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Abstract: This paper studies the stabilizability of an n-dimensional quantized feedforward nonlinear system. The
state of that system is first quantized into a finite number of bits, and then sent through a digital network to the controller.
We want to minimize the number of transmitted bits subject to maintaining asymptotic stability. In the prior literature,
n bits are used to stabilize the n-dimensional system by assigning one bit to each state variable (dimension). Under the
stronger assumption of global Lipschitz continuity, this paper extends that result by stabilizing the system with a single
bit. Its key contribution is a dynamic quantization policy which dynamically assigns the single bit to the most “important”
state variable. Under this policy, the quantization error exponentially converges to 0 and the stability of the system can,
therefore, be guaranteed. Because 1 is the minimum number of quantization bits (per sampling step), the proposed dynamic
quantization policy achieves the minimum stabilizable bit number for that n-dimensional feedforward nonlinear system.
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1 Introduction
Consider an n-dimensional nonlinear system in the fol-

lowing feedforward form [1],

ẋ = f(x, u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

f1(X2, u)
f2(X3, u)

...
fn−1(Xn, u)

fn(u)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1)

where x ∈ R
n, u ∈ R

m and the set of state variables
xi, xi+1, · · · , xn is denoted by Xi. When the above non-
linear system is controlled over a digital network, a typical
configuration is shown in Fig.1.

Fig. 1 Quantized nonlinear control systems.
Now we explain the signal flow in Fig.1. At sam-

pling instants {tk}∞k=0, the state x(tk) is measured, quan-
tized (encoded) into a symbol with R bits, sk(∈ S =

{0, 1, · · · , 2R −1}), and transmitted over a digital network.
The sampling instants are assumed to satisfy

0 < Tm � tk+1 − tk � TM < ∞, ∀k � 0. (2)

It is assumed that the transmitted symbol sk is correctly re-
ceived without delay. The received symbol sk is used to
construct an estimate of the state x(tk), x̂(tk). Of course,
x̂(tk) may be different from x(tk) due to quantization error.
x̂(tk) is used to generate a continuous-time state estimate
x̄(t). The controller will make use of x̄(t), instead of the
true state x(t), to devise the control u(t) [2].

This paper addresses the following questions. Does there
exist an appropriate quantization policy to maintain its sta-
bility under finite R? What is the minimum quantization bit
number R required to maintain stability? These two ques-
tions have generated much interest in the past few years.

In [2], nonlinear systems more general than the one in
Eq.(1) are investigated. It is shown that any nonlinear con-
trol system that can be globally asymptotically stabilized by
true state feedback can also be globally asymptotically sta-
bilized by quantized state feedback, under the condition that
the number of quantization bits, R, is big enough. In [3],
it is shown that a finite number of quantization bits can
make a class of nonlinear systems input-to-state stable (ISS)
with respect to measurement errors. More quantization bits,
however, mean that more network bandwidth is occupied.
Therefore, it makes much sense to determine the smallest
R that still asymptotically stabilize the control system. The
minimality of the number of quantization bits (per sam-
pling step) required to stabilize a nonlinear system is ad-
dressed in [4], where a notion of topological feedback en-
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tropy (TFE) is introduced and it is proven that a system can
be stabilized if and only if R exceeds the inherent TFE of
that system. When the concerned system is linear, there are
many ways to compute the TFE and the required minimum
bit number (see [5, 6] and references therein). When a sys-
tem is nonlinear, there is no systematic approach to com-
puting its TFE and the minimum bit number to stabilize a
general nonlinear system is usually unknown. Researchers,
therefore, pursue a less aggressive goal: to stabilize a non-
linear system with as few quantization bits as possible. In
order to save quantization bits, the knowledge of the con-
cerned system has to be taken into account. The nonlinear
system in Eq.(1) takes an upper triangular structure, which
falls into the class of the feedforward systems [7]. For this
type of n-dimensional systems, R = n (R = n + 1) can
be enough to achieve semiglobal asymptotic stabilization
(global stabilization) [1] under three assumptions.

