Chapter 1

Event-Triggered Feedback in Contral,
Estimation, and Optimization

Michael Lemmon

Abstract Networked control systems often send information acrosstimmuni-
cation network in a periodic manner. The selected periodglver, must assure ad-
equate system performance over a wide range of operatirditmors and this con-
servative choice may result in significant over-provisimnof the communication
network. This observation has motivated the usgpairadictransmission across the
network’s feedback channel&vent-triggeringrepresents one way of generating
such sporadic transmissions. In event-triggered feedlzasknsor transmits when
some internal measure of the novelty in the sensor infoonatkceeds a specified
threshold. In particular, this means that when the gap batvtlee current and the
more recently transmitted sensor measurements exceedtealspendent thresh-
old, then the information is transmitted across the chanfe¢ state-dependent
thresholds are chosen in a way that preserves commonly ta@litg concepts such
as input-to-state stability a#, stability. This approach for threshold selection there-
fore provides a systematic way of triggering transmisstbasprovides some guar-
antees on overall control system performance. While eaolkw event-triggering
focused on control applications, this technique can alsedeel in distributed esti-
mation and distributed optimization. This chapter reviegacent progress in the use
of state-dependent event-triggering in embedded contailyorked control sys-
tems, distributed estimation, and distributed optimuati

1.1 Introduction

Embedded and networked control systems often rely on thedgiersampling and

transmission of data. This periodic data abstraction isaathgeous from the de-
sign standpoint. It permits real-time system engineerscamndrol system engineers
to pursue their design objectives in relative isolatiomfreach other. While this
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so-calledseparation-of-concernlsas proven advantageous from a designer’s per-
spective, it does not necessarily lead to cost effectivdeémpntations of the control
system. By separating the concerns of the control engimeer the real-time sys-
tem engineer, one forces each designer to adopt a conservawpoint that may
lead to unnecessary over-provisioning in the system imefgation and hence to
higher system costs. When one applies these tradition&jrdgsinciples to ex-
tremely large-scale systems, then the cost of enforcingéhiedic data abstraction
may become prohibitive.

As a result of these scaling issues, there has been recergshin developing
co-desigrframeworks where the concerns of real-time systems andal@ystems
engineers are treated in a unified manner. One of the firgnstaits of the co-
design problem was given by Seto et al. [66]. This work presgico-design as
an optimization problem that sought to minimize a tradigbquadratic integral
measure of control cost subject to task schedulability waims. Seto’s problem
was an off-line design approach since the optimization lerabwas solved prior
to system deployment. Since that time, a number of otheresigd approaches
have been suggested. A number of promising methods weeel lista paper by
Arzen et al. [3]. Since that time a number of research saeniiave investigated the
methods on this list. These methods include feedback matditof task attributes
[8, 45, 9, 12], anytime controllers [7, 21] , and event-teged sampling[2, 70, 83]

One approach to co-design involves adjusting task atebtiirough feedback.
An example of this is found in the elastic scheduling mett&jdf Buttazzo et al.
This method uses measured task execution times to adgpdiglst task periods.
Lu et al. [45] presented a feedback control approach totneed-scheduling. This
idea was later applied to the scheduling of control tasks &gc@mo et al. [9] and
Cervin et al. [12]. This work clearly demonstrated that fesck control principles
could be used to reduce the sensitivity of real-time systenusicertainties in con-
trol task period, jitter, and execution time. The reduciioneal-time system sensi-
tivity also leads to improved control system performantgeone no longer needs
to design the real-time system for the worst-case variatigitter and execution
time.

While these early schemes used feedback about the reakyistem’s perfor-
mance to adjust task attributes, this feedback was notttjireased on the control
system’s measured performance. A more direct link betweahtime system and
control system performance will be found in recent work eixang anytimecon-
trollers andevent-triggeredampling. Anytime controllers are control systems that
adjust their structure based on the performance of thetiraalsystem [7, 21]. In
other words, if the real-time system becomes overloaded, the application will
select a less complex (though stabilizing) controller teaate. In this way, the con-
troller's performance is directly tied in an intelligent wto the real-time system’s
performance.

Event-triggered controllers, on the other hand, adaptehktime system’s task
period directly in response to the application’s perforoeaifi2]. Under event-
triggering the control task is only executed when the ajfibie’s error signal ex-
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ceeds a specified threshold. Ostensibly, this error prevédmeasure of how valu-
able the current state is to the overall system’s closeg-lwehavior. In this way
the real-time system is only used when it is essential fomtaaiing the system’s
performance. Since the system state is always changirsgapifiroach generates a
sporadic sequence of controller invocations. In genehal,Hope is that the aver-
age rate of this sporadic task set will be much lower than ate of a comparable
periodic task set.

There is experimental evidence to support the assertideteat-triggered feed-
back improves overall control system performance whilecath the real-time sys-
tem’s use of computational resources. Two examples arershofigure 1.1 which
shows results from [4] and [63, 65].

The left-hand plot in figure 1.1 shows a plot from [4]. This pagonsiders a
controlled scalar diffusion process of the form,

dx= axdt+ udt+ dw,

wherea is a real constant and is a standard Brownian motion. The signds the
control signal generated by a full-state controller. Thoetcol is computed in either

a periodic or event-triggered manner. Under event-trigggethe control is updated
whenever the state magnitude|, exceeds a specified threshold. The performance
of the system is characterized by the steady-state var@fribe system state. The
variance of the periodically triggered system is denotédzashereas the variance
of the event-triggered system is denoted/asT he left-hand plot in figure 1.1 plots
the ratioVr/VL as a function of the mean sampling peridd, Note that for all
choices of the system constaatthis performance ratio is greater than one, thereby
showing that the event-triggered system has better pediocethan periodically
triggered systems operating at the same mean samplinglperio
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Fig. 1.1 Experimental results demonstrating that event-triggégedback reduces a real-time sys-
tem’s use of computational resources while providing goegetall control system performance

The right-hand side of figure 1.1 shows another example irclvian event-
triggered system demonstrates lower usage of computaties@urces. This result



4 Michael Lemmon

is taken from [63, 24] which considers the control of a linpnt under a PID
controller. This controller is discretized at a specifiechpling rate and the result-
ing tracking error is plotted as a function of time in the tdptn the right-hand
side of figure 1.1. The middle plot shows the tracking erroafeaomparable event-
triggered implementation of the system. In this case thérobis recomputed when
thegapbetween the current system state and the last sampled sy&stEnexceeds
a specified thresholey,

gap= [x(t) — x(rj)| < er =threshold

whererj denotes thé!" consecutive time when the state was sampled. For the sim-
ulation shown in the middle plot, the threshag was chosen to match the peak
error of the periodically triggered system. This means thase first two plots are
comparing the behavior of an event-triggered and peridigitaygered system hav-
ing similar performance levels. The bottom plot in the figeh®ws the number of
samples that were generated by the periodically triggernet{driven) and event-
triggered PID control. As can be seen from this plot, the neinah event-triggered
samples is smaller than the time-driven control. Morea&the system approaches
its equilibrium point, the number of samples begins to l@fglthereby suggesting
that as the information content within the error signal dases, the controller needs
to be invoked less often.

The left-hand example shown in figure 1.1 suggests an eviggeted system
will perform better than a periodically-triggered systemith similar computational
usage. The right-hand example suggests an event-trigggstein will use fewer
computational resources than a periodically triggeredesysvith similar perfor-
mance levels. These results, unfortunately, are only ecapin nature. The objec-
tive of this chapter is to review prior work that provides armoomplete analysis of
the relationship between performance and computationenteviggered feedback
systems.

Event-triggering samples the system state when some neeaktirenoveltyin
the state exceeds a given threshold. This approach to samipis been around
for quite awhile. Early examples of event-triggered systamay be found in re-
lay [73] and pulse-width modulated feeback [54]. Evergdared feedback has
been used in reaction jet control of spacecraft. More reegamples have exam-
ined event-triggering in systems using motors [23, 65, 84, 2 comparison of
the performance of event-triggered systems against geslbgtriggered systems
may be found in [26]. Event-triggering has also appearecuadvariety of other
names such as interrupt-based feedback [29], Lebesgudisgid, asynchronous
sampling [76], self-triggered feedback [75], state-taged feedback [71], and level
crossing sampling [39].

While event-triggering has been around for quite awhileas bnly been in re-
cent years [2] that researchers have made significant adsamcinderstanding the
event-triggering process. Sampled stochastic diffeséatjuations have been used
to study event-triggered sampling [4]. This model has aksnhused to study event-
triggered control [5, 27]. Optimal control and estimationthese event-triggered
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stochastic systems was studied in [87] for infinite horizdree results from [87]

determine event triggers that maximize control/estimptyformance subject to a
soft constraint on communication usage. The resultinghogdtevent-triggers take
the form of static thresholds. These results were extenaldidite horizon event-

triggered systems for control [31, 62] and estimation [3), %7, 60]. These finite-

horizon results optimize control/estimator performangejact to hard communi-
cation constraints. For estimation problems, the resybiptimal event-triggers are
time-varying and for control problems, the event-triggaestime-varying functions
of the initial system state.

Much of the aforecited work, however, focused only on scajemtems due to
the computational complexity associated with solving tbsoaiated dynamic pro-
gramming equations. Research scientists have recentiyséeg state-based meth-
ods that can be more easily applied to vector systems. Maldga@f the emulation
method [50] in sampled-data systems, recent work has fhsiufficient sampling
conditions that preserve closed-loop stability concepthss input-to-state stabil-
ity [70] or % stability [83]. A similar state-based approach has alsamlpeeposed
in [40]. This recent work again derives state-dependerstiwlds for the event-
triggers. While the recent state-based methods do notaithplconstrain commu-
nication usage, experimental studies suggest that ségiendient event-triggers can
be very effective in reducing an embedded system’s usageropuatational and
communication resources.

This chapter discusses how event-triggering can be usewidearange of net-
worked control applications; ranging from control to esttion to optimization. In
all of these application areas, event-triggering appeagreatly reduce the com-
munication and/or computational effort required of themuging real-time system.
The remainder of this chapter is organized as follows. Tlagtdr first reviews some
mathematical preliminaries in section 1.2. Section 1.31eras state-based event-
triggering in embedded single processor control systeims.r&sults from this sec-
tion are then extended to networked control systems in@edtiéd. The controllers
in sections 1.3-1.4 all use full state feedback. As a firgh $tevards developing
output-feedback controls, section 1.5 examines a rec@gmbaph to event-triggered
state estimation. Finally section 1.6 presents a noveiegdfin of event-triggering
in distributed optimization of networked systems. Eveiggered control is still an
active research area and a number of promising future @seérections are dis-
cussed in section 1.7.

1.2 Mathematical Preliminaries

The event-triggers in this chapter are designed to enfoxegiaty of stability con-
ceptsfound in the system science literature. This section revidvose stability
concepts primarily to establish notational conventioms #re followed throughout
the rest of this chapter. In particular, this section re@atability concepts such as



6 Michael Lemmon

asymptotic stability, input-to-state stability, arh stability. Much of this material
may be found in textbooks [32, 74, 37].

This chapter adopts the following notational conventidrige functionx map-
ping elements on the real lin®, onto elements of EuclideamspaceR", is de-
noted as<: R — R". Letx(t) denote the value that this function takes at tineeR
and letx{t) = dx(t)/dt denote the time derivative afat timet. This function is said
to solve an initial value problem of the form

X(t) = f(x(t)), x(0)=x (1.1)

if the above equations are satisfied for almost &l0. In equation (1.1)f : R" —

R" is a function mapping Euclideamspace back onto itself. To assure the above
equation has unique solutions, one often requires thia¢ Lipschitz continuous
Namely, there exists a positive real constastuch that

100 = fY)Il < LlIx=yll

for all xandy in R". The vectorx(t) € R" is an element of a normed vector space
where||x(t)|| denotes the usual Euclidean 2-norm. The funckids a member of

a normed linear space. Important norms used for such furetee the supremum
norm, ||X|| #, = esssup||x(t)|| and the 2-norm|x|| &, = /[y IX(T)[|?dT. Let %,
denote the linear space of all measurable functions witnbed 2-norms.%,, de-
notes the linear space of all measurable functions with Bdedrsupremum norm.

A functiona : R — R is said to be class? if it is continuous, strictly increasing,
anda(0) =0. A function8 : R x R — R is said to be of class#” . if it is a con-
tinuous function that is clas¥” with respect to the first argument and decreasing
asymptotically to zero with respect to the second argument.

With these notational conventions established one can refinala variety of
stability concepts. One of the best known stability conséptyapunov stability
This concept applies to homogeneous systems charactarizgdation (1.1). Given
such as system, one says that a pRiatR" is anequilibrium pointif 0 = f(X); in
other wordX represents a fixed point of the system. Without loss of gdiherane
can presume the equilibrium poixt= 0 lies at the origin.

The concept of Lyapunov stability is a property of the syssequilibrium point.

In particular one says that the equilibrium poirt= 0, is stable in the sense of
Lyapunov if for alle > 0 there exist® > 0 such that for alt >0

IX(O)] < &= [IxW)[l <e.

Essentially, this means that the equilibrium point is Lyapustable if there always
exists an initial condition that permits us to confine thetesysstate within an arbi-
trarily small neighborhood of the equilibrium point.

A somewhat stronger (and better known) notion of Lyapunabi$ty is asymp-
totic stability. An equilibrium point is said to be asymptotically stablehi& point
is Lyapunov stable and if the stat&) asymptotically approaches the equilibrium
point ast goes to infinity.
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The existence of Ayapunov functioprovides a well known sufficient condition
for Lyapunov (asymptotic) stability. Consider a homogearsesystenx(t) = f(x(t))
with equilibrium pointX = 0. One says a continuously differentiable function
V :R" — Ris a Lyapunov function for the system\ifis a positive definite function
and its directional derivativé, = ‘;—\;f(x), is negative semi-definite. The existence
of a Lyapunov functiorV is sufficient to show that the equilibrium point is stable
in the sense of Lyapunov. Moreover, if one can strengthecdheition onV to be
negative definite, then this suffices to establish that théliegum point is asymp-
totically stable.

While the Lyapunov stability concept has been widely usethinot be directly
used to characterize the behavior ofinhomogeneous systhose state trajectories
x: R — R" satisfy the initial value problem,

X(t) = f(x().w(t), X(0) =o. (12)

wherew : R — R™M is an external disturbance. In this caseR" x R™ — R" maps
the current system statd}), and an external disturbaneg(t), onto the state’s time
derivative. Because this system is driven by an externalidiance, one cannot
usually identify a single equilibrium point for the systeWiithout this equilibrium
point, one cannot use Lyapunov stability concepts to sthdysystem’s behavior.
This observation motivates a variety of other stability @gpts for such inhomo-
geneous systems. Two such stability concepts are inpstate- stability and%,
stability.

The system in equation (1.2) is input-to-state stable (iS®Bere exists a class
&% functionf3 and a class?” functiony such that for any initial conditiorx(0) =
Xo, the response under any input %, satisfies

X1 < B(lxoll,t) + v(lIw .2.)

forallt > 0. An alternative and equivalent characterization of ISBas the system
response satisfies

Ix(®)[] < max{B(|[xollt), y([Iwll.z) }

for all t > 0. Both definitions essentially require that the transient steady state
behaviors of the system are appropriately bounded. This wiethe 1ISS-concept
is illustrated in figure 1.2. The dashed line shows the boureltd the class?.¥
functionf acting on the initial transient portion of the system'’s @sge. The dotted
line shows the bound due to the clagsfunctiony acting on the steady-state portion
of the system’s response. To be ISS, the system’s resporstdienelow the point-
wise maximum of both of these comparison functions.

