstan
t > to such thatV (f) > V().

holds, which implies

N%Aq¢q

(NA%g2)E > (Z]% m)

iEN
”‘T(t)Hg7 vt e (8_658)5

(48)

and therefore, implementing equation (45) into the preugdi
equatlon implies

Notice that before the first time the inequality in equation . V(to)p? q
o . ) NzAp? = 2 > ||lz(t t - . (49
(12) is violated, the inequality ¢ P lz(®)llz, vt € (s —es). (49)
V< Z (1— pP)aiz:2 Sincex(t) is continuous, equation (49) implies
ieEN Vv to)(b
R VUOI i (D)l = Jn(s)
holds. Therefore, there must exist time instant ¢, such ¢
thatV (t) < V(o) forall t € (to,]. SinceV () is continuous  Becausep > ¢, we have
and V(f) > V(ty), we know there must exist at least one Vit V()4
time interval(s — e1,s + €1) C (£, %) such that (_0) Eo}(b > [|z(s)]|
L ¢1L; T .
V(s) = V(to) (39)  which implies that
V(t) >0, Vte (s—c¢, 40 _
=0 el o) Vito) > a3 = V(s), (50

Assume that is the first time in(t, {) satisfying equation
(39), (40) with a parameter. Then we have

to<t<s<t (41)
V(t) < V(to), Vt € [to, S). (42) [1]
Equation (42) implies
[2
w(t) €A and [Jo(t))g < L) (43)

L (3]

for all t € [to, s) according to equation (17). Combining this

inequality with equation (17), we have [4]

fi(xp, (1), 9i(x2,(1))) < 2L; (%to)) "y, 5]

for all ¢ € [to, s). Also equation (20) means
(6]

Y 1—p; i 1—p;
fi =t <maxd 210 i, LA (a)
2¢;0; c;0; 7
with
1 8]
OL;N gL+

9]
Therefore, following the same reasoning in Lemma 3.4,
we have

[10]

V <minai(l— )} [AP¢" — S ||z (1)) ] (46) g
4 €N

[12]

for all ¢ € [to, s), whereg; is defined in equation (15).
SinceV (t) > 0 for all t € (s—¢, s) according to equation
(40), we know by equation (46) that (23]

AP =Y |25 = ()5,

iEN

vt e (S -6 S)v (47) [14]

which contradicts equation (39). Therefore, we conclude
V(t) < V(to) holds for allt > t,.
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