Assumption 1 Functions fi(Xi+1, u), with i = 1, 2,
· · · , n − 1 and fn(u) are locally Lipschitz.

Assumption 2 There exists a constant U > 0 for which
u(t) < U for all t � t0.

Assumption 3 Each function fi(·) (i = 1, 2, · · · , n) is
zero at the origin and is such that the linearization of Eq.(1)
at the origin exists and is stabilizable; there exist class-K+

function φi(·) for which ∗

|fi(Xi+1, u + v) − fi(Xi+1, u)| � φi(|(Xi+1, u)|)|v|.
The results in [1] are quite significant in the sense that

the provided bit number is independent of the set of initial
conditions of the system, of the time-varying sampling pe-
riod and can be simply assessed from the dimension of the
system.

R = n bits are used in [1] to guarantee asymptotic sta-
bility. Is that possible to use fewer bits to accomplish that
task? As R is the number of transmitted bits, it has a hard
lower bound

R � 1. (3)

The present paper proposes a dynamic quantization policy
that uses a single bit to globally asymptotically stabilize the
n-dimensional nonlinear system in Eq.(1) by strengthening
Assumption 1 into:

Assumption 4 Functions fi(Xi+1, u), with i = 1, 2,
· · · , n − 1 are globally Lipschitz with respect to Xi+1 for
bounded u. Function fn(u) is locally Lipschitz.

Because of the hard lower bound in Eq.(3), we know the
minimum bit number has already been achieved, of course,
at the cost of a stronger assumption. Now we remark on that
achievement. In [1], the system is n-dimensional and there
are n bits. Each dimension is assigned 1 bit. In this paper,
there is only 1 bit, which is assigned to the most needed di-
mension at every time step. Its bit assignment is dynamic,
compared with the static policy in [1]. We will show that
it is the dynamic bit assignment policy that makes the best
use of the available single bit. This policy for the nonlinear
systems is motivated by the dynamic bit assignment policy
for linear systems [8].

This paper is organized as follows. In Section 2, we
present the dynamic quantization policy, which is the ma-
jor difference from [1]. It is shown that the quantization er-
ror exponentially converges to 0 as [1]. Based on this con-
vergence property, we prove the asymptotic stability of the
feedforward nonlinear systems. In Section 3, the paper is
concluded with some final remarks. In order to improve
readability, we move technical proofs into the appendix.

2 Main results: Dynamic quantization policy
2.1 Uncertainty region of the state

The quantizer/ encoder is usually connected with sensors
and can know exactly the state at the sampling instants,
x(tk). However, the decoder is spatially separated from the
sensors, so it cannot know the exact value of x(tk). How-
ever, the decoder keeps receiving state symbols {sk}, and
can use these symbols to determine an uncertainty region
P (tk) which the state x(tk) lies in, i.e.,

x(tk) ∈ P (tk) = C(tk) + rect(L(tk)), (4)
where the uncertainty region P (tk) is characterized by its
centroid C(tk) and side length vector L(tk) with⎧⎪⎪⎨

⎪⎪⎩

C(tk) = [C1(tk), C2(tk), · · · , Cn(tk)] ,
L(tk) = [L1(tk), L2(tk), · · · , Ln(tk)] ,

rect(L(tk)) =
n∏

i=1

[
−1

2
Li(tk),

1
2
Li(tk)

]
.

Here,
∏

stands for Cartesian product. Because of Eq.(4), it
is reasonable to estimate x(tk) as∗∗ for the decoder to set

x̂(tk) = C(tk). (5)
So we will use x̂(tk) to represent the centroid of P (tk) in
the sequel. It can be seen that the estimation error x̃(tk) =
x(tk) − x̂(tk) is bounded as

|x̃i(tk)| � 1
2
Li(tk), i = 1, 2, · · · , n. (6)

With the received symbol sk, the decoder updates its cen-
troid and side length vector as