Input-to-state stability can also be characterized usyaplnov-type functions.
In particular, one says that a continuously differentidiectionV : R" — R is
an ISS-Lyapunovunction for the system in equation (1.2) if there exist slag
functionsa, @, y, andf such that
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Fig. 1.2 Input-to-State Stability bounds the response’s transiadtsteady-state behavior

ca([lx)) <Vv(x) <a(|)
V(xw) < —y([Ix]) +B(lIwl)

hold forx € R" and allw € R™. The existence of an ISS-Lyapunov function for the
system in equation (1.2) is necessary and sufficient forsygtem to be ISS.

% stability is another useful stability concept for inhomogeus systems. In
this case one usually thinks of the system as a mapfingz, — %> between two
normed linear space. This means that if one is given an input %5 then the
system’s output functio®w will also be a function in%. The systenG is finite-
gain %, stable (or just?, stable) if there exist finite positive real constaptndf3
such that

[GW|.2, < VW2, + B (1.3)

The right-hand side of the above inequality represents famedfinction that over-
bounds the norm of the actual system’s output. In particola can think of/ as a
gainandf as an offset obias The so-callednduced gairof G is then taken as the
greatest lower bound on all of the possiptefor which the above inequality holds.
Thisinduced gairis often denoted a$G|| and can be formally defined as

Gl =inf{ycR : |[GW].z < yiwl.z+B}

forallwe %.

The induced gain provides an important way of defining a adstrstem’s per-
formance. Many control synthesis problems can be formdlaseso-calledegula-
tor problems in which the objective is to minimize thain from the closed-loop
system’s uncontrolled external input to some output fumctBy making the in-
duced gain of the closed-loop system sufficiently small, mmoeides some guaran-
tee on the control system’s performance level. The induegdtherefore becomes
a direct way of characterizing overall control system perfance.

When the inhomogeneous system in equation (1.2) has a baffitia form then
there is a useful characterization of th induced gain. This characterization will
be used later to design event-triggered systems that entloec”, stability concept.
In particular, let's consider a special form of the inhomogeus control system in
which the state trajectory satisfies
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X(t) = A(X(1)) + Ba(x(t))w(t) + Ba(x(t))u(t) (1.4)

wherex(0) = xo, w: R — RP is an external?, disturbance andi: R — R™ is

a control signal that is generated by a controlker. R" — R™. The functionsA :
R"—R", By : R"— R™PandB, : R" — R™Mdefine how the system state, external
input, and control map into the state’s time derivative. dtreer signaz: R — R™™™M
represents the systenostputsignal. The objective is to find a controll€rsuch that
the induced%, gain from the external input to the outputzis less than a specified
amount,y.

The main result characterizing such a controller makes tdigheoso-called
Hamilton-Jacobi InequalityHJI). In particular, assume there exist a real constant
y > 0 and a positive definite continuously differentiable fioict/ : R" — R that
satisfy the HJI,

ovT

ov 1oV ; Bl( )B-{(X)—BZ(X)B—;(X) __|_})(Tx§0 (1.5)

axF 55 ox 2

for all x € R". If one then selects the control outputso that

NV X)T

u=K(x) = —BE(X)T

(1.6)

then one can show that the closed-loop syste#fbgain is less than or equal jo
The bound orj|G|| can be obtained as follows. The directional derivativ¥/ a6

A oV oV
V = SOAXD) + 5 BiXOW) + 5 Ba(x(t)ult).
Completing the square on the cross-te%}fBl(x)w and using the fact that =
-BJ % T yields
ov 1

1 Vg o

1 TavT v ) )
~Bi 22 ox Bl T3 vzHWII = [Jufl*.

Sy Lox

Making use of the Hamilton-Jacobi inequality, one can bovires

1 1 - ovT|?
V < —Z|yw—=B]

1 2 1 2 1 2
<3| BL g | Bl SIS

1
< =S+ 112 = v lwif?)

Sincez= [L(] , this implies that
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V < —Z|1Z12+ Zy2||w||2.
< —3l2?+ 5w

If one then integrates the above inequality from O to infirotye can readily use the
definition of the.%-norm to see that

12].2, < Vw2, + V2V (X(0)).

This inequality is precisely what was seen in equation (wiich is sufficient to
imply the closed-loop system i&% stable with an induced gain less than or equal
to y. In other words, if one choses the control as stated in equ#ti.6), then one
can guarantee that th#, performance level achieved by the closed-loop system is
less than or equal tp.

As mentioned at the opening of this section, this chaptaveevent-triggers
that preserve input-to-state stability &% stability concepts. The preceding defini-
tions and derivations will be used later in deriving thesentriggers. Let's now
turn to see precisely how such event-triggers would be ddrior both embedded
control and networked control systems.

1.3 Event-Triggered Feedback in Embedded Control Systems

This section discusses the design of event-triggeringsekdor embedded control
systems. The main idea is to first design a continuous-timéraiber that guaran-
tees a stability concept such as input-to-state stabilityp stability. The section
then develops aevent-triggering thresholduch that the associated sporadically
triggered control system preserves this underlying stalibncept. This approach
is sometimes called themulation-basethethod [50].

Sampled-Data System Model: Let’s first consider how a sampled-data system
might be configured. Figure 1.3 shows a block diagram for yiséesn under study.
Theplant(G) has two types of inputs. There is an exteunatontrolleddisturbance,
w: R — R%and a control input): R — R™. The plant’s statex: R — R", satisfies
the inhomogeneous differential equation

fort > 0 with initial conditionx(0) = Xo € R". The output of the plant is the system
state x.

Rather than working directly with the continuous-time stat the controller
works with a sampled version of the state trajectory. Inipaldr, let’s introduce
a sampler(S) system that is characterized by a monotone increasingeseguof
sampling instantsThis sequence of sampling instants is denote{t;aﬁ":o where
ri>rj_yforj=12... 0. Thetimer; c R denotes thg™" consecutive sampling
instant. The output of the sampler is therefore a sequensarnpled stateqX; },
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in which Xj = x(r;). A state-feedback controlleK : R" — R™, maps the sampled
state onto a control vectar; € R™. The resulting sequenci;}7_, of controls
is then transformed into a continuous-time signal througtem-order hold )
without any delay. The control signale R — R™, used by the plantis a piecewise
constant function. In particular, let’s introduce a sedqueeof functionsuj : R — R™
that have support over the time interyigl.r;1). The value olj at timet € R is

~ o 0 forterj,rj)
0j(t) = { 0  otherwise

for j =0,1,...,0. With regard to this sequence the controlled input feedirgg t
plant simply becomes(t) = 37, 0j(t).

iy —> Plant (G) x(1)
U(l) p— () = f(2(t), u(t), w(t))

Y

Hold (H) Sampler (S)
sampling instants, { 7; }

Controller (K)
iy = K(&;)

)

Fig. 1.3 Sampled Data Control System

I SS Event-Triggers: Under theemulation-basedpproach for developing sampled-
data systems, one assumes that the contrilleznforces a specified stability con-
cept. In particular, let's confine our attention to inputstate stability and let’s con-
sider thecontinuouslysampled closed-loop system,

X(t) = f(x(t), K(x(t) +e(t)), w(t))

wheree: R — R"andw: R — R™ are.%, input disturbances. Let's assume that the
controllerK leaves this closed-loop system ISS with respect to the tpotgw and
e

From our earlier discussion in section 1.2, the ISS assumjitiplies the exis-
tence of an ISS-Lyapunov functidh: R" — R with class.#” functionsa, @, y, 1
andf3, such that

a([xf) < V(x) <a(x) 1.7)

f;—zf<X=K<X+e>aw>> < =y(IIXI) + Bu(llell) + Ba([wl)).- (1.8)
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The inequalities in equation (1.7) essentially require Yhés positive definite. The
inequality in equation (1.8) is a dissipative relation oa I8S-Lyapunov function’s
directional derivative.

Now let's consider the sampled-data version of this systéme.sampler gener-
ates a sequence of sampling instalﬁﬁt$}‘j°:0. The timer; is referred to as the™
consecutiveelease timeof the system. (This term refers to the fact that in a real-
time computer system, state sampling is implemented thraugsk that is released
for execution at time'j). The sampled statef; }7_, form a sequence in which

Xj = X(rj). Let's define thegapfunction associated with thg" sampling time as a
functione; : [rj,rj11) — R"in which

gj(t) =% —x(t)

fort e [rj,rj;1) wherej =0,1,... 0.
The sampled data system’s controller usgs- g (t) + x(t), rather tharx(t), so
the sampled-data system’s state must satisfy

X(t) = Fx(t), K(x(t) + (1)), w(t))

forallt e [rj,rj;1) and allj =0,1,...,0. Under the ISS assumption, one knows
that

V< —y(IX®)1) +BulllegO)1) + Be(wt) ). (1.9)
Let's assume the gap can be restricted so that for spm€0, 1)
Bu(lles®1) < ay(lx)l]) (1.10)
forallt >0 and allj =0,1,...,. Inserting equation (1.10) into equation (1.9)

implies
V < —(1=0)y(Ixt)l) + Ballw(t)]]).

In light of the characterization of input-to-state staki(iSec. 1.2) and sinceQ g <
1, it should be apparent that enforcing the constraint orgtpe (equation (1.10))
leaves the sampled-data system input-to-state stable@gfect to the inpu.

The constraint in equation (1.10) can be viewed as a stgterent threshold
condition. In particular, one knows that at the beginnintpefintervalrj,rj1), that
the gape;(r;) = 0. After that, one expects the norm of the gap to increase.nWhe
the gap satisfies the inequali(||ej(t)||) > oy(||x(t)|), then the system state is
againsampledby settingxj = x(t), thereby forcing the gap to zero again. In this
way the condition in equation (1.10) can be viewed asant-trigger This event-
trigger would be realized by the sampl&;,In particular, one would require the
sampler to continuously monitor the inequality in equatiidri0). Upon detecting
a violation of the inequality, the sampler would trigger gampling of the system
state. The resulting time history of the threshg(dx(t)||) and the gap is shown
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below in figure 1.4. As the state asymptotically approachestigin, the threshold
gets smaller. Thistate-dependemtireshold idea and the above analysis underlying
the ISS event-trigger was first discussed by Tabuada [70].

trajectory of gap and threshold

o Y(||x]|) = state dependent event-trigger

Fig. 1.4 Time history of gap and event threshold

Let’s look at a simple example to see how well the ISS eveggér works.
Consider a process model (without the external disturbahod the form

%(t) = f(x(t)) +u(t)
u(t) = —2f(%))

fort € [rj,rj+1). The release timag are selected as the times whenéhent-trigger
is violated. The ISS event-trigger is chosen to have thewatig form,

Bullley(®)1) = () <x(t) = y(lIx®)])-

The system functiori : R — R is chosen so the proposed control leaves the closed-
loop system input-to-state stable. In particular, let'ssider three different types of
system dynamics. The chosen system dynamics have sublinear, and superlin-
earf functions of the forms,

sublinear | linear |superlinear
f(x) = sgn(x) /X[ f(x) = x| f(x) =x3

The plots below in figure 1.5 show the system response foritiead and su-
perlinear choices fof. The top graphs plot the gaf;(||e(t)||), and the threshold
y(||x(t)]|) as a function of time for both cases. This response is platted loga-
rithmic axis. For both linear and superlinear cases onetbaéthe gap satisfies the
basic form seen earlier in figure 1.4. The bottom plots shawirtkersample time,
Tj =rj—rj_1, for both cases. For the linedr the choice of event-trigger anid
yields a periodic sampling of the system state. The case titsuperlinear case
f shows that the intersample time gets longer as the systamagproaches the
equilibrium point of the unforced system.
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linear f(z) == superlinear  f(z) = 2*

Gap and Threshold Trajectory Y(x(1)

0F Y(x(®) 0
o [ B KJ
1 Bi(e(t) Gap and Threhold Trajectory

-20 0572 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10

0.5 0.5 -

04t Intersample Period 0.4 Intersample Period

03 0.3

02} 0.2

01} 0.1

0.0 0'0012345678910

1 2 3 4 5 6 7 8 9 10 .
time time

Fig. 1.5 Two examples showing gap, threshold, and intersampling tiistory. (left) linear func-
tion f(x) = x. (right) superlinear functiori (x) = x>

An interesting behavior is seenffis the sublinear functiofi(x) = sgrn(x)/|x.
The gap and intersample time histories for this case are shiovigure 1.6. In
this case, the intersample times get shorter and shortdreasystem approaches
its equilibrium point. Asymptotically these time intergajo to zero at a finite time
around 35 seconds into the simulation. This type of behavior is somet called a
Zenobehavior. Zeno-sampling is highly undesirable in realetirontrol for it would
require the computer to eventually sample infinitely fast.

; sublinear  f(x) = sgn(z)+/|7|
10 . . . . - - - - -
0 Gap and Threshold History
10° | Y(x(1))
107°F Byle(®)
0L
0o 1 2 3 4 5 6 7 8 9 10
1
0.8 Intersample Period
0.6
0.4
0.2
0

1 2 3 4 5 6 7 8 9 10
time

Fig. 1.6 Gap, threshold, and intersampling time history for a s@amdynamical system where

F(x) = sgrix) /1.
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Avoiding Zeno-sampling: To better understand when Zeno-sampling might occur,
let’s try to derive a lower bound on the event-triggered eyss intersample time.
Let’s first assume that the closed-loop system is Lipschiti vespect to the state

x and the gag. In other words, there exists a positive constastich that for alk
andein R",

10 K(x+€)[| <L + L]l

If the j™ gap functiongj, violates the event-trigger in equation (1.10) at time,,
then

Bu(llej(ri+a)ll) > ay(lx(rjta)ll)-
Let's assume there exists a positive conskatich that
(1
Pllej(ri+o)ll = v | SAulllei(rja)ll) | = lIx(rj+a)ll-
It can therefore be concluded that with these constraims;atio of the gap and the

system state must be greater than a positive consfdhtlt other words, the next
sample occurs when

1_ el

Z< . .

P )] N
This condition is a more conservative than the original édgger in equation
(1.20). It is useful, however, because it provides an aitalljy tractable method of
bounding the earliest time when the event-trigger can oéaitong as this earliest
sampling time can be shown to be bounded away from zero, thercan assure
that Zeno-sampling doesn’t occur.

Foranyj=0,1,...,o, the trajectory foif|ej(t)|| /|| x(t)|| can be bounded through

the use of differential inequalities. A direct computatadithe ratio’s time derivative
shows that

d el ( Iej(t)l) L{x(t)[| +Llej®)ll ( ”ej(t)”>2

- < |1+ =L(1+ .
dt [[x(t)]| Xl Xl Xl

This differential inequality is used in the Comparison pijte [37] to obtain an

upper bound on the time history of the event quotiggt)||/||x(t)||. This bound
takes the form

lej®)] _ tL
[[x(
fort beween 0 and;. 1 —rj wherej =0,1,..., 0.

So one merely needs to see when the right-hand side of the afexyuality trig-
gers the event quotient condition in equation (1.11). Tlkisues if the next release

,_,.
=
-

|
-
s
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timer;; satisfies

1_fenl o TiL
P e~ I-TiL

whereTj =rj,1—rj is the intersample time interval. Solving the right-haretjnal-
ity for T; yields a lower bound of the form

1
=T e

Note that this is a lower bound on the intersample time. Smag &s the bound
is non-zero one can guarantee that the event-triggereensyson’t exhibit Zeno-
sampling. Clearly this bound goes to zero wheis unbounded. In other words,
this occurs when the system functidrfails to be Lipschitz. In reviewing the sub-
linear example where Zeno sampling occurs, it is apparenttte sublinear func-
tion sgr(x)\/m is not Lipschitz. These results show that ISS event-triggecan
guarantee non-Zeno sampling of the system state wheréséripschitz.

The sampling generated under these conditions is sporatiierrthan aperiodic.
Aperiodic sampling simply means that the intersample W€T; is not a constant.
Being aperiodic, however, doesn’t require that the minimntarsample interval
is positive. Following notational conventions in real-droomputing, the terrapo-
radic is reserved for systems whose intersample intervals netldenconstant and
whose minimum intersample intervals are positive.