(x̂(tk), sk) → x̂(tk+1), (L(tk), sk) → L(tk+1). (7)
Of course, discretion is required to guarantee no overflow
would occur, i.e., x(tk+1) ∈ x̂(tk+1) + rect(L(tk+1)). The
symbol sk in Eq.(7) is sent by the encoder. Thus, the en-
coder surely knows sk. As long as the encoder and the de-
coder agree upon the initial condition x̂(t0) and L(t0), they
will generate the same sequences {x̂(tk)}k and {L(tk)}k

under the same updating rule in Eq.(7).
In order to achieve asymptotic stability, i.e., lim

t→∞x(t) =
0, we have to guarantee the convergence of the continuous-
time estimation error x̃(t) = x(t) − x̄(t). Because of As-
sumption 2 (the boundedness of the control u(t)), Assump-
tion 4 (the global Lipschitz property of f(·) = [f1(·),
f2(·), · · · , fn(·)]T) and Eq.(2) (bounded sampling inter-
vals), we get

Proposition 1 The convergence of x̃(t) = x(t) − x̄(t),
i.e., lim

t→∞ x̃(t) = 0 is equivalent to

lim
k→∞

‖L(tk)‖∞ = 0, (8)

∗ Class-K+ functions are nonnegative, continuous and nondecreasing functions. For i = n, function φn(·) depends on |u| only.
∗∗ The estimation in Eq.(5) minimizes the maximum estimation error, which is measured by the infinity norm of the state estimation

error.
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where ‖ · ‖∞ denotes the infinity norm.
The proof of Proposition 1 is not difficult and omitted

here. Later, we will design a quantization policy so that
L(tk) exponentially converges to 0.
2.2 Dynamic quantization policy

Because of Assumptions 2 and 4, we know, for each i
(∈ {1, 2, · · · , n}), there exists a finite positive number Fi

such that
|fi(Xi, u) − fi(Yi, u)| � Fi‖Xi − Yi‖∞ (9)

for any Xi ∈ R
n−i+1, Yi ∈ R

n−i+1 and u(t) � U .
Choose positive numbers γ and ρ by

n

√
1
2

< γ < 1, (10)

ρ > 2 +
(n − 1)FTM

1 − 1
n
√

2γ

, (11)

where F = max
i

Fi. Similar to the quantization policy for a

linear system in [9], we propose the following algorithm.
Algorithm 1 Dynamic quantization policy
Encoder/Decoder initialization
Initialize x̂(t0) and L(t0) so that x(t0) ∈ x̂(t0) +

rect(L(t0)). Set x̂e(t0) = x̂(t0), x̂d(t0) = x̂(t0), Le(t0) =
L(t0), Ld(t0) = L(t0), and k = 0. Note that the subscripts
e and d are used to emphasize that the variables are updated
on the encoder and decoder sides, respectively.

Encoder algorithm
1) Select the index Ik by

Ik = arg max
i

ρ2iLi(tk), (12)

2) Quantize the state x(tk) by setting

sk =
{

1, xIk
(tk) � x̂Ik

(tk),
0, otherwise.

3) Transmit the quantized symbol sk.
4) Update L(tk+1) at time instant tk+1 as∗∗∗

Li(tk+1)

=

⎧⎪⎪⎨
⎪⎪⎩

Li(tk)
2

+ FTM

n∑
j=Ik+1

Lj(tk+1), i = Ik,

Li(tk) + FTM

n∑
j=Ik+1

Lj(tk+1), i �= Ik.
(13)

x̂(tk+1) is updated by running the differential equation
in Fig.1 as

d
dt

x̄e,i(t) = fi(X̄e,i+1(t), u(t)),

x̄e,i(tk)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̂i(tk)+
Li(tk)

4
, i=Ik and sk = 1,

x̂i(tk)−Li(tk)
4

, i=Ik and sk = 0,

x̂i(tk), i �= Ik,

(14)

where X̄e,i(t) = [x̄e,i(t), x̄e,i+1(t), · · · , x̄e,n(t)]T for
t ∈ [tk, tk+1) and the control u(t) is generated by
the controller in Fig.1 with the estimated state xe(t) (=
X̄e,1(t)) in the place of x̄(t). At time t = tk+1, update

x̂i(tk+1) as
x̂i(tk+1) = x̄e,i(t−k+1), i = 1, 2, · · · , n. (15)

5) Update time index, k = k + 1 and return to step 1).
Decoder algorithm

1) Select the index Ik by
Ik = arg max

i
ρ2iLi(tk). (16)

2) Wait for quantized data, sk, from encoder.
3) Update the state estimate at tk as

x̂d,i(tk) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̂d,i(tk) +
Li(tk)

4
, i = Ik and sk = 1,

x̂d,i(tk) − Li(tk)
4

, i = Ik and sk = 0,

x̂d,i(tk), i �= Ik.

4) Generate the continuous-time state estimate as
d
dt

x̄d,i(t) = fi(X̄d,i+1(t), u(t)), (17)

x̄d,i(tk) = x̂d,i(tk),
where t ∈ [tk, tk+1).

5) Control variable u(t) is constructed from the controller
in Fig.1 by replacing x̄(t) with x̄d(t)(= X̄d,1(t)).

6) Update L(tk+1) at time instant tk+1 as
Li(tk+1)

=

⎧⎪⎪⎨
⎪⎪⎩

Li(tk)
2

+ FTM

n∑
j=Ik+1

Lj(tk+1), i = Ik,

Li(tk) + FTM

n∑
j=Ik+1

Lj(tk+1), i �= Ik.
(18)

At time t = tk+1, x̂d,i(tk+1) is updated as
x̂d,i(tk+1) = x̄d,i(t−k+1), i = 1, 2, · · · , n. (19)

7) Update time index, k = k + 1, and return to step 1).
Remark 1 Because Le(t0) = Ld(t0), Le(tk) and

Ld(tk) are updated by the same rule in Eqs.(13) and (18)
and the transmitted symbol sk is always received correctly,
we have

Le(tk) = Ld(tk), ∀k � 0. (20)
Therefore, we may shorten Le(tk) and Ld(tk) into the same
variable L(tk) without confusion. Similarly, we can show{

x̂e(tk) = x̂d(tk), ∀k,

x̄e(t) = x̄d(t), ∀t � t0.
(21)

Therefore, x̂e(tk) and x̂d(tk) are shortened into x̂(tk), x̄e(t)
and x̄d(t) into x̄(t) as well. The same x̄(t) is used to com-
pute the control variable by the same rule on both encoder
and decoder sides, which surely yields the u(t). Our quanti-
zation policy guarantees there is no overflow, which is pre-
sented as the following proposition. See the appendix for its
proof.

Proposition 2 Under Assumptions 2∼4, we choose γ
and ρ by Eqs.(10) and (11). The dynamic quantization pol-
icy in Algorithm 1 is implemented to the quantized nonlin-
ear system in Eq.(1). For any k � 0,

x(tk) ∈ x̂(tk) + rect(L(tk)). (22)
Remark 2 In Algorithm 1, the side is measured by

the weighted length ρ2iLi(tk) rather than the direct length
Li(tk). That policy assigns the highest priority to the n-th

∗∗∗To successfully do the computation in Eq.(13), we start from i = n, and proceed in the decreasing order of i.
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dimension. The motivation lies in the feedforward structure
of Eq.(1), i.e., the n-th dimension affects the other dimen-
sions, but NOT reversely. After Ln(tk) is reduced enough,
we get almost precise state estimate x̄n(t) and the order of
the state estimation problem could be reduced by 1, i.e.,
from n to n − 1. That rationale keeps working for the re-
maining dimensions. Of course, some subtle balance has
to be made when assigning the single bit among n dimen-
sions, which is carried out by the appropriate choice of ρ
in Eq.(11). It will be shown in Proposition 3 that L(tk) ex-
ponentially converges to 0. The proof can be found in the
appendix.