% Event-Triggers. The prior subsection derived sporadic event-triggershat
serve the input-to-state stability of the original non-péed control system. This
framework [70] places relatively few assumptions on theirebf the controller. It
only requires that the controller has an 1SS-Lyapunov fioncto ensure input-to-
state stability with regard to both the external disturlgamc and the state gag;.

If one makes some assumptions about the structure of theotlentit is possible
to say a bit more about the robustness of the closed-loopmiststability con-
cept with regard to non-zero delays, or what is sometimesnexd to agitter in the
real-time systems community.

This subsection derives event-triggers that preservé&dhstability of the closed-
loop system. In particular, these so-calléfy event triggers guarantee that the
closed-loop system’s induced? gain is preserved (up to a user-defined scaling
factor). The so-calleds, event-trigger was first proposed by Lemmon et al. [41]
and then formally analyzed by Wang et al. [83]. Since th&event-triggers pre-
serve the original non-sampled system’s closed-loop gaie, can say that these
event-triggers arperformance preservingince the?, gain is a commonly used
measure of a regulator’s performance.

By focusing on theZ, stability concept, one can use the aforecited results-relat
ing the closed-loop systen¥, gain to a Hamilton-Jacobi inequality. To use this
relationship, let's narrow our attention to systems that affine in the external
disturbancew, and the control. In particular, let's assume that the system state,
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x: R — R" satisfies the following differential equation
X(t) = A(X(t)) + By (x(t))w(t) +Ba(x(t))u(t) (1.12)

fort > 0 and initial conditiork(0) = xg € R". As beforew: R — R% is an external
disturbance that is assumed to liefy. The control signaly : R — R™is assumed
to be a special control of the form

)
o) = -3y | 25

= K{x(1))

whereV : R" — R is a continuously-differentiable positive definite furcti'some-
times called thestorage functiorj37]) that satisfies the Hamilton-Jacobi inequality
(1.5) for somey > 0. For this particular control, one can show that g gain of

the system from the input to the outpuz = )lj is less than or equal tp These

results were summarized in the earlier section on matheaigtieliminaries.

The event-triggered version of the above system startsthydacing a sequence
of releaseor samplingtimes{r }T:O wherer; € R denotes thg™" consecutive time
when the system state has been sampled. In this case theldawtuses thesam-
pledstate instead of the true state so th@) becomes

o1 T
o) = -8 | 250 ki)

fort € [rj,rj+1) andj =0,1,...,. In the above equatiox; & R" denotes thg™"
consecutive sampled state
X =X(rj)-

As before let’s introduce thgapbetween the current staté& ) and the previously
sampled state. Thg" gap function therefore is

gj(t) =% —x(t)

fort € [rj,rjy1) and allj =0,1,...,0. Assume that the controllét : R" — R™ is
Lipschitz with respect to the gap. In other words, theretexasnon-negative real
constant such that

[K(3) = K& = [[K(x) = K(x+ej)[| < Llej]- (1.13)

This assumption is satisfied in many applications. In paldic the assumption is
valid when the controller is affine with respect to the gamalg

Let’'s now examine the time rate of change of the storage fom&t under the
sampled control law. The directional derivative\bfs
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, 0V(X) oV (x) oV (x) N
SinceK (x) = — ;‘;—\;T, one can rewrity/ as
v oV e
V= WA(XH_ EBl(x)w— K (X)K(Xj).

Completing the square for the cross-te§§B,(x)w yields,

v 1

V = WA(X)— 5

. 1 10vT Voo Lot "
< _Z -7 LA _ = _ .
V< 2w 2w L KT K (5
1 .
< 21+ L I~ KT 0K (%) (1.14)

The above cross-ternk T (x)K(X;), in equation (1.14) must still be dealt with.
From the Lipschitz assumption &hin equation (1.13), one rewrites this cross-term
as

KT 0K (%) = 5 K K%)= SIK00112 = 51K (3)I?

1o 2 1 2 1 o2
<z 2=z _z .
< SL7eil? = SIKeOIP = 51K (%)
1 1. ..
< SL7eil* = SIK ()P
whereej = Xj — x is the gap. Substituting this bound f&r" (x)K(X;) into equa-
tion (1.14) yields the following bound on the directionarigative of the storage

function,

] ¥ 1 1
V<2 i K )7+ L
2 V2 1-p2 1 1
=~ B+ G+ (2 - K01+ 5L 2 .9

for some user-defined paramefei [0,1]. Note that the above inequality will be
a dissipative inequality fo¥ provided one can guarantee that the last three terms
within the parentheses are collectively negative defiffithis is the case, then

o B Y
< —— LA
v<-Exp+ L

2
[[w]
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for all x andw. As noted in the mathematical preliminaries section, fati®on of
this inequality is sufficient to establish that the sampded system’s induced’,
gain from the inputw to the outputx is less than or equal tg/S3. Note that the
user-defined paramet@rbecomes a parameter that controls how close the gain of
the sampled-data system will be to the original gain of theticoously-sampled
system.

In summary, if the last three terms on the right-hand sidegoB&on (1.15) are
negative, then the sampled-data systerffisstable with a gain less than 3. This
inequality is satisfied for all times, if one can guarantee

L2llej ()1 < (1 B2)IIx(t)[1*+ 1K (%)) | (1.16)

The left-hand side of this inequality is simply the size o 8ystem gapg;. The
right-hand side of the inequality is a state-dependenstiukl that is very similar
to the ISS event threshold derived earlier. In other wordsagqgn (1.16) is an?,
preserving event-trigger. The event-trigger is used insdmae way the ISS event-
trigger was used. Namely, the sampgnmnonitors the gap against the threshold on
the right-hand side. When the inequality is violated (orwttio be violated), then
the state is sampled and the next release timeis generated.

Note that the event-trigger depends on the user-definednesea. This pa-
rameter controls how close the event-triggered systenifswgil be to y, the gain
of the original continuous-time system ffis close to one then the sampled system
achieves the original gain of As 8 gets smaller, the gain of the system increases,
thereby reducing the event-triggered systeifisperformance. In other words, the
smallest thresholds and hence the most frequent samplogowheng is close
to one. Asf gets smaller, the intersampling periods will get longehatdost of a
higher closed-loop system gain. This is a tradeoff betwhersystem gain and how
frequently the state must be sampled.

The following example illustrates the use of tl event trigger on a variation
of the superlinear system examined in figure 1.5. In this t'seconsider the con-
trolled system characterized by the following equations,

X(t) = x3(t) + u(t) +w(t)
ult) = —a® — %

forte[rj,rjy1) andallj=0,1,...,0. The sequence of release tin{eﬁ‘}":o is gen-
erated by the violation of th&% event-trigger in equation (1.16). Choose a special
type of %, disturbance of the form,

w(t) =e 2y(t)

fort > 0 and wherey is white noise process. The left-hand side of figure 1.7 phats
gap and threshold time histories for this system (top plot) the intersample time
(bottom plot),T;, that was generated. As can be seen the sampling periotiadiyni

very small (about 0.1 sec) at the beginning of the simulatiben the disturbance
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is largest. As the disturbance decays, the sampling petauliges to a relatively
long period (0.4 sec) that is four times longer than theahgampling period.

o Gap and threshold history (L2 disturbance) o Gap and threshold (wideband disurbance)
5 5 event-trigger
10 \ event-trigger 10 ”
107 107}
107"° scaled error 107°} scaled error
107 107
o 1 2 3 4 5 6 7 8 9 1 o 1 2 3 4 5 6 7 8 9 10

time

Fig. 1.7 Gap, threshold, and intersample time history usingZnevent-trigger. (left\¥% noise
case. (right) wideband noise case.

The right-hand side of figure 1.7 shows the gap, thresholdijrgersample time
histories for the same/, event-triggered system in which the disturbance is no
longer guaranteed to go to zero as our system approacheguhigrum point. In
this case let the disturbance be

w(t) = (€2 +0.1)v(t)

wherev(t) is again a white noise process. In this case, the disturbamgditude
does not go to zero as time goes to infinity. In particulas wit) is referred to as
a wide band disturbance. The top plot shows the gap and thicesme histories.
The bottom plot shows the resulting intersample times. Whensystem state is
far from the equilibrium point, the system’s response isilsinto the earlier.?,
disturbance case. As the system state approaches thebaquilipoint, however,
the periodic nature of the intersampling time disappeath sampling times that
can become arbitrarily short. In this case, therefore, etr@ggering only yields
aperiodic, rather than sporadic, sampling of the systeta.sta

This type of behavior is common in both thé event-triggered and ISS event-
triggered systems. It essentially results because the-degiendent threshold gets
very small as the system state approaches the origin. With awsmall threshold,
the introduction of noise into the disturbance makes théegys sampling-events
trigger much more often. This example therefore shows th&t-slependent event-
triggered system may be sensitive to wide-band disturtsari@ee way to address
this sensitivity is to place a lower bound on the event-&igyg threshold of the
form (in the %, event-trigger case)

L2]lej ()17 < max{T, (1 - B2)[Ix(t) |* + [IK (%)) ||} -
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Assuming thaflej(t)|| and||x(t)|| have bounded rates of growth, this modified event-
trigger prevents the sampling period from being arbityacibse to zero and can
therefore assure the sporadic nature of event-triggeraglszg.

Impact of Delays. The preceding analysis for th&, and ISS event-triggers as-
sumed that both the system state and control update areagiediat the same time.
In other words, the control signal, based on the system statwpled at time;, is
applied to the plant at the same time. This means that our arialysis ignored
delays. Real-life implementations of such systems willsglgvexhibit some delay
due to the amount of time it takes to compute the control $ighaould be highly
desirable to show that the performance of the event-tregjeystem (as measured
by the closed-loop system%, gain) is preserved under such delays. The following
analysis from [83] shows how robusgf, performance will be under event-triggering
with delays.

Before starting the analysis, let's discuss the modelingveint-triggered sam-
pling with delays. In particular, one now needs to consider sequences of times.
The sequence of release timigs}?_, is defined as before. Release timaepre-
sents the time when 1) the state was sampled and 2) the ctagkolas released
for execution by the central processing unit (CPU). The ioseguence of interest
is the sequence dinishing times{ f;}° . The timef; € R denotes the time when
the control signal computed by the control task is actuatlgduby the plant. This
time also marks the finish of the control job that had beerasald at time . In
general one make tre@mall delayassumption which states thgt< fj < r; 4 for
all j=0,1,...,c. In other words, the sample taken at timés used at a timef;,
which always occurs before the next invocation of the cdmask.

Figure 1.8 shows the timing relationships assumed in thadyars. The figure is
a timeline in which the black rectangles indicate when th&trd task job is being
executed. With regard to this diagram, let’s define two messsaf real-time system
performance. The first measure is the task pefiod rj 1 —rj. Thisis the interval
of time between any two consecutive invocations of the abtdisk. As in the case
of the ISS event-trigger, there is great interest in obtgjriower bounds o},
thereby identifying the smallest sampling period requirgthe real-time computer.
The other measure of interest is teay, D;, of thej job. Thisis the time between
the finishing time and release time, i, = fj —rj. The control taskleadlineD is
a real-time constraint that one might place on these delaysrticular, a real-time
system that is functioning properly will have all delayssiéisan the deadlind); <
Dforall j=0,1,...,0). The choice of the deadline is an important constraintuin o
case, the deadline is chosen to ensuregh@erformance of the control application.
In particular, this means that our analysis would like toideupper bounds on
the maximally allowable delay (MAD) that any task can toterbefore losing our
guarantee o, performance. This upper bound then becomes the deadlitieygqua
of-service (QoS) constraint on the real time system.

To obtain tight bounds on the maximally allowable delays ®A&nd intersam-
ple intervals, let's confine our attention to linear timedriant control systems of
the form
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job j-1 jobj job j+1
H = ;
fj_l < DJ > fj+1
T i TJ Tinl

Fig. 1.8 Definition of Timing Relationships used in Studying the Ri#ale Implementations of
%, event-triggered control.

X(t) = AX(t) +w(t) + Bu(t)
u(t) = —BTPRj = K(%))

forallt € [fj, fj;1) andj =0,1,...,0. A andB are are suitably dimensioned real
matrices. In terms of the earlier system model considerexdjiration 1.12, we let
B; = | andB;, = B. This is simply done for notational convenience. The sadhple
state,x] = x(rj), is the state that occurs at t§j@ consecutive release time. Note
that the above equation holds betwdmishingtimes, rather than between release
times. This is in accordance with the fact that control sigiean only be changed
after the control task’s job has finished executing.

By confining our attention to linear systems one can use agédiunction of the
form V(x) = x" Px whereP is a real valuedh by n matrix. With this choice oV
the Hamilton-Jacobi inequality reduces to an algebraic&idnequality wherd®
is a symmetric positive definite matrix that for some rgal 0 satisfies the Riccati
inequality

ATP+PA—-P(BB' —y 2)P+I <O0.

With this choice of control, the induce# gain of the continuously sampled closed-
loop system is guaranteed to be less than or equal to

The %, event-trigger is derived in the same way it was for the n@airsystem.
The difference is that now in establishing the dissipathaguality, one makes use
of the algebraic Riccati inequality rather than the Ham#tiacobi inequality. The
resulting.% event-trigger (derived in [83]) is

ef (t)Mej(t) < ox (rj)NX(r})
where
M = (1-B%)I +PBB'P
N = %(1—32)l +PBB'P
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andf andd are user supplied constants between 0 and 1. Note that ther €&
triggering threshold was a functionx(t) andx(r;). The preceding threshold for the
LTI case is only a function of(r;). This means that the above thresholevisaker
than our earlier result (in other words it would cause théesysto sample sooner).
This particular form of the?, threshold was used in [83] because it rendered the
analysis of delays more tractable. With this weaker thriesitovas possible to
obtain specific bounds on the acceptable delays and mininewiods that could be
tolerated by the event-triggered system. As mentioned@libe bounds on delays
are useful because they serve as deadlines for the reattimputer implementing
the event-triggered control system. The bounds on periecliaeful in verifying
whether the system can exhibit Zeno-sampling.

Let’s first examine the problem of obtaining a lower boundloa sampling pe-
riod under the assumption of no delays. For notational colevee, rewrite the
earlier.%, event-trigger in terms of aormalizedgap function,

2(t) = vMey (1

so that the triggering inequality takes the form

[z (O < /X7 (rj)Nx(rj) = p(x(rj))

where the functiop : R" — R is defined in the above equation. Figure 1.9 shows
the time history of the gap functions when there are no delaysther words the
controller job’s finishing time equals the release time. Asswione in the earlier
analysis regarding sampling periods for ISS event-trigglet’s examine the nor-
malized gap function’s rate of growth over the interjrglr; 1).

Fig. 1.9 Time history of normalized galy; (t)|| when there are no delays; (= fj).

The analysis starts by bounding the time derivativgzit)||,

Sl < VMg )] = | VI (axt) — BETPxtr;) + i)
< |[vimae )|+ |vMa— e Rx(r))||+ | VM| jw)
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fort € [rj,rj;1). Let's assume the disturbance is bounded by the norm of gtersy
state. In other words, let's assume there exists a posgigkconstantV such that
[Iw(®) || <W/|[x(t)||. In this case the preceding upper bound%ﬁuzj (t)|| may be
simplified to the form,

d
gila Ol = alizi®)ll+ po(x(r;)) (1.17)
wherea is a real constant such that

@ = |[viaviaE] cwvad] | via|

andpp : R" — R is a function such that
Ho(X(r})) = || VMI(A—BBTP)x(r))| +W | VM| (1))

The differential inequality in equation (1.17) bounds thg&rof growth of the
normalized gap function over the interval between two contee release times;
andr;,1. Since the state is sampled at timethe gap is zero at that time. So the
initial condition for the differential inequality i§zj(r;)|| = 0. One can therefore use
the Comparison principle to show that for & [rj,rj1) that

||ZJ (t)” < UO();ErJ)) (ea(tfrj) _ 1) )

This is an upper bound on the normalized gap between two catige release
times. Clearly, the next releasg,. 1 must occur before the right-hand side of the
above inequality violates th&, event threshold. In other words, the following in-
equality must hold

W(eﬂj —1) > p(x(rj)).