Proposition 3 Under Assumptions 2∼4, we choose γ
and ρ by Eqs.(10) and (11). The dynamic quantization pol-
icy in Algorithm 1 is implemented to the quantized non-
linear system in Eq.(1). The side length vector L(tk) is
bounded as

‖L(tk)‖∞ � Cγk‖L(t0)‖∞, (23)
where the constant

C = 2n+1ρn2+n−1.

Remark 3 Algorithm 1 and Proposition 3 assume both
the encoder and the decoder know the initial uncertainty re-
gion P (t0)(= x̂(t0) + rect(L(t0))), which the initial state
x(t0) lies within. That assumption might not hold, e.g., the
decoder does not know the true initial uncertainty region. A
“zooming-out” algorithm in [1] is introduced to tackle this
issue, which works as follows:
1) First, the encoder and the decoder agree upon an initial

compact set.
2) If the initial state xn(t0) lies outside of that compact

set, the encoder sends a packet with its n-th bit as “1”
to notify the decoder of overflow. Then both the en-
coder and the decoder synchronously expand the n-
th side length of the initial compact set, Ln(t0), into
Ln(t1) = λLn(t0) with a certain ratio λ. When the
expanding ratio λ is big enough, after a finite number
of steps, Ln(tk) is long enough so that xn(tk) will not
overflow. Ln(tk) will be chosen as the new “initial” n-th
side length and the encoder and the decoder have been
synchronized regarding the n-th dimension.

3) After the n-th dimension synchronization is achieved,
the encoder and the decoder work for the (n − 1)-th di-
mension by setting the (n − 1)-th bit of a packet into
1 to signal the overflow of the (n − 1)-th dimension of
the state. Similar expanding strategy is implemented to
achieve synchronization over the (n − 1)-th dimension
in finite steps.

4) The above procedure repeats until synchronization be-
tween the encoder and the decoder has been achieved for
all dimensions of the state. Such synchronization again
takes only finite steps.

In the above “zooming-out” algorithm, only one bit of the
packet with n bits is used to signal an overflow. Further-
more, the above algorithm works consecutively from the n-
th dimension to the 1-st dimension. We can, therefore, re-
place the n-bit packet with a single bit and also pursue syn-
chronization consecutively from the n-th dimension to the
1-st dimension. This synchronization is done before imple-
menting Algorithm 1. Thus, the synchronization assumption
can be relaxed.

2.3 Asymptotic stabilization by quantized feedback
As shown in Eq.(23), the quantization error exponentially

converges to 0, which satisfies the requirements in proving
asymptotic stability in [1] (Propositions 2 and 3). Here we
directly borrow these results to get

Proposition 4 Let Assumptions 3 and 4 hold. There ex-
ist positive numbers λi and vectors ki, for i = 1, 2, · · · , n,
which can be used to construct the following controller

u = λnσ

(
knX̄d,n + vn−1

λn

)
, (24)

where

vn−i =λn−iσ

(
kn−iX̄d,n−i+vn−i−1

λn−i

)
, i=1, · · · , n−1

with v1 = λ1σ

(
k1X̄d,1

λ1

)
, X̄d,i(t) (x̄d(t)) is generated by

the decoder in Eq.(17) and σ(·) is the saturation function.
The quantization policy in Algorithm 1 and the controller

in Eq.(24) guarantee the response of the closed-loop system
in Eq.(1) to satisfy the following properties:
� For each ε > 0, there exists δ(ε) > 0 such that

‖x(t0)‖∞ � ‖L(t0)‖∞
2

� δ(ε) implies

‖x(t)‖∞ � ε, ∀t � t0. (25)
� The state converges to 0, i.e., lim

t→∞ ‖x(t)‖∞ = 0.