This inequality can be solved for the sampling peffgé-=rj,; —rj to obtain

P(X(rj)) )
Ho(X(rj))

when the next release occurs. The above inequality repieadower bound on the
intersample time intervals generated sy event-triggers. It can be shown [83] that
this bound is always bounded away from zero, so as in the 18Btdxigger case
Zeno-sampling does not occur. A major reason for this lighérequirement that
the external disturbance has a norm that goes to zero asdtesrsgtate approaches
its equilibrium. This is a particularly strong assumptitiattcan be justified if the
source of the disturbance arises from modeling uncertdimtyeneral, however, if
this assumption does not hold, théfs event-triggers can lead to Zeno-sampling as
was seen in figure 1.7. One can avoid these undesirable loefibyiimposing some

1
Tj>—In <1+a
a



1 Event-Triggered Feedback in Control, Estimation, andr@igation 25

additional constraints on the event-triggers. This paliicapproach was discussed
in more detail in [84].

The usefulness of the prior analysis is limited by the no tedlay assumption.
Let's now examine how this assumption might be relaxed. lmmdase of delays,
the normalized gap’s evolution changes as shown in figui@ With non-zero de-
lays, the individual gap functions overlap as shown in tharég This means that
one should partition the time interval;, fj,1) into two subintervaldrj, f;) and
[fj, fj11). Over the first subinterval, the system state evolves aaugtd the dif-
ferential equation

X(t) = AX(t) — BBTPX(rj_1) + w(t)

in which the state used in the controller is the state at saripler;_1. After the

jt control job finishes, the control is updated with the moserésampled state.
This means that over the time interyéj, f; 1), the system state evolves according
to the differential equation

X(t) = AX(t) — BBTPX(r;) +w(t).

In a manner similar to what was done in the no-delay caseerdiftial inequalities
can be used to bourjf;(t)|| forallt € [rj, fj;1).

Fig. 1.10 Time history of normalized gajfz; (t)|| when there are task delayg K f;).

The analysis of the non-zero delay case is done by viewingvkat threshold
p(X(rj)) as abudgethat is allocated to the normalized gap. In particular weifham
this budget between the two subintervalg fj) and [fj, fj;1). Let's require that
over the first subintervdlj, f;) is constrained so the normalized gap doesn’t get
bigger tharep(x(rj)) wheree is a user-defined constant between 0 and 1. One can
again use differential inequalities to show that the noimeal gap is bounded as

(o) < FPCXOA) (o) 1) = iy xiryait 1)) @18)

forallt € [rj, f;) and where the functiop; : R" x R" — R is defined as

Ha(X(r ). X(rj-1) = | VMI(AX(r}) = BBTPX(rj-0)) |+ W[ VM (1))
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The right-hand side of the above inequality (1.18) represséme solution to the
differential equation

il = allz )+ plx(r). x(ry-2)

wherea is a real constant. The solution to this differential equais characterized
by the function® : R" x R" x R — R. This function returns the normalized gap
zj(t) at timet as a function of the system statgs;) andx(rj_1). The dependence
of @ on the system state at timesandrj_1 is a consequence of the fact that the
differential equations governing the evolution of the sysistate are different over
time intervalsrj, f;) and[f;, fj 1).

Note that the duration of the first subintervil,, f;) is the delayD;. To ensure
the normalized gap gets no larger thega(x(r)) over this first subinterval, equation
(1.18) implies that

: e™i — 1) < gp(x(rj)).

Solving forDj yields
1 p(X(rj)) )
0<Dj<=In(l+e0—— —""——).
'“a < pa(X(rj), X(rj-1))

The above equation represents an upper bound odetlag’that ensures the gap at
the end of the first subinterval is less than the allocatedjéuofep (x(rj)).

The analysis is completed by examining the behavior of tipeoyar the second
subintervalfj, fj;1). At the beginning of this interval,

1Zj(f)Il < @(x(rj),X(rj-1);Dj) < €p(X(rj)) < p(X(rj)). (1.19)
The system state over the interyé|, f; 1) satisfies the differential equation
X(t) = AX(t) — BBTPxX(rj) +w(t).

Using an argument similar to that employed in analyzing tqeayver the first subin-
terval, one can show that

d
gila Ol = allzi®)ll+ po(x(ry)).
Solutions to this differential inequality over the intervae [fj, fj, 1] are bounded

above by solutions to the associated differential equality

%Hij Ol = allZj O] + Ho(x(r))
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with the initial conditionZj(f;) = z(f;). This bounding solutionz;Tt), is used to
predict when the release time should be selected to ensar#iistability of the
event-triggered system.

This result is proven in [83]. In particular, this paper stathat the closed-loop
system is%, stable with a gain less than or equal if the task’s(j +1)S' release
time is generated by

! 3p(x(r})) — D(x(r}),x(rj_1); D))
”“‘f1+6'”<1+“uo<x<r15>+a¢<< rj),X <rjjl>:DJ,->> (1.20)
and the delayj 1 satisfies
1 (1-3)p(x(r}))
D‘“a(“”aép( X(r j))+HoJ(X( ))) (1.21)

In the above functiow is the real constant defined earligrandpip are the class?
functions defined above arndl bounds a function of the system state as it evolves
over the delay tim®;.

Self-Triggered Feedback Control: The results in the prior section do more than
suggest that an event-triggered systeri#’s stability will be robust with respect
to task delays. Equation (1.20) is interesting in that it pates thefuture release
time given the current release and finishing times. This gguéherefore provides
a prediction of the next release time and it suggests thdtoitllsl be possible to
develop asoftwareimplementation of event-triggered systems. This softwere
sion of event-triggering has sometimes been referred sekidriggeredfeedback
control. Such software versions of event-triggering mapitaderred in applications
where the cost of adding event-detection hardware is deemacteptable.

The concept of self-triggered task models was original gl in [75]. Sim-
ulation results [41] suggested that self-triggering systeexhibit a robustness to
delays that is consistent with what one might exhibit frorargwtriggered systems.
In these earlier works the computation of the next release tvas usually done
in a heavy handed fashion that was not computationally efftciThis has changed
recently with results in [83] which allow a more computatdin efficient way of
selecting the next release time. More recently, it has be&tthat fohomogenous
systems [1], release times enforcing input-to-state labatisfy certain scaling re-
lationships. These relationships can be used to reduceothputation of the next
release time to a table look-up. Another important aspetttedfe analytical bounds
on acceptable delay and release times is that they can beasspdility-of-service
constraints for real-time schedulers. Since it now becgmossible to predict when
the next control job should be released, one can use theéssatst as the period
and deadline that govern how real-time scheduling senadgsst task priorities. In
other words, the aforecited analytical bounds provide en&dway of connecting
real-time scheduling constraints to the applications.(control system’s) actual
performance.
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Event-triggering was proposed [2, 3] as a means to co-dezigtrollers and
schedulers in embedded systems. The analysistaié-dependergvent-triggers
[70] formally characterized the stability properties oéat-triggering and the later
analyses of intersample intervals and maximally allowaleladlines [83] provided
bounds that could be used in adapting the embedded systemtrslter tasks. These
methods raise the possibility of moving away from the tiadél hard real-time task
models that have dominated embedded control. While the useemt-triggering
has focused on conserving the embedded system’s commathteEsources, it is
anticipated that event-triggering may be used to consether types of shared re-
sources. Of particular interest are embedded sensortactigntrol systems where
communication resources are highly constrained. The metios examines the ap-
plication of state-dependent event-triggering to suckvagked control systems.

1.4 Event-Triggered Feedback in Networked Control Systems

Many of the results for event-triggered control of embeddgstems can be ex-
tended to networked control systems. A networked contrstiesy or NCS is a set
of controllers that coordinate their actions over a commatidn network. For NCS,
event-triggering is used to decide whertrtansmitor broadcasthe system state to
a local controller’s neighbors. Using events to trigger ommication actually pro-
vides a much stronger motivation for event-triggered aanirhe reason for this is
that in many cases, the energy or cost associated with theniasion of a bit of in-
formation is much more than the energy associated with ukatdit to compute the
control law. Event-triggering, therefore, provides a istal way of reducing traffic
congestion in communication networks used by NCS. The tibgeof this section
is to show how the earlier results from event-triggered i embedded systems
can be extended to networked control systems. The sectgrdffcusses the NCS
architecture under study and then it derives event-triggesuring the NCS is ISS.
As in the case of embedded systems, the NCS implementatiadutes a number
of so-callednetwork artifactshat complicate the analysis of the idealized model.
These network artifacts include delays in the transmissfonformation as well as
dropped information packets. This section studies the ainpBsuch network arti-
facts and demonstrates that event-triggered NCS statsilitybust to such network
artifacts in a quantifiable manner.

While there is a great deal of literature [11, 25, 50, 51, 3@neining networked
control systems, there is relatively little work pertaigito event-triggered NCS.
Most of the results in this section are drawn from [81] and [&lated work will
be found in [48].

Model of Networked Control System: Let’s first describe a model of a networked
control system or NCS. Consider a distributed NCS congjsifrN agents. Figure
1.11 provides a graphic illustration of an NCS with threerdgeEach agent con-
sists of gphysicalcomponent and eybercomponent. The physical components are
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interconnected as shown by the solid lines in the figure. Hherccomponents are

also interconnected through a communication network wiioks are shown by
the dashed lines in the figure.

w(t) = Ki(az, (1)

u;
@ physical system
#1(t) = fi(ep, (1), ur(t), wi(t))

physical system
L% u, @2(t) = folwp, (t), ua(t), wa(t))

-’ physical system
u i3(t) = f3(zp, (t), us(t), ws(t))
3

us(t) = Ks(iz,(t))

Fig. 1.11 Model of Event-Triggered Networked Control Systems

This system may be more formally characterized using griapbretic notation.
In particular, let /"= {1,2,...,N} denote the set of agents. A gragh= (.1, &p)
represents the physical coupling between the agefitslenotes the vertices of the
graph ands, C 4" x 4" denotes the set of edges in the graph. The ¢tggcon-
nects node € .4 to nodej € .4". The edge, therefore, is an ordered faij) of
nodes. The ordered pdfr, j) is in & if the dynamics of agenj’s physical com-
ponent are directly driven by agei' local state. The grap¥; = (.1, 6:) models
the interconnections between the cyber-components ofjhiets. As before/” de-
notes the vertices (nodes) of the graph @d- .4 x ./ represents the edges of
the graph.

In this section, the graphs for the physical and cyber-cmenections need not

be the same. This requires us to define a number of specidibwigoods in the
graph. In particular,

o Z={jeAN|(],i) € &} represents those agents whose cyber-components can
send information to ageis cyber-component.

e Uy={je/|(i,]) € &} denotes those agents whose cyber-components can re-
ceive information from agenis cyber-component.

e Di={jeA|(j,i) € &} represents those agents whose physical components
directly drive the dynamics of ageis physical component.

o S={jeA|(i,j) € &} denotes those agents whose physical components are
directly driven by the physical component of agent

For any sett C ./, let |Z| denote the number of elements in that set and let
> U{i}.
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The physical component of ageris characterized by ocal state x: R — R"
wherex; satisfies the differential equation

Xi (t) = fj (Xﬁi (t), Ui (t),Wi (t))

Xi(to) = Xio

wherexs, = {xj}jeﬁi are the local states of ageirg neighbors that are physically

connected to it. The system dynamics are characterizedgdyitittionf; : RPil x
R™ x RY — R" which is locally Lipschitz and satisfief(0,0,0) = 0. uj : R — R™
is a control input generated by the cyber-component of temeandw; : R — R’
is an external disturbance. The above characterizatiamsssall subsystems have
the same local state dimensiam, This is done for notational convenience. The
model and subsequent analysis would also apply to subsystétimlocal states of
different dimensionalities.

The controly; is generated by ageiis cyber-component. Since these cyber-
components exchange information over a digital commuigicatetwork, local
states are transmitted in a discrete manner. In partidata{r‘j}‘j";1 denote the se-

quence of broadcast release times forifA@gent. So theransmittedstate from
agent is denoted as

fort e [rij,riHl) andj=0,1,...,0. Agenti’s cyber-component uses the local state
information r_eceived from all its neighbors in the Zto compute the contral;.
So letK; : R"4| — R™M denote thé'th agent’s local controller so that

Ui (t) = Ki(%z (t)).

Following the same notational conventions as befage,denotes the broadcast
states of all neighbors of aganvhose cyber-components send information directly
to agent.

I SS Event-Triggered Networked Control: Let's now derive ISS event-triggers for
the NCS described above. In particular,égt) = Xi(t) — x(t) denote the locajap
between agerits current state and its last broadcast state. Assume tkistgoesi-
tive definite functiorV : R™ — R, controllersK; : R4l — RM and class# func-
tionsy, Y, andB; (fori =1,2,...,N) such that

N
V= ng i(%p,, Ki(Xz, +€z,),Wi)
< Zl yi(llxilh) + i dllel)) + Billwil)) (1.22)

wheree;, is the gap of all agerits cyber-neighbors. This assumption means that
V is an ISS-Lyapunov function with respectwowhen the the gan(rij) =0.In
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view of our earlier discussion, this is sufficient to implathhe local controllers
Ki leave the original continuously sampled version of the oeited control system
input-to-state stable.

So again, one selects a user-defined paranzter(0,1) and notes that if the
local state and gap trajectories satisfy the inequality

—ai%(Ix®1) + wle®)l) <0 (1.23)

forallte Randalli=1,2,...,N, then the bound od becomes

. N
V< _;(—(1— o) Y ([1i[l) + BiCllwa]))

This is a dissipative inequality that was seen earlier touficgent to show that the
event-triggered NCS is ISS with respect to the externaltimpu

As before in our study of the embedded event-triggered otlets, the inequality
in equation (1.23) can be used as the basis of a state-degehdeshold test. In
particular, the" agent would check the validity of the following thresholdtten
the gap,

wi(le®l) < av(x ). (1.24)

At the broadcast timeij, the local gapg = 0. This gap then grows untili(||e (t)]|)
exceeds the state dependent threshglxi(t)||). The violation of that threshold
triggers agent to broadcast its state again. Note that this oaperativebroad-
cast mechanism in that the violation of the threshold resalan agent sharing its
local state information with its neighbors. In other wortlg& success of such an
event-triggered broadcast scheme relies on all agentsayy to work in the same
manner.

Note that the ISS event trigger given above is onlgaal function of the agent’s
state. This is important, for it means each agent is ableéggdr its broadcast with-
out relying directly on its neighbors. A key part of the pranvalysis is the assump-
tion that there exists an ISS Lyapunov function that is s&plarin the sense speci-
fied by the bounds in equation (1.22). Such a Lyapunov functiay be constructed
by identifying a set oN positive definite function¥; : R" — R fori=1,2,...,N
with class.#” functionsy;, ni, i, and; such that

oM
— (x5, Ki(Xz + &5 ),w) < —y(||%]|)+ i (I1xi
X (xp, . Ki(xz, +€z),wi) < —w(lIxil]) J_EgiUZim(ll il

+ 2 willleg ) +Adlwall). (1.25)

i€Zi

As a specific example, let’s consider clagsfunctions that are quadratic $g||X||)
can be expressed &g|x||?> and similarly for the other functions;, ¢, andg;. In
this case, one sees that by chooding 2{\‘11\4, the following inequality is obtained
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i€z,

. N
V< 21 —ylIxi ]2+ ; M2+ S willerl2+B2Iw2
= jebiuz;

N
= _;(—(Vu — S LU 1%+ i[O3 ]|+ BilIwil|?) -

Note that this matches the conditions in equation (1.22Yidesl the first term on
the right-hand side is negative definite. This term will bgatese definite if

v —|SuUiln > 0.

This condition places a restriction on the amount of coupbetween physically
interconnected physical systems. In particular, it sagsiftone can appropriately
bound this physical coupling and if there exist candida®-L$apunov functions
satisfying the bounds in equation (1.25), then it is alwagssjble to construct a
globalV that is an ISS-Lyapunov function for the entire networkestsg. In this

case, the associated ISS event-trigger is shown to havertime f

M =1SUbini, e G
le®) < G,/WHN(UH = Ellxu(t)ll

which would ensure th& stability of the entire system.

The ability to construc from smallerlocal candidate ISS-Lyapunov functions
is important, for it allows us to distribute the design of t8& event-triggers. This
is particularly important in large-scale networked systemere agent subsystems
may be added and modified in an ad hoc manner. Linear netweylsteims provide
a particularly good example of when one can exploit thisritiisted strategy for
constructing ISS event-triggers. For linear NCS, the patars in the triggering
conditions can be computed using linear matrix inequalfi32].

Simulation results for this approach to event-triggeresbidcasting are shown
in figure 1.12. This example was taken from [81]. It considtdNocarts that are
interconnected through soft springs. The local state ofttheart isx; = [yi Vi ]T
wherey; is the position of théth cart with respect to the system’s equilibrium point.
Assuming soft spring coupling between the carts, the statatéeon for thath cart
can be written as

_ yi(t)
yi ] N {Ui (t)+ K tanhyi 1 (t) — yi(t)) + kP tank(y;1(t) — yi(t)) +wi(t)

for allt € R wherei = 1,2,...,N. The parameterg- andk? denote the spring con-
stants for the springs on the right-hand and left-hand ditteeath cart, respectively.
From the cart geometry shown in figure 1.12, one can see thse $pring constants
satisfyk! = k? , fori =1,2,...,N—1. The left-end cart’s spring constani= 0
and the right-end cart's spring constankfp= 0. The functioru; : R — R denotes
the control applied to the cart by its local controller.
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In this example the communication network’s links mirroe fhysical interac-
tions between the carts so tlﬁt: Di. The sampled state is denotedx@d) =

[y d— } whereyi(t) = yi(r! ) and dty.( ) =Vi(r}) forall t e [r 'J,r'Hl) and
j=0,1,... 0. The local control i |s computed from these sampled measuresmas

Ui(t) = Ki%i(t) — ki (tanh(gia(t) — §i(t)) — kP tanh(gi-a(t) — Gi(t)).

In this case, the agents controlling #redcars use the ISS event-triggedpe (t) || <
0.2[[x(r§)|| and the interior agents use the event-triggeB(l@(t)|| < 0.2(jx(r})|-
The results from this simulation are shown in figure 1.12.

o §

local states
L (=}
&
4

o
o

o
o
A

=4
o
S

=3

Intersample Times

o
~
w
IS

5 Time®

Fig. 1.12 Simulation Example of Event-Triggered Networked Contrg$t®m consisting of three
coupled carts.

The top plot on the left-hand side of figure 1.12 plots theestia#jectories for all
three carts. As can be seen, this event-triggered systesyngotically stable since
all points asymptotically approach their equilibrium psiat zero. The bottom plot
on the left-hand side of figure 1.12 plots the intersamplestimervals that were
generated by the proposed event-triggers. As can be sexsg ihtersample time
intervals vary over time in a regular manner.

Impact of Network Artifacts: The prior analysis for the ISS event-triggers in net-
worked control systems had two important assumptions thatneed to be exam-
ined in more detail. The first assumption was that there wadetay between the
transmission and reception of information over the commation network. The
second important assumption was that all neighbors in thg; seceive and use the
broadcast data in a synchronized manner. Both assumptiedgfcult to justify in
real-life wireless sensor-actuator networks. This difficis a direct consequence
of the unreliable and time-varying nature of wireless comioation. The second
assumption can be dealt with by making use bf@adcast protocathat essentially
synchronizes the transmitted data across all neighbdys ifihe use of such a pro-
tocol, however, introduces a numbematwork artifactsuch as delays and dropped
messages; both of which have a significant impact on the griggered system’s
performance. The objective of this subsection is to esthlidounds on acceptable
transmission delays and message dropout rates, therelingithat the stability of
the event-triggered NCS is robust to such network artifacts
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Let’s first describe the network broadcast protocol usednsuee that the re-
ceived broadcasts are synchronized between all neighbafis Such a broadcast
protocolisillustrated graphically on the left-hand sidéigure 1.13. In this case, the
shaded agent represents itiebroadcasting agent at time instahtThis broadcast
is made to the two neighboring agents. Since this is a breadeath neighboring
agents receive the same sampled copy of the transmitting'admcal state. Upon
receiving thdth agent’s message, each agent acknowledges the recdipt ofi¢s-
sage through an ACK signal. When titd agent receives ACKs from all of the
neighbors iflJ;, it then broadcasts permissionror PERM message to those neigh-
bors. As soon as all neighbors receive the PERM message $iecthe previously
received data in computing their controls. The delay betwiagial transmission
and the final receipt of the PERM messages represents thelsiiaeen sampling
and actuation. As long as this delay is sufficiently sma#, dleerall networked sys-
tem should still be stable.

ACKSs and PERMs are control packets that are very short inthesugd can there-
fore be delivered with a high degree of reliability. The dp#ekets, on the other
hand are relatively long and will be more subject to unrééidbansmission. Even
if an ACK or PERM message were lost, the impact such lost médion has on
the overall system’s performance can be detected and usegger additional data
broadcasts. So one would expect the system’s overall pegioce to be robust to
such faults. Just how robust this system is to such faultgekier, has yet to be fully
studied.

Broadcast at ;' 4—.;» Broadcast at ;' 47.%»
First ACK .<— First NACK .%
Second ACK . Second ACK .
PERM at /' 4—.;» PERM not sent %.%

Fig. 1.13 Broadcast Protocol in Wireless NCS. (left) step-by-stegcdption of broadcast proto-
col. (right) mechanism by which transmitted data is dropped

Itis relatively easy to see why the assumption that trarsons are received in-
stantaneously is unreasonable. While the transmittecdbopagates at the speed
of light, it takes time for a message to work its way though@erd's network stack.
Moreover, it takes time to transmit, receive and acknowdatig ACKs of an agent’s
neighbors. As a result, the analysis cannot assume thaagessare transmitted and
received with zero delay.

The right-hand side of figure 1.13 shows another networkaattthat can’t be
neglected. Wireless communication is inherently unrédiadince there is a finite
probability that a message will not be successfully tranggbacross the channel.
In this case, it is highly likely that a broadcast message nwdybe received by all
neighbors inZ;. When this occurs, ACK messages will only be sent by a sulfset o
the agents ir¥;. Since the transmitting agent doesn’t receive all of the AQKs
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expecting, it will not send the PERM message and so the neigidagents will
not use the information that was previously transmittechtnt. In this situation,
the data transmitted by th¥ agent is actuallgropped An important question is
whether or not event-triggered system stability is robostuch data dropouts.

Under the proposed broadcast protocol, one must thereftmpt @ somewhat
more complex view of the timing relations between messagestnission and re-
ception than was presented earlier. Figure 1.14 illusrdte underlying timing re-
lationships assumed in the following analysis. As befoeés Idefine a sequence
{r‘j}‘j”:o which consists of the time instants when illeagentreleasesa message
for broadcast to its neighbors. If this agent receives AQiisnfall of its neighbors
then the broadcast is said to be successful. One can therietooduce a subse-
quence of{ri}%_, that consists of all theuccessfubroadcast times. Lefthj }i7_,
denote this sequence of successful broadcasts. If a brstadciccessful, there is
a finite delay associated with informing all neighbors tte broadcast was suc-
cessful (i.e. the time required to execute the broadcasb@ot). One can therefore
define a sequence of succesdiiishingtimes,{ f“(}ﬁzo. The time instanff( denotes
the time when the broadcast that was released at time irtgtaves given permis-
sion for use by all agents ld;. With regard to these timing relations, thember of
droppedbroadcasts between th& and (k + 1)t successful broadcasts is denoted
asdy.

rj = jth consecutive broadcast time k™ transmission k+ I transmission
bj, = kth successful broadcast time
fi, = kth successful finishing time ! !—»
dj, = number of dropped broadcasts ’ ’ ’ )
between kth and k + 1st broadcasts r fi Tisg r}+2 e V;+ d; [ di+l Sien

(=b}) (=bip)

Fig. 1.14 Timing Relationships under NCS Broadcast Protocol

Analyzing the effect that such network artifacts have oneent-triggered sys-
tem’s performance can be done in a manner that is analogous tearlier anal-
ysis of delays in event-triggered embedded systems. Asdedoe first considers
a somewhat weaker version of the event-trigger in which kiieshold is only a
function of the last sampled statgt), rather than the current local stagét). The
original event-trigger has the form

(M =ISUBIN v O
Ha(t)llS%/WHX'(UH—EIIN(UH-

A sufficient condition that ensures the above inequalityatssfied would be

%

o 1o Ol =Glx®l.

le®l <
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In this weaker condition, the threshold is constant overitierval [f}, fJiH). As
mentioned above, this event-trigger makes it easier toyaadhe impact that delays
and dropouts have on the overall event-triggered systeenfopnance.

With this simplified event-triggering condition, one aradg the impact of dropouts
and delays by allocating some portion of the threshold d@tio each network ar-
tifact. Figure 1.15 shows the gédgi(t)|| as a function of time between a successful
broadcast at timb}, and the finishing time of the next successful broadgast The
gap grows over this interval of time and in order to assurepréormance of the
event-triggered system, one requires that this gap alveaains less thag||%; (1) |.

The effect of the dropouts on the gap is confined to the firdtgfahis interval be-
tween times), andby,, ;. The effect of the delay on the gap is confined to the last
part of the interval fronbj ,, to f}, ;. This means that one can separate the impact of
dropouts and delays between these two subintervals. Ohaitsxpis separation by
requiring that the next successful broadcast at ﬁimq occur before the gap gets
larger thandici||%i(t)|| whered € (0,1) is a user specified constant. Ongés se-
lected, this determines how many dropouts the system caratelbefore violating
the condition.

ko) el & (t)]
Sicil|:(t)| |
dici|| (1) | i i
b=t fi rhaoe e o b fh
rjl«rd;,ﬂ

Fig. 1.15 Gap time history in the presence of network artifacts sudfragouts and delays

Is it possible to ensure the gap due to dropouts is no largerttian the allocated
gap budget ofdci||Xi(t)||? This is done by simply triggering the event early. In
particular, let's use an actual event-trigger of the form

&) < &ci%i(t)]| = dcil[xi ()|

whereel(t) = x(t) —x(b}) for t € b, fl, ), & € (0,&) andbj is the k" suc-
cessful broadcast. As shown in figure 1.15, the use of suchadlesnthreshold
will cause the system to trigger early, thereby providingneanargin for dropouts
or delays. With this threshold the next release of a trar@omsoccurs when
1% (t) — i (bl)|| = qux.(b' ||. The transmitting agent, however, does not know if
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this transmission was successful, so when it tests for thierakeased transmission,
it uses the threshold condition

I (t) =xi(rf )| < & lxi(r} )]l

Note that in this inequality, the sampled system state thased is taken at time
ri, 1 rather tham; = bj.. So if one now looks at the total gdel(t)|| that occurs for

times afterr'Hl, then one can write this as
)] = %) —x (b | |
< ) =% (Fe ) [+ (1) =i ()l
Each of the two terms can be bounded using the event-trigggeoinditions to obtain
) < Geillxi(rl o)l + Goillxi(bi)
< &a (I (B -+ dal (bl ) + el (Bl
= ((@+80)2—1) (Bl
The last relationship shows that under event- trlg\ge(t) i (r' )H < &ci|x(r! )H,

that the first reIeaSFJJ-Jrl occurs when the gap reachas; [[x (b} If that first re-
lease is unsuccessful, then the second release occntgszat/hen the gap equals

((1+ 5ci)2— 1) % (b})||- In a similar way one can show that if additional releases
are unsuccessful then

Ol < ((2+ 0%~ 1) (bl

for all t Whered' is the number of consecutive unsuccessful releases (oppédd
transmissions) between tlmb§ and b'+ In order to assure the stability of this
system let's require that the right-hand side of the aboeguility be less than
5¢i||xi (bl)|| or rather that

(2 8e)® = 1) I (bl < &% (B
Solving this inequality fod{( determines an upper bound on the maximum number
of successive dropouts that can be tolerated to assurellasyegst@m stability. This

bound is called thenaximally allowed number of successive dropdiM&NSD)
and the bound is

di < MANSD = Lloglﬂﬁq (1+ dci)J -1

This bound represents the maximum number of dropouts thiatystem can accept.
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Fig. 1.16 Gap history in the presence of multiple dropouts

Delays only impact the gap in the subinterval betwbgﬂ and the finishing
time fli(Jrl. This case must ensure that the gap does not get larger thagvémt
thresholdc;[|x; (b} )||. Bounding the allowable length of the interval ;. f}, ;) is

done by bounding the gap’s rate of growth of the gap by a cahsta

2 jewn<p

This assumption is reasonable if the gap can be shown to@wskr compact sets.
Given this rate of growthp;, the bound on the admissibiielaybetween broadcast
and reception will be

m”x@(bi()ﬂ = upper bound onleadline

i i
fiir — b1 <

This expression represents the admisgileladlineby which a network transmission
must be received to assure overall system stability.

This section has shown that state-dependent event-tiigpean greatly reduce
the usage of communication resources in networked congstésis. A potential
weakness in the existing results is their reliance on stsdback controllers. How
one might extend these formalisms to output feedback clbertsds still an open
question. One way to begin addressing this question is toefkamine the use of
event-triggering in state estimation. The following sextieviews recent results in
this direction.

1.5 Event-Triggered Estimation

This section examines a simple problem involving the usevehetriggering in
state estimation. In this case, let's assume that a sensbs&ving a discrete-time
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process over a finite horizon and computintpeal estimate of the process state.
The problem involves determining when this local estimataudd be transmitted to
aremoteobserver so that the remote observer's mean square estimeator is min-
imized subject to a constraint on the transmission rate é@twthe local sensor and
remote observer. These event-triggers are thereforgeeftor as MMSE (minimum
mean square error) event-triggers. Problems of this sertedevant to estimation
over wireless sensor networks [91].

Early work on this problem focused on characterizing thedotghat intermit-
tently received observations had on the performance of stimator [68, 47]. A
solution to the MMSE event-triggering problem was preseittg Imer et al. [30]
and by Rabi et al. [59, 61, 57]. Rabi viewed the transmissioblem as an optimal
stopping problem [35], whereas Imer made use of dynamicraroming concepts.
This approach can also be applied to control systems [31hl#ennative approach
to event-triggered estimation will be found in [67]. Thisten uses dynamic pro-
gramming to rederive the results from Rabi’s earlier wor®][5

It should be noted that MMSE triggers differ in a significargnmer from the ear-
lier stability-based triggers derived in sections 1.3 ard The prior stability-based
triggers preserved some desired stability concept suchpag-to-state or?, sta-
bility. The MMSE event-triggers, however, actuadiptimizethe estimator’s perfor-
mance subject to eonstraint on transmission frequendecall that one motivation
for considering event-triggered systems is that expertel@vidence suggests that
event-triggering can greatly reduce communication andpdational effort while
maintaining overall system performance. None of the priabitity-based event-
triggers, however, actually show why this should be the cake MMSE event-
triggers suggested in Imer’'s and Rabi’'s work, however, ieitjyl optimize overall
estimator system performance subject to a constraint omuoritation effort. In
this way, MMSE event-triggers may shed more light on why éxgggered systems
appear to be more efficient in their use of limited computeatl@nd communication
resources.