We verify Propositions 2, 3, and 4 through the following
example: {

ẋ1 = x2 + (cos x2)u,

ẋ2 = u
(26)

with TM = 0.1 s, Tm = 0.05 s, and |u| � 1. This sys-
tem is a global Lipschitz system with F = 2. By the rules

in Eqs.(10) and (11), we choose γ =
1 + 2

√
0.5

2
, ρ = 2.2,

λ1 = λ2 = 1, k1 = [−1,−1] and k2 = −1. As shown
in Fig.2, the quantization errors ei(tk) = xi(tk) − x̂i(tk)
(i = 1, 2) are always bounded by 0.5Li(tk) (Proposition
2), the envelopes of Li(tk) exponentially converges to 0
(Proposition 3) and the states of quantized systems, xi(tk)
converge to 0 (Proposition 4).

Fig. 2 Simulation results of the system in Eq.(26).

3 Conclusions
In summary, the present paper proposes a dynamic quan-

tization policy to stabilize with only one bit (per sample)
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a class of n-dimensional quantized feedforward nonlinear
systems. Because 1 bit (per sample) is the smallest num-
ber of quantization bits, the proposed quantization policy
achieves the minimum bit number for the given nonlinear
systems, which is rarely reported in the current literature.
These results on the minimum bit number are, however,
achieved at the cost of some strong assumptions, such as
perfect network transmission (without either dropout or de-
lay) and global Lipschitz system dynamics. For linear sys-
tems with dropouts and network transmission delay, there
are already some results on the minimum stabilizing bit rate
[8]. For certain nonlinear systems, it is shown that bounded
network transmission delay may not increase the stabilizing
(average) bit rate [10]. Built upon these achievements, we
will try to relax our assumptions in the future. In the quanti-
zation literature, some papers pursue the minimum quanti-
zation density, instead of the minimum bit rate, required to
stabilize a linear system [11, 12]. We may also extend them
to the feedforward nonlinear here.
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Appendix
A1 Proof of Proposition 2

We prove it by mathematical induction. Eq.(22) works for 0.
Suppose it holds for k. Now we prove it for k + 1.

By the remark after Algorithm 1, x̄e(t) and x̄d(t) are equal, and
named x̄(t). Define

e(t) = x(t) − x̄(t). (a1)

By the definitions of sk (Eqs.(12) and (16)) and
x̄e,i(tk)

x̄d,i(tk)
(Eqs.(14)

and (17)), we get

|ei(tk)| �

8<
:

LIk (tk)

2
, i = Ik,

Li(tk), otherwise.
(a2)

By Eqs.(14) and (17), x̄(t) is updated as
˙̄xi(t) = fi(x̄i+1(t), · · · , x̄n(t), u(t)), t ∈ [tk, tk+1) ,

where fi(·) are the functions in Eq.(1). Assumption 4 yields

|ėi(t)| =
˛̨
ẋi(t) − ˙̄xi(t)

˛̨
�

nP
j=i+1

F |ej(t)|. (a3)

It is straightforward that

|ei(tk+1)| � |ei(tk)| +
� tk+1

tk

|ėi(τ)|dτ

� |ei(tk)| + TM max
tk�t<tk+1

|ėi(t)|

� |ei(tk)| + FTM

nP
j=i+1

max
tk�t<tk+1

|ej(t)|, (a4)

where the last inequality comes from Eq.(a3). We can place the
following lemma.

Lemma 1 For t ∈ [tk, tk+1),
|ei(t)| � Li(tk+1). (a5)

Proof We again prove this lemma by mathematical induction.
We can see that Eq.(a5) holds for i = n. Now suppose that Eq.(a5)
holds for i � i0 + 1. We want to prove it also works for i = i0.
For t ∈ [tk, tk+1),

|ei0(t)| � |ei0(tk)| +
� t

tk

|ėi0(τ)|dτ

� |ei0(tk)| + TM max
tk�τ<tk+1

|ėi0(τ)|

� |ei0(tk)| + FTM

nP
j=i0+1

max
tk�t<tk+1

|ej(t)|

� |ei0(tk)| + FTM

nP
j=i0+1

Lj(tk+1)

= Li0(tk+1),

where the third inequality comes from Eq.(a3), the fourth one from
the assumption that Eq.(a5) holds for i � i0 + 1. We, therefore,
complete the proof.

Because x̂(tk+1) = x̄(t−k+1),

|xi(tk+1) − x̂i(tk + 1)| = |xi(tk+1) − x̄i(t
−
k+1)|

� Li(tk+1). (a6)
So x(tk+1) ∈ x̂(tk+1) + rect(L(tk+1)).
A2 Proof of Proposition 3

Define generalized side lengths as(
L̄n(tk) = max

`
ρnLn(tk), ρnγk‖L(t0)‖∞

´
,

L̄i(tk) = max
`
ρiLi(tk), L̄i+1(tk)

´
,

(a7)

where i = 1, 2, · · · , n − 1.
Based on the above definition, we can easily get a lower bound

on L̄i(tk).
Lemma 2

L̄i(tk) � ρnγk‖L(t0)‖∞. (a8)

L(tk) is updated by Eqs.(13) and (18). Based on the definitions of
γ and ρ (in Eqs.(10) and (11)) and the definition in Eq.(a7), we get
the following proposition.
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Lemma 3 For any k and any i = 1, · · · , n,
L̄i(tk+1)

L̄i(tk)
� 1

1 − (n − 1)FTM

ρ

. (a9)

For the “longest” side chosen by Eq.(12) or Eq.(16), if L̄Ik (tk) �
2ρnγk‖L(t0)‖∞, then

L̄Ik (tk+1)

L̄Ik (tk)
� 1

2
× 1

1 − (n − 1)FTM

ρ

. (a10)

Proof We first prove Eq.(a9). Obviously it holds for i = n.
Now we assume it works for i = i0 + 1 and prove it for i = i0.
By Eq.(13), we know

Li0(tk+1) � Li0(tk) + FTM

nP
j=i0+1

Lj(tk+1).

Multiplying both sides of the above equation by ρi0 , we get

ρiLi0(tk+1) � ρi0Li0(tk) +
FTM

ρ

nP
j=i0+1

ρi0+1Lj(tk+1)

� L̄i0(tk) +
FTM

ρ

nP
j=i0+1

L̄i0(tk+1)

� L̄i0(tk) + (n − 1)
FTM

ρ
L̄i0(tk+1).

If L̄i0(tk+1) = ρi0Li0(tk+1), solving the above inequality w.r.t.
L̄i0(tk+1) yields Eq.(a9).

When L̄i0(tk+1) �= ρi0Li(tk+1), L̄i0(tk+1) = L̄i0+1(tk+1)
and we get

L̄i0(tk+1)

L̄i0(tk)
=

L̄i0+1(tk+1)

L̄i0(tk)
� L̄i0+1(tk+1)

L̄i0+1(tk)

� 1

1 − (n − 1)FTM

ρ

,

where the last inequality comes from the assumption that Eq.(a9)
holds for i = i0 +1. By mathematical induction, we know Eq.(a9)
works for any i.

From now on, we prove Eq.(a10). By the definition of Ik in
Eqs.(12) and (16), we know

ρ2IkLIk (tk) � ρ2jLj(tk), j = Ik + 1, · · · , n. (a11)
So, for any j = Ik + 1, · · · , n,

ρIkLIk (tk) � ρρjLj(tk) (a12)

� ρjLj(tk). (a13)

When L̄Ik (tk) � 2ρnγk‖L(t0)‖∞, the defintion in Eq.(a7), to-
gether with Eq.(a13), yields

L̄Ik (tk) = ρIkLIk (tk) � 2ρnγk‖L(t0)‖∞. (a14)
By the updating rule of LIk (tk),

ρIkLIk (tk+1) = ρIk
LIk (tk)

2
+ ρIk

nP
j=Ik+1

Lj(tk+1)

� ρIk
LIk (tk)

2
(a15)

� 2ρnγk ‖L(t0)‖∞
2

� ρnγk+1‖L(t0)‖∞. (a16)

Let j∗ = arg max
j=Ik+1,··· ,n

ρjLj(tk). For any j � Ik + 1,

ρjLj(tk+1)

= ρjLj(tk) +
FTM

ρ

nP
m=j+1

ρj+1Lm(tk+1)

� ρj∗Lj∗(tk)

+
FTM

ρ

nP
m=j+1

ρj∗Lj∗(tk) max
l=Ik+1,··· ,n

ρlLl(tk+1)

� ρj∗Lj∗(tk) + (n − 1)
FTM

ρ
max

l=Ik+1,··· ,n
ρlLl(tk+1).

Because the above inequality holds for any j � Ik + 1, we know

max
l=Ik+1,··· ,n

ρlLl(tk+1)

� ρj∗Lj∗(tk) + (n − 1)
FTM

ρ
max

l=Ik+1,··· ,n
ρlLl(tk+1).

Solving the above inequality w.r.t. max
l=Ik+1,··· ,n

ρlLl(tk+1) yields

max
l=Ik+1,··· ,n

ρlLl(tk+1) � ρj∗Lj∗(tk)
1

1 − (n − 1)FTM

ρ

.

(a17)
By Eq.(a12), we get

ρIkLIk (tk) � ρρj∗Lj∗(tk). (a18)
Combining the above equation with Eqs.(a15) and (a17) yields, for
any j = Ik + 1, · · · , n,

ρIkLIk (tk+1) � 1

2
ρ

„
1 − (n − 1)

FTM

ρ

«
ρjLj(tk+1)

� ρjLj(tk+1), (a19)
where the last inequality comes from the definition of ρ in Eq.(11).
Considering Eqs.(a7), (a16) and (a19), we get

L̄Ik (tk+1) =
1

2
ρIkLIk (tk) + FTM

nP
j=Ik+1

ρIkLj(tk+1)

� 1

2
ρIkLIk (tk) +

FTM

ρ

nP
j=Ik+1

ρjLj(tk+1)

� 1

2
LIk (tk) +

FTM

ρ

nP
j=Ik+1

L̄Ik (tk+1)

� 1

2
LIk (tk) +

(n − 1)FTM

ρ
L̄Ik (tk+1).

Solving the above inequality w.r.t. L̄Ik (tk+1) yields Eq.(a10). This
completes the proof.

Define p(tk) =
nQ

i=1

L̄i(tk). We get

Lemma 4 When

p(tk) �
“
2ρ2nγk‖L(t0)‖∞

”n

, (a20)

L̄Ik (tk) � 2ρnγk‖L(t0)‖∞. (a21)
Proof We prove Eq.(a21) by contradiction. Suppose it does

NOT hold, i.e., L̄Ik (tk) < 2ρnγk‖L(t0)‖∞. So

ρIkLIk (tk) � L̄Ik (tk) < 2ρnγk‖L(t0)‖∞. (a22)
By the selection rule of Ik (in Eq.(12) or Eq.(16)), we get, for any
j = 1, · · · , n,

ρjLj(tk) � ρIk

ρj
ρIkLIk (tk)

< ρnρIkLIk (tk)

� ρn2ρnγk‖L(t0)‖∞. (a23)
By the definition of L̄j(tk) in Eq.(a7) and the above equation, we
get

L̄j(tk) < 2ρ2nγk‖L(t0)‖∞, ∀j. (a24)
Multiplying the above for j = 1, · · · , n yields

p(tk) =
nQ

i=1

L̄i(tk) <
`
2ρ2nγk‖L(t0)‖∞

´n
, (a25)

which contradicts with the condition in Eq.(a20). So Eq.(a21)
holds. This completes the proof.
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By Lemmas 3 and 4 and the definitions of p(tk), ρ and γ, we
get

Corollary 1

p(tk+1)

p(tk)
�

0
BB@ 1

1 − (n − 1)FTM

ρ

1
CCA

n

< 2γn, ∀k � 0. (a26)

When Eq.(a20) holds,

p(tk+1)

p(tk)
� γn. (a27)

For p(tk), we can