Remote Estimation Problem: The event-triggering problem considered in [61] as-
sumes that a sensor is observing a scalar linear discreéegtiocess over a finite
horizon of lengthM + 1. The process state: [0,1,2,...,M] — R satisfies the dif-
ference equation

X1 = X+ Wi

forke[0,1,...,M —1] whereais areal constanty: [0,1,...,M —1] — R is a sam-
ple path for a zero mean white Gaussian noise process wiidineaQ. The initial
state Xp € R, is chosen from a Gaussian distribution with megrand variancéT.
The sensor generates a measuremeft, 1,...,M] — R thatis a corrupted version
of the process state. The sensor measurement aktisne

Vi = Xk + Vk
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for any integerk between 0 and/l wherev: [0,1,...,M] — R is a sample path

of a zero mean white Gaussian noise process with variRrtbat is uncorrelated
with the process nois&. The process and sensor blocks are shown on the left-hand
side of figure 1.17. In this figure the output of the sensor $antb a transmission
subsystem that decides when to transmit information to atewwbserver.

transmisgion at
x 4 ¥ - s
v Physical N Event fimes| Remote >
gl > (= Filter Detector [~~~ 77 7| observer [
x(tj)
x
Local
Transmission Subsystem Observer
Event Detector triggers the transmission of
T the “local filter’s” MMSE estimate at times
T T T T T I I T T;. The transmission time, Tj, is triggered
1 r M the first time when the a priori gap |Xy - Xi|
-s- event-trigger, S, exceeds a time-varying theshold
o apriori gap e, =X~ X,

Fig. 1.17 Remote Estimation Problem

This transmission subsystem consists of three comporeamévent detectora
filter, and aocal observerThe event detector decides when to transmit information
to the remote observer. It is assumed that the detector ysadiowed to transmit
at B distinct time instants wherB is an integer between 0 9 + 1, inclusive.
The particular transmission times form a sequefwé?_, wherer, € [0,1,...,M]
denotes the time when th# consecutive transmission was made. The decision to
transmit is based on estimates that are generated biftéreand thelocal observer
shown in figure 1.17.

Thefilter andlocal observershown in figure 1.17 generate state estimates that
the event-detectouses to make its transmission decision. #t= {yo,y1,--., Yk}
denote the measurement information available at tkn&he filter generates a
state estimat&: [0,1,...,M] — R that minimizes the mean square estimation er-
ror (MSEE),E [(xk—>‘<k)2|@k], at each time step conditioned on all of the sensor
information received up to and including tinkeThese estimates can be computed
using a Kalman filter. For the scalar process under studtfilésr equations are

Xk = E [Xi| %] = aX1+ Lk (Y — @R 1)
P = E [ (% —%)?| %]
= azﬁk,l +Q— Lf(azﬁk,l +Q+R)
= 5 2P,
whereXo = ey + rrimHo. Po = it andly = ot o
The event detector uses tfiker’'s state estimatexy at timek, and another esti-
mate generated by thecal observetto decide when to transmit the filtered state
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to theremote observerGiven a set of transmission timgs,}2_,, let 2y denote
the information received at the remote observer by timka particular, this infor-
mation set isZ 'y = {)‘(rlj(rz, ... ’)_(T/<k>} where/(k) = max{¢ : 7, <k}. The remote
observer generates an a posteriori estimat®,1,...,M] — R of the process state
that minimizes the MSEEE | (x« — %)?| 2 k], at timek conditioned on the informa-
tion received at the remote observer up to and including kiniéne a priori estimate
at the remote observer;, 7 [0,1,...,M] — R, minimizes theE [(x« —%)?| Z k1],

the MSEE at timek conditioned on the information received up to and including
timek— 1. Due to the scalar nature of the process, these estimateth&@form,

% = EDx| 2k 1] =ak

o —=1_ J X don’ttransmit at time step
%= E [x| 2] = { X, transmit at time steg

wherexy = Ho.

The event-detection strategy that is used to select therr@sion timesy,, is
based on observing ttgap, g = X — X, between the filter's estimateand the
remote observer's a priori estimate,. In the following it will be convenient to
adopt the following notational conventions,

Xk — X estimation error at stelp
xx — % filtered state error at stdp
X« — X, a priori gap at steg,

Xk — X« @ posteriori gap at stdp

00 0 P

Note that even through the gap is a function of the remoterebss estimate, this
signal will be available to the sensor. The sensor has adoesss information
because the sensor has access to all of the informa@ignthat it sent to the remote
observer. As a result, the sensor can use anéitbal estimatorto construct a copy
of Xthat can be used locally by the event-detector to computgapg, . This local
estimator is shown as part of the transmission subsystemrsimofigure 1.17.

The event detector’s decision to transmit is triggered wtherestimate’s gag, ,
leaves a time-varying trigger séig, wherek € [0,1,...,M] is the currenttime and
is the number of transmissions remaining at $tdp general, the trigger sets can be
cast as threshold conditions on the estimate’s gap. Thisoiais graphically in the
lower left-hand side of figure 1.17. The event-triggers asekad with the squares.
The actual gagg, is shown by the solid bullets. Note that the event-triggees a
time-varying and equal zero at the end of the time horidoisampling is triggered
the first time the gap violates the threshold as shown in figut&. For a given
timek, there can be at most miB,M + 1 — k} transmissions remaining. The state
of the event detector at given tinmewill be a function of the current a priori gap,
e, and the number of remaining transmissioms, This a priori information at
the detector is denoted as the ordered pair= (€, T;). In a similar way, the a
posteriori information at the detection is denoted;as (e, T 1).
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Backwar d Recursion for Value Function: One can use a backward recursion simi-
lar to that found in stochastic dynamic programming [20]étedimine the triggering
sets. Towards this end let’s introduce two collections igigering sets that will be
used later. These collections are,

y}b(k) _ {S'(nax{o,bfkﬂ}’ o 7s;nin{b,M+17k}}
RO (V]

These two sets are shown in figure 1.18 for a problem with barM = 4 and
total number of transmissionB, = 3. This figure shows the indices for the time
stepsr and the number of remaining transmissiolnsThe coIIectioan consists
of those indices enclosed within the dotted line. That sebmposed of four other
collections;.#2(1), .72(2), #Z(3), and #2(4). Each of these subcollections is
shown as a column of indices enclosed within the rectangldsi figure.

CHO)

B=3 < (O @

Fig. 1.18 Trigger set collection? = UM ; .#2(k) for B =3 andM = 4.

Denote the estimation error at the remote observeg asxi — Xx. The problem
to be solved involves picking the event-triggers in coll@et7 £ to minimize the
total MSEE at the remote observer. Formally, the problerteited as follows

minimize: J(E) = E [y} o &] (1.26)

where the expectation is taken oesr.” . ,éu. The optimal collection is the set&*
such thatl(78*) < 3(.7B) over all possible#E and the resulting optimal cost is

J* =mind(8).
575
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The problem in equation (1.26) can be treated using resolts éptimal stochas-
tic control. In our case, the control variables are the ctilba of triggering sets in
5”03, rather than some control signal. Since this is a dynamiicropeition problem,
it can be treated using stochastic dynamic programming. fEtjuires aalue func-
tionthat represents the remote observer’s total MSEE assummgses the optimal
triggering sets and assuming the initial information sét'is= ({,b) where( is the
current value of random variabég andb is the number of remaining transmissions.
In other words, the value function is

M
V((,b,r):er L(Zréﬂl_(z,b)]. (1.27)

This is the minimal expected cost conditioned on the infdiomd,~ available to the
event detector at time The optimal cost achieved & = E [V (e;,B,0)]. As will
be shown below, this value function can be computed usingckvird recursion
often found in dynamic programming.

To develop the backward recursion, let’s first consider thetevent-detector
starts at some time after the initial time step 0. In particldonsider an initial state,
(¢,b,r), at time step in which the a priori gapg equals{ assuming there ate
transmissions remaining to be made. Note #7ais a random variable wheregds
a specific value for this random variable. From this initiahdition, the collection
of admissible trigger sets can be described as

S =A{SIUA+ U UL (M).

This is seen from figure 1.18. The minimization in equatio2{) may therefore be
broken apart as

M
V(Zabvr) = né,l)n{xb(l’wLm.l.r.],yrb(M) E [l(zr%|lr = (Zab)‘| } :

For notational convenience we’ll denote the inner miniricra shown above as
G(¢,b,r). In other words,

M
G(Z,b,r) = mmyrb(M)E Lzreﬁu = (z,b)] .

IP(r+1),...e

The computation 06({,b,r) may be decomposed into two cases. The first case
is whenl € & (i.e. the sensor decide®t to transmit) and the other case occurs
when ¢ S (i.e. the sensor decides to transmit). Let’s outline the patation for
the first case below. In particular, whéne §’ one sees that

G(Z,b,r) = min Elgéﬂer—ZESP,Tr—b].
k=r

FO(14+1),....#P(M)
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When no transmission takes place, the information in thalitioms in the above
equation hold if and only if, = (&, Tr+1) =1, = (e, Ty) = ({,b). G({,b,r) may
therefore be rewritten as

M
G(¢,b,r) = min E &l =(Z,b)|.
(@bn= . mn Lzreﬂ = )1
SinceT, . 1 = bmeans that there albetransmissions remaining at step- 1, one can
conclude that not all of the trigger setsliff",  ; .#°(k) will impact the minimiza-
tion. In particular, one can disregard the s&isrvherep ranges from 0 tdo — 1 and
k=r+b—p.

This means that the minimization is really done over the.ggt,. Let's now
computeG({,b,r) as a function of the value function¥{e, ,,b,r +1). In partic-
ular,G(¢,b,r) may be written as

M
G(¢.br) = minE lzéﬁur - <z,b>]

+1

E[&lr = (¢, b)}+m|nELz &= (¢, b]

S r+1

_Pr+82+m|nEl S &l =(, b)]
</r+1 k=r+1

Since the information set sequendg , I}, is Markov ande;_ , is independent
from.#P, ,, the remaining minimization may be rewritten as

/}4’1 k=r-+1

G(z,b,r)_ﬁr+62+(ngnElE S &l =(e.1.b). =(C, b)] ||r—(Z,b)]

Ze§||r+l - r+17b)‘| ||r = (va)‘|

- Pr+62+m|nE lE

S

:ﬁr‘FZz‘f’E

mbinE Z eﬁ||r+1_ r+17b)‘| ||r:(z,b)‘|

i k=
B 2 E V(e b )1 = ().

The preceding argument showed thaf i S, then the term

FP(4D) 7P (M)

G(Z,b,r) = min El%éﬂer:ZeS‘?,Tr:b]
k=r

=P+ P +E V(g 1.br + 1)l = ({.b)].
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A similar argument can be used for the case wGiehS (i.e. the sensor decides to
transmit). In this case it can be shown that

G@Ebr = mn = E [%éﬂer:zwm:b]

FP(r+1),...7P(M
=P +E[V (r+l,b 1,r+1)[l, = (0,b—1)].

Combining both of these results determines the followinzklagard recursion for
the value function,

V(Z.br) = rmin V(@b e +VI(E 0,110 | (1.28)

wherel,.q, is the indicator function that takes a value of ¥ifs in the set? and
is zero otherwise. The choice implied in the above equatidreiweervyt({,b,r)
andVr(¢,b,r) where

Vr(Z,b,r) =P +E[V(e 4,b—1r+1)|l;=(0,b—1)]
= optimal cost if there is a transmission at time step
Wr(Z,b,r) =P+ 2+ E V(e 4.b,r +1) |1, = ({,b)]
= optimal cost if there is no transmission at time step

Note thatvr({,b,r) is independent of . Because of the properties of the indicator
function, the expression given in equation (1.28) is motenadly seen as ahoice
in which the sensor chooses between the smaller of two costs,

V(¢,b,r)= rr;tTi)nG(Z,b,r) =min{Wt(¢,b,r),Vr({,b,r)}.

In other words, we have a recursive expression for the optiost from the given
state({,b,r) and the sensor simply decides to transmit if the cdgt,is smaller
than not transmittingyn.

The computation shown in equation (1.28) is a backward séaarover two
sets of indices: the time steps, and the number of remaining transmissiobs,
In particular, the value function at indék, r) is a function of the value function
at indices(b—1,r + 1) and (b,r + 1). The functional dependencies are shown in
figure 1.18. The arrows in this figure illustrate the funcéibdependencies implied
by equation (1.28).

The initial conditions for this recursion are the value fiioigs at the indices
shaded in figure 1.18. The initial values for indi¢@gsr) wherer € [B,B+1,...,M]
are

Q(M+1-r) 2 1—a2M+1-1) ;
V(Z,0 r):{ T T (rp %) P Tlal#1 | (1.20)
QMEINMIL D) | (B +72—rQ) (M+1—1)if [a] = 1
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These initial conditions are determined by recognizing ¥, 0,r) is the cost
assuming that no transmissions occur between stapsiM. The other set of ini-
tial conditions are marked by the indices in figure 1.18 thatlacated along the
diagonal. In this case

M

V(b)) =Y Py (1.30)
k=r

for b ranging between 1 arBlandr = M + 1 — b. This value function is the MSEE
from time stepr assuming there is a transmission in each of the remaining tim
steps.

The value function/({,B,0) can be computed by recursively determining the
value function in sets7B(k) for k starting atM and ranging backward to 0. The
collection

YOB(k) _ {S;nax{O,B—k}7 o ’S:1in{B,M+1—k}}

consists of the indices enclosed by the rectangles in figli& The value function
in set.7B(M) is determined by the initial conditions described abovengshe
order of computation implied by the arrows in figure 1.18hivsld be apparent that
the value function for all nodes it¥E(M — 1) can be computed from the known
values in.Z2(M). In a similar way, one can see that the value function at eglic
in .78(M —2) are computed from the values i#B(M — 1). One continues this
computation recursively to obtain the value functionAf (0).

Let’'s see what'’s involved in computing the value functiow &ne trigger seSE
at index (b, k) which corresponds to time stépwith b remaining transmissions.
The trigger setS, can be chosen to be the symmetric interivab?, 6°] where
Gﬁ’ € R is a real positive number that must be computed. In partictiiés leads
to the MSEE event-trigger where a transmission occufgif > 6P. If (b,k) are
the initial indices shaded in figure 1.18, then the value fiancis given by the
initial conditions in equations (1.29)-(1.30). For othedices, the value function,
V(¢,b,k), and associated threshod?é’ must be numerically computed using the
recursion in equation (1.28).

V({,b,k) is computed numerically at a number of discrete points indlaéline.
Recall thatv ({,b,k) is determined as a choice between the functdas{, b, k)
andVr (¢, b,k). These two functions satisfy

Vr({,b,k) = Pe+Vr({,b—1k+1)
ebfl
+/ k;ll (Vr(x,b—1,k+1) —Vnr(x,b—1,k+1)) p(x|0)dx
T Y%+1

WNT(Z,b,K) = Py+ % +Vr(Z,b,k+1)

.gb |
= [ (Vb 1) = Wer(bk+ 1) pXI el

- 9k+1
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wherep(xy) is the probability density o, , ; conditioned org, = y. The value of

the optimal thresholdsP, ; and 67, are needed to evaluate these two functions.
These thresholds can be computed in a recursive manner.

Given 62, and 6&’11, the next optimal threshold?, can be found using a bi-
section search. In particular, the optimal threshold cgat€ * whenVt ({*,b,k) =
Vnt({*,b,K). So the threshold must satisgf = |{|*. Once this threshold is de-
termined through the bisection search, then one can seéothd{ > 62 the value
functionV (¢,b,k) = Vr({,b,k) and for|{| < 6P, the value function must satisfy
V({,b,k) = VWnT(Z,b,K). This allows one to readily evaluatd {,b,k) at a number
of distinct points, along the real line.

An example of this computation is provided below for the syst

X = L.2% 1+ W
Vi = X+ Vi (1.31)

The mean and covariance of the initial state are 1 and 2,cégely. The covariance
of the noise termsy andv, are both 1. Fix the horizoll = 8 and the total number
of transmission8 = 2. Using the algorithm mentioned above, the value functon i
evaluated at various values ©fFigure 1.19 shows the resulting value function. The
solid line in the figure is the value function for various vedwof timek. The right-
hand plot show%/(Z,1,k) and the left-hand plot shows({,2,k). The threshold
91? is marked by the dots in the figure. Outside of the intervalnaefiby the dots
one finds thav/({,b,k) = V1 ({,b,k) and this is a constant becaugg({, b, k) is
independent of . Inside the region, the value function varies as a functiof.o

100 100
V(€.2.k)

V(C,1.k)

80 80

60

60

40

| |
20 k=4 P 20
S
0 = Ll 0
8 6 -4 -2 ° 2 4,6 38 -8 8
g 0’ 8]2 02 thresholds thresholds

Fig. 1.19 Value functionsV (¢, 1,k) andV({, 2,k) for sample system

To see how well the MSEE event-triggers perform, let's \ifjom 0 to 9 and re-
peat the experiment 1000 times for both the optimal event-trigger and comparable
periodic triggering of transmissions. The plot in figureshows the MSEE for the
optimal event-triggered and periodically triggered traissions as a function of the
total number of transmissionB, The plot shows that the experimentally observed
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MSEE equals the MSEE predicted by the value function. Theglgm shows that
the optimal event-triggered transmission strategy alvwggrserates a smaller total
MSEE than comparable periodically triggered systems.

50 I . : . :
O predicted minimum MSE
m 40} %  MSE for optimal event triggered sampling
E B ®  MSE for periodic sampling
g 30}
& ®
£ 20 .
5
2 ol o) o) © e |
S L B o
O L L L L L L L
1 2 3 4 5 6 7 8 9

Total Number of Transmitted Samples, B

Fig. 1.20 MSE for periodic and event-triggered system

This section has studied the design of MSEE event-triggara fsimple dis-
tributed estimation problem. This problem was solved in [8D, 58] under a va-
riety of assumptions. The main contribution of this secticas a direct derivation
of the optimal event-triggers using dynamic programmingaepts as well as an
explicit method for computing the optimal event-triggeyithresholds. The meth-
ods in this section recover the original results in [59]. Emalysis may be general
enough to suggest specific ways of extending the treatmehedfcalar system to
state estimation of more general linear vector processes.

This section has focused on the estimation problem, butémedwork used here
may also be extended to control problems. For control, omglyi takes the out-
put of the remote estimator and connects it back into thet pmaugh a controller.
Real-life applications that fit into this model are found iireless sensor-actuator
networks. The associated control problem that seeks tomiaaicontrol perfor-
mance subject to a communication usage constraint wasdsuij87, 88] for the
infinite horizon case. In general, the event-triggeringshiolds solving the infinite
horizon problem are constants. Finite horizon versionkisfdontrol problem were
treated by [31] and [62]. In the finite horizon case, the exaggering thresholds
are time-varying functions of the initial system state. dstproven difficult, how-
ever, to apply this work to vector systems due to the comjmutatcomplexity asso-
ciated with solving the dynamic programming equations.gRéprogress has been
made in resolving the computational complexity issue fdinite horizon prob-
lems through the use of quadratic approximations for thaevéinction [19, 18].
A related approach was used in [42] to address the compliexihe finite-horizon
estimation problem.
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1.6 Event-Triggered Approachesto Optimization

This section introduces an event-triggered distributgd@thm that solves network
utility maximization (NUM) problems in large-scale netwed systems [79, 78].
Existing distributed algorithms for the NUM problem are djent-based schemes
that converge to the optimal point provided the communicebetween subsystems
is sufficiently frequent. Analytic bounds on the communimainterval required to
ensure convergence tend to be inversely proportional taiceaneasures of network
complexity such as network diameter and connectivity. Assalt, the total mes-
sage passing complexity in such algorithms can be very gréatevent-triggered
algorithm presented in this section appears to reduce tlssage passing complex-
ity by nearly two-orders of magnitude. Moreover, experitaeresults indicate that
this complexity may be independent of network diameter amhectivity.

Related Work: Many problems in networked systems can be formulated as opti
mization problems. This includes estimation [56, 69, 38Urse localization [56],
data gathering [15, 14], routing [46], control [77], resoeiallocation [55, 89] in
sensor networks, resource allocation in wireless comnatioic networks [86, 16],
congestion control in wired communication networks [36], 44d optimal power
dispatch [38] in electrical power grid. The consensus @wb[52] can also be
viewed as a distributed optimization problem where the abje function is the
total state mismatch between neighboring agents. Manyesktiproblems may be
viewed as multi-agent optimization problems that can beesbby a distributed im-
plementation of a subgradient algorithm [49]. In all of thesoblems, subsystems
communicate with each other in order to collaborativelys@ network optimiza-
tion problem.

Distributed algorithms that solve such network optimiaatproblems include
the center-free distributed algorithms [28], distribugésgnchronous gradient-based
algorithms [72] and distributed subgradient methods [F8jse early algorithms
suggest that if the communication between adjacent sudrsgsis sufficiently fre-
quent, then the state of the network will asymptotically v@nge to the optimal
point. Later developments in such distributed algorithnas/ e found in the net-
working community. Most of these later algorithms focus otvisig the Network
Utility Maximization(NUM) problem. The NUM problem maximizes a global sep-
arable measure of network system performance subject ¢arlimequality con-
straints that are directly related to throughput constsaifihis problem originates
in congestion control for Internet traffic [36, 44]. The NUNMbplem, however, has
a general form and many problems in other areas can be recastidM problem
with little or no variation. As a matter of fact, many of th@egmentioned problems
can be reformulated as NUM problems.

Among the existing algorithms [36, 44, 85, 53] solving the Mgroblem, the
dual-decomposition approach proposed by Low et al. [44)eésmhost widely used.
Low et al. showed that their dual-decomposition algorithasweonvergent for a
step-size that was inversely proportional to two importargasures of network
size: the maximum path lengih and the maximum number of neighbdsSo
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as these two measures get large, the step size requiredureamvergence be-
comes extremely small. Step size, of course, determinesuh®er of computa-
tions required for the algorithm’s convergence. Under dlesdomposition, system
agents exchange information at each iteration, so thatsitepy, also determines
the message passing complexity of the algorithm. Therefamee uses thetabi-
lizing step size, dual-decomposition algorithms will have a ngsg@ssing com-
plexity that quickly scales to unreasonable levels as tiwark diameterL, or the
neighborhoood sizes, increases. In particular, it was shown in [44] that the dual
decomposition is convergent if the step size satisfies

—2ma; ) 02U; (%)

O<y<y' = xS

(1.32)

whereL is the maximum number of links any user useés the maximum number
of users any link has, ardi(x;) is the utility useri receives for transmitting at rate
xi. For many networked systems this type of message passinglexity may be
unacceptable. This is particularly true for systems comoatimg over a wireless
network. In such networked systems, the energy requirecbimmunication can be
significantly greater than the energy required to performpotation. As a result, it
would be beneficial if one can somehow separate communitatid computation
in these distributed algorithms. This could reduce the agesgpassing complex-
ity of distributed algorithms such as dual-decompositibims section shows how
event-triggering can be used to realize the separationdsgtvwommunication and
computation in a primal algorithm solving the NUM problem.

NUM Problem: The NUM problem consists of a network Nfusers and links.

Let.¥ = {1,...,N} denote the set of users atd = {1,...,M} denote the set of
links. Each user generates a flow with a specified data rath fiav may traverse
several links (which together constitute a route) befoaehéng its destination. The
set of links that are used by user . will be denoted asZ; and the set of users
that are using link € .2 will be denoted as”j. The NUM problem takes the form

maximize:U (X) = 5ic & Ui(%) (1.33)
subjectto:Ax<c, x>0 '
wherex = [xg --- XN}T andx; € R is useri’s data rateA € RM*N js the routing
matrix mapping users onto links amd= R is a vector of link capacities. Thgt"
componentAji, is 1 if useri’s flow traverses linkj and is zero otherwise. The
i row of Ax represents the total data rates going through |inKhis rate cannot
exceed the link’s capacity;. The cost functiotJ : RN — R is the sum of the user
utility functionsU; : R — R, fori =1,2,...,N. These utility functions represent the
rewardUi(x), (i.e. quality-of-service) that uséreceives by transmitting at rate

A specific example of a NUM problem is shown in figure 1.21. Tlgare shows
a linear network consisting &ff =5 links withN = 3 users. User 1’s route includes
links 1-4, user 2's route includes links 2-3, and user 3'seases link 3-5. Assum-
ing each link has a capacity limit of 1, the throughput caaistrtherefore becomes,
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Fig. 1.21 Example of NUM Problem

The solution to the NUM problem maximizes the summed utdégn by all users
in the network as a function of the users’ transmission rdtiesse rates must clearly
be non-negative. Moreover lif; (x) = ajlog(x) wherea; is a positive constant, then
it can be shown [36] that all the user rates in the optimaltsmiumust be positive. In
other words, the optimal solution does not result in centsiers from being denied
access to the network, thereby assuring that all users faivaccess to network
resources.

Augmented Lagrangian Algorithm: While early algorithms used methods based
on the dual to the problem in equation (1.33), this sectian@res a primahug-
mented_agrangian method. In particular, let’s introduce a slaakables € RM and
replace the link constraintgj(— aij >0 forall j € .Z) by the following equality
constraint
ajx—c¢j+sj=0, §>0, foralljec.Z.
wheres; is called theslack variablefor the jth constraint. Theugmented coshen
becomes
1

aj

+ 5 —( X—Cj—i—Sj)z.
2]-e W

LoxsAwW) == 5 Uix)+ Y Aj(@x—cj+sj)
ies je

Here a penalty parametay; is associated with each link constraint and=
[wi,...,Wu] is the vector of penalty parameters. The other variabis an estimate
of the Lagrange multiplierd;, associated with link’s constraint,c; — alx> 0.
A vector formed from these estimates is denoted as [A1,...,Am]. The vector
ajT = [Aj1,--- ,Ajn] is the j™ row of the routing matriA.
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L(x,s;A,w) is a continuous function of ands for fixed A andw. The user rate,
x*, and the slack variabk, that minimizes the augmented cost satisfies the follow-
ing equation

in L(x,s;A,w) =minminL(x,s;A,w) = minLp(x; A 1.34
min L(x,sA,w) =minminL(x,s,A,w) =minLy(x.A,w) (1.34)
where one defines theugmented Lagragian functioassociated with the NUM
problem as

LD(X;)‘aW):_ ZU|(X|)—|— ij(X;)\aW)
IS je

and where

Ly A2 ifc —al Y
—3WjA; if ¢j —ajx—wjA; >0

Yi6A,w) = { Aj(@fx—cj)+ Z\Nij(aij— ¢j)? otherwise
The optimization problem in equation (1.34) is then used atading point for
developing a recursive procedure that asymptotically @ggires the solution of the
original NUM problem.

The original NUM problem’s solution can be approached aabiy closely by
solving an appropriately defined sequence of the optinirgiroblems in equation
(1.34). This sequence of problems involve minimizingx; A K], w[k]) for appro-
priately chosen sequences of penalty parametgrand multiplier estimates).
Letx*[k] denote the approximate minimizer fiop(x; A [k],wk]). It has been shown
[6] that for appropriately chosen sequengesk]} >, and{A K }}_,, the sequence
of approximate minimizerg,x* k| }_, converges to the optimal point of the NUM
problem. The appropriate choice for these sequences ifottat | € .¥

e the sequence of penalty parametgus; k| };°_,, is monotone decreasing to zero
e and the sequence of Lagrange multiplier estimafdsk] },’ o, is a sequence
where

1
Ajlk+1] = max{o,)\j K+ WK (af x*[K] — Cj)} :
A detailed description of how the sequenee&| and A [k] are updated in a dis-
tributed manner will be found in [78].

A primal algorithm based on the augmented Lagrangian metiasddeveloped
[78] that converges to the exact minimizer of the NUM problémmany scenarios,
however, it may suffice to obtain an approximate minimizerchitan be obtained
by considering the problem of minimizirigy(x; A,w) for a fixedA andw. In par-
ticular, if A; = 0 andw; is sufficiently small, the minimizer df,(x; A, w) will be a
good approximation to the solution of the original NUM preil. In this regard the
basic primal algorithntan be stated as follows
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1. Initialization: Select any initial user ratg0] > 0. SetA; = 0 and select a sulffi-
ciently smallw; > Oforall j € Z.
2. Recursive Loop: Minimize Ly(x;A,w) by letting

oL,

xk+1] = max{O, X[k — Yo

(X[k]; A ,W)} (1.35)

fork=0,1,...,00,

The smallervis the more accurate our approximate solution is. The remushown
in step 2 tries to minimizé&p(x;A,w) using a gradient following method in which
y is a sufficiently small step size. The computations shownvalman be easily
distributed among users and links.

Event-Triggered NUM Algorithm: Implementing the aforementioned primal al-
gorithm in a distributed manner requires communicationveen users and links.
An event-triggered implementation of the algorithm asssithat the transmission
of messages between users and links is triggered by sometooasignal crossing
a state-dependent threshold. The main problem is to deterenthreshold condi-
tion that results in message streams ensuring asymptaticcogence to the NUM
problem'’s approximate solution.

The minimizer of the Lagrangialp(x; A, w) is searched for using the gradient
following recursion in equation (1.35). Assuming that cargtion ischeap one
realizes this gradient recursion as a continuous-timesy#t which

t /oL _ +
xi(t) = _/O <a—xip(x(r),/\,w)>)q(r)dr
.
:/Ot (LSZ(T))‘. uj(r)> dr (1.36)
&< % (1)

for each user € . where

pj(t) = max{o,/\j +Wij ( z x;(t)—c,—) } (1.37)
IS8

The functiony; : R — R is a scalar characterizing how close ftle link constraint
is to being active. The link constraint is active at titnahen yj(t) = 0. Given a
functionf : R — R, its positive projections defined as

[ 0 ifx=0andf(x) <0
(F09)x = { f(x) otherwise '

The positive projection used above guarantees that theraseix (t), is always
non-negative along the trajectory.

Equation (1.36) is the continuous-time version of the d@isitime update shown
in equation (1.35). Note that in equation (1.36), usesmputes its rate based only
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on the information from itself and the information pf from those links that are
being used by usérAs noted abovel; characterizes how close thidink constraint

is to being active. One may think @f; as thej™ link’s local state From equation
(1.37), link j only needs to be able to measure the total flow that goes throug
itself. Since all of this information is locally availabline update of the user rate in
equation (1.36) can be done in a distributed manner.

In equation (1.36), the link state information is availatiethe user in a con-
tinuous manner. Let’s consider awent-triggeredsersion of equation (1.36). This
is done by allowing the user to only accessaanpledversion of the link state. In
particular, let's associate a sequencesmmplinginstants,{Tj'-[é]}?:0 with the jt
link. The timeTj'-[E] denotes the instant when th® link samples its link state;

for the /" time and transmits that state to usees.#j. One can see that at any time
t € R, the sampled link state is a piecewise constant functioim in which

Ry (t) = pi (THE)

forall¢=0,1,...,0and anyt € [T}[¢], T [¢+1]). In this regard, the event-triggered
version of equation (1.36) takes the form

T R . +
xi(t):/ (%ﬁl(r))— [q(r)) dr

° 14 Xi(T)

for all £and anyt € [T[¢], T[¢ +1]).

Let's now try to establish conditions on the sampling tin@é# [¢]} that ensure
the gradient update shown in equation (1.35) is converd@mtnotational conve-
nience let the time derivative of the user ra¢€t), be denoted ag(t). Referring to
z(t) as theuser stateone sees that satisfies the equation

+
a<t>=xi<t>=<%§“”—_ mm)
=22

Xi(t)

for all i € .. Now we takelp(x;A,w) as a candidate Lyapunov function. The di-
rectional derivative ok is

_ M , N . M
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To assure thaip is negative definite, one needs to select the sampling tim#ésas
M ., N
ZLSm—unfzzf-
j=1 i=

This almost looks like one of the state-dependent evegdris used earlier in sec-
tion 1.4. Unfortunately, this trigger cannot be implemeiitea distributed manner.
While the left-hand side is separable over the links, thbtrltand side is summed
over the users. So the preceding analysis does not giveoriaaistributed event
triggered algorithm.

To develop local event-triggers that can be easily disteithacross the network,
let's consider another sequence of tind@s’[¢]}_, for each user € .#. The time
T.S[¢] is the/™ time when user transmits its user state to all linksc 4. One can
therefore see that at any times R, the sampled user rate is a piecewise constant
function of time satisfying

2(t) =z (7))

forall ¢=0,1,..., and anyt € [T;°[¢], T;%[¢ + 1]). One can now use this sampled
user state in our earlier expression kgrto show that

_%N —%gl py 2L13m—&fl

ic.”]

X/\W

for somep € (0,1). The derivativeLp, is negative definite as long as
S (7 p7
0<> (7 -pZ]
2
M
0< Z l

j=1

Z—az CS(kj - )]-

e L

In this case, both inequalities are separable. The firstosegarable over the users
and the second one is separable over the links. One candherfsure these con-
ditions are satisfied if

Z-p#Z>0 (1.38)

for eachi € .. This condition can be enforced by requiring that the usardmitz
atthose time instants when the inequality is about to bataal. The other condition
is satisfied if

S - i)t <p y % (1.39)
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for eachj € .Z. This condition can be enforced by requiring that the lirdnsmit
yj at those time instants when the inequality is about to beatéol. The informal
discussion given above therefore establishes that iflirdetvansmissions are gen-
erated using the event-triggers in equation (1.38) an@j1tBenL ,(x; A ,w) indeed
becomes a Lyapunov function for this system and one can etisatrthis system is
convergent to a neighborhood of the optimal solution of théMN\problem.

Figure 1.22 shows the event-triggered optimization atbariin graphical from.
This figure uses the system network that was introduced indfigji21. In this case
each link in the network has an associated router which raamiihe total data flow-
ing through the link gieyj Xi(t) —cj). Attached to each router ispice agenthat
updates the link state; and checks the event-trigger in equation (1.39) to detegmin
whether or not it will transmit its local link state. In a duaknner, each user that
is pumping data into the network has an associedézlagenthat updates the user
statez (t) and checks the trigger in equation (1.38) to determine wbémhsmit to
the links. One therefore see that the algorithm has bothdbsesk (link to user) and
feedforward path (user to link) in which the informationestms are both sporadic
in nature.

s D
O jth link broadcasts its state, p;, at times
(T} 32, when

— . 1.,
IS(us(t) — 0 2 p 3 220
i€S;
O jth link continuously monitors its local
state

.
pslt) = (Aﬁr% (Zzi(ﬂ—cj))
7 \ieS;

p
O ith user continuously monitors its local
modified state

N
zi(t) = (L’éﬁt)) -y ﬂj(t))

JEL:

AN

O 4th user broadcasts its modified state, z;,
at times {T}°[¢]}2, when

22(t) - p22(t) <0

Fig. 1.22 Diagram of the event-triggered primal algorithm

Scaling of Event-Triggered Algorithm: Let's compare the number of message
exchanges of the event-triggered algorithm against thé-de@omposition algo-
rithm. Simulation results show that event-triggered athons reduce the number
of message exchanges by up to two orders of magnitude whepasenhto dual-
decomposition. Moreover, the event-triggered algorisimessage passing com-
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plexity scales in a way that appears to be independent ofanktdiameter or con-
nectivity.

Denotese 7% [a, b if sis a random variable uniformly distributed ¢ab]. Given
M, N, L andS, the network used for simulation is generated in the folfmyivay.
One randomly generates a network withinks andN users, wher¢%;| € %1,
for j € & and| 4| € Z[1,L] for i € .. One makes sure that at least one link
hasS users, and at least one user ukdinks. After the network is generated, a
utility function U; (%) = ailogx; is assigned to each usewherea; € 2/[0.8,1.2].
Link j is assigned capacity; € % [0.8,1.2]. Once the network is generated, dual-
decomposition and the event-triggered augmented Lagaaragorithms are sim-
ulated. The optimal rate* and its corresponding utilityy * are calculated using a
global optimization technique.

Define the error (for all algorithms) as

U (x(k) —U*

elk) = [ ==
wherex(K) is the rate at th&™" iteration.e(k) is the ‘normalized deviation’ from the
optimal point at thek™ iteration. In all algorithms, one counts the number of iter-
ationsK for e(k) to decrease to and stay in the neighborhe(g)|e(k) < e4}. In
dual-decomposition, message passing from the links togbaeswccurs at each iter-
ation synchronously. SK is a measure of the total number of message exchanges.
In the event-triggered algorithms, events occur in a tptaliynchronous way. So
one adds the total number of triggered events, and divigerthimber by the link
numberM. This provides an equivalent iteration numisefor the event-triggered
algorithms, and is a measure of the total number of messadmeges. One should
point out that since these simulations compare a primalrhgo and a dual algo-
rithm, they run at different time scales. Iteration numisethien a more appropriate
measure of convergence than time [17, 34].

The default settings for the simulation are as folloMs= 60, N = 150,L =
8, S= 15, andey = 3%. For all three algorithms, the initial conditionxg0) €
7/[0.01,0.05] for all i € .. In dual-decomposition, initial pricp; = 0 for j € .Z,
and the step sizgis calculated using equation (1.32). In the event-trigd@rmal
algorithm, the parameters goe= 0.5,A; = 0, andw; = 0.01 for j € .Z.

We now consider a Monte Carlo simulation whédeN, andL are fixed ands
is varied from 7 to 26. For eac§ all algorithms were run 1500 times, and each
time a random network which satisfies the above specificasiaggenerated. The
meanmy and standard deviatiook of K are computed for eac m is used as
the criterion for comparing the scalability of both algbrits. The left-hand plot in
figure 1.23 plots the iteration numbkron a logarithmic scale as a function &f
for all algorithms. The circles represang for dual-decomposition and the squares
correspond to the primal algorithm.

For the primal algorithm, whe® increases from 7 to 261k does not show
noticeable increase. For the primal algorithma, varies between 1% and 211. For
dual-decompositiomk increases from 3856x 10° to 5.0692x 10°. Our event-
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Fig. 1.23 Iteration numbeK as a function oBandL for all algorithms.

triggered algorithm is up to two orders of magnitude fastantdual-decomposition.
These results also show that the event triggered messagiagpasmplexity scales
in a manner that is independent ®f This is stands in stark contrast to the dual-
decomposition algorithm which scales superlinearly withpect tds.

These algorithms were also simulated as a functioh.dh particular,L was
varied from 4 to 18. The right-hand plot in figure 1.23 plétgon a logarithmic
scale) as a function df for all algorithms. For the primal algorithm, whénin-
creases from 4 to 18yk increases slowly. In particulamy increases from 18
to 182. For dual-decompositiomy increases from 9866x 10° to 3.5001x 10°.
The event-triggered algorithm again is up to two orders ofnitaide faster than the
dual-decomposition.

This section presented a primal event-triggered disteithaigorithm for solving
network utility maximization problems based on augmentadrangian methods.
Simulation results suggest that event-triggering graatliyices the message passing
complexity of such distributed optimization algorithmgt{nization of networked
systems therefore represents another important applicafievent-triggering that
can be applied to a wide range of applications ranging fraffi¢rcontrol to power
dispatch in electrical power grids.

1.7 Research Issues

No chapter of this nature is complete without a discussidutoifre research issues.
Event-triggering represents a new paradigm for real-tiesglback control, but the
topics covered in this chapter only touch upon what has thcéeen done. As

is often the case, good preliminary work presents just asymaestions as it an-
swers and this is certainly the case for event-triggereghres as of the writing of

this chapter. To help motivate the research issues beisgdan this section, let’s

consider a real-time implementation of a state-dependestitdriggered control

system.
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There are case studies examining the performance of evigeidontrol based
on static thresholds [64, 63]. There is, however, veryelitkperimental work ex-
amining the implementation of the state-dependent ev@ggers introduced in sec-
tions 1.3 and 1.4. Early work in this direction will be fourm [i10] in which a
self-triggered controller is implemented in a linear agapdant using a real-time
kernel. Another early implementation will be found in [13heare the performance
of different scheduling protocols for event-triggeredirohers on a shared network
is investigated. Finally, an experimental study directiynparing thebestperiodic
controller to an event-triggered controller will be foumd26].

Figure 1.24 shows results from a recent experiment implémgstate-dependent
event-triggered feedback-linearizing controllers fa hdegree-of-freedom (DOF)
helicopter system. The plant is a Qua8e8DOF helicopter controlled by a pen-
tium Il PC running the S.H.a.R.K. real-time kernel [22].tlnis case, a feedback-
linearizing controller was designed for the system with dbgective of regulating
the travel rater, elevationg, and pitchp of the vehicle. Event-triggered and period-
ically triggered implementations of this system were impéated in the S.H.a.R.K.
kernel and the results from one of these experiments is sbovtime right-hand side
of figure 1.24.
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Fig. 1.24 Real-time Hardware Implementation of State-Dependenh&Veggered System

The top plot in figure 1.24 shows the travel rate as a functfidmee. The com-
manded travel rate is shown by the solid dashed line and tiex ttaces show the
response of the event-triggered and periodically trigg@antrollers. What is im-
portant to note here is that the behavior is nearly ideniicabth cases. The bottom
plot shows the normalized CPU utilization of the eventgaged and periodically
triggered controllers. What one notices here is that whervéhicle is commanded
to non-zero travel rates, the event-triggered task’szatiibn drops considerably.
During those periods, however, when the commanded trateliganear zero (i.e.
the vehicle is hovering), the CPU utilization increases actdially exceeds the uti-
lization of the periodically triggered controller.
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These results actually confirm what the prior analysis iised..3 discovered.
In particular, if one looks back at the results from [63] sihdwfigure 1.1, one sees
that event-triggering indeed reduces the overall CPUzatilon relative to compa-
rable performing periodic controllers. For the case in [B8, however, a uniform
event-triggering threshold is chosen so that the systenpdstrates considerable
chattering when the system is close to its equilibrium pdimder state-dependent
event-triggering, however, this type of chattering in thgtesm response does not ap-
pear. But because the experiment’s input disturbamgds,wideband sensor noise an
excessive number of events are triggered, just as was sharlvarén figure 1.7 of
section 1.3. What these results suggest is that state-depeevent-triggering can
reduce the jerky behavior seen under the static threshsktsin [63]. The current
theory, however, does not adequately balance that gainstghe increased use of
CPU resources.

With the findings from this experiment in hand, one can nowliifg a num-
ber of important issues that future research into evegtitied feedback must con-
front. Probably the most immediate is that we develop a bettelerstanding of
how to adequatelyrade-off control system performance against the reduactio
the use of computational or communication resour¢e9articular, if one exam-
ines the ISS or7, event-triggering concepts discussed in sections 1.3 ahafe
notes that while the analysis guarantees the preservdtmomee assumed stability
concept, it says almost nothing about the message passingledty. To be fair,
these analyses do bound the minimum sampling period of-d&giendent event-
triggering. But these bounds are obtained as an afterthpoghe the stability-
preserving threshold has been determined. What is readiglettis an analysis that
treats both stability-preserving performance and comgatitn (or computational)
resource usage within the same analytical framework. Taesaxtent, this approach
was attempted in the event-triggered estimation schemsidened in section 1.5.
In that case, the design of the event-trigger was posed asimination problem in
which the transmission rate between sensor and remotevelnseas constrained.
But that analysis is still far from being mature enough to pglied to real-life sys-
tems. The analysis constrains its attention to scalardiggstems and it is unclear
how those results might be generalized to vector or nonlisggstems with real-life
uncertainties.

Event-triggering samples the system state over time. Toesfon constraining
communication in section 1.5 can be seen as trying to ideftiidamental limits
on the rate at which information should be transmitted oher feedback chan-
nel. Sampling intime however, is not the only way one can sample a signal. One
may also sample the signal épace i.e. quantization. This suggests there should
be a close connection between results on minimum quarizédiedback control
[43] and event-triggered feedback. In particular, an intgrissue involves a uni-
fied approach tauantization and sampling distributed control and estimation
problems. Joint quantization and sampling issues were ieeahn [39], but a full
understanding of this relationship has yet to be completed.

Another important issue concerns the developmenéwsnt-triggered output
feedback controlletrsThe experiment shown in figure 1.24 made use of state-
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dependent event-triggers that presume full access to #te $h the experimental
system, however, the sensors only directly measure thelmagle,r, elevation an-
gle &, and pitch angle. For the experiment a periodic task was used to estimate
the actual states of the system and then a separate eggering task was used
to invoke separate controllers for the travel, elevatiord pitch dynamics of the
vehicle. This implementation, however, is still far fromatlone would do in prac-
tice. Since most of the computational effort is actually anthe observer task, the
true reduction in CPU utilization is very modest for this ekment. To truly realize
the benefits of event-triggering, one would need an evégdéred output feedback
controller, in which triggering is done solely on the badi®bserved sensor mea-
surements, rather than state estimates.

To some extent, the event-triggered estimation methodsiséed in section 1.5
provide a first step at developing measurement-based &vggers. But precisely
how this might be integrated into an output feedback sysseamclear. One might,
for instance, implement an event-triggered observer, wlstates are then used to
trigger the control action. But this interconnection of aem-triggered estimator
and event-triggered controller has not been studied alt &élunclear whether one
can invoke some event-triggered separation principle.odm s issues regarding
observer based control are raised, one must also confiamititmal observability
and controllability issues. We are aware of no recent wogaréing these deeper
system theoretic properties of event-triggered systems

Finally, let’s return to the implementation questionsedign the experiment. As
noted above, the task set in this experiment consists of achgbmbination of spo-
radic event-triggered tasks and periodically triggersttsghat work together to re-
alize state-dependent event-triggered controllers. dfiziag such hybrid task sets
there are alwaysmplementation issues regarding scheduling and faultrinice
that need to be addressed. In particular, it is still undieav best to schedule this
mixture of sporadic and periodically triggered tasks toueaghe determinism so
often insisted upon isafety-critical applicationsOne reason for insisting on peri-
odically driven task sets in control, is that they provideghly predictable behavior.
When faults do occur, the impact of those faults can be readidlyzed due to the
highly deterministic nature of the resulting task envir@mn This type of deter-
ministic modeling does not seem to be available for the task surrently used to
support event-triggered feedback and as a result it woullidpely unlikely that
anyone would choose event-triggering for safety-critaggdlications. This need not
be the case, but to establish that event-triggering is lseiteor safety-critical ap-
plications one must develop a modeling framework whoseigtigd abilities can
provide broad assurances about the fault-tolerant priegest event-triggered sys-
tems.

Event-triggered feedback represents an exciting new agprto real-time net-
worked control systems that has the potential of more effiieusing computa-
tional and communication resources while assuring higbléesf application per-
formance. These applications can be found in control, esitim, and optimiza-
tion. While the promise of event-triggering is great, therstill significant work
remaining to be done. A deeper understanding of the rektiiproetween applica-



62 Michael Lemmon

tion performance and resource usage must be cultivatecarticplar, a close ex-
amination must be made of the connection between quantimeeent-triggered
feedback. The current frameworks must be extended to éxiggered output con-
trollers. This extension will require a deeper understagadif the fundamental sys-
tem theoretic properties of event-triggered systems,@alheas they pertain to the
separation between control and estimation. Finally, wetmase critically evaluate
the scheduling and fault-tolerance of real-time impleragohs of event-triggered
controllers, especially as they pertain to safety-critaggplications. Much has al-
ready been done, but a great deal remains to be accompliskeenit-triggering

can indeed be used to build safety-critical real-time nelted control systems.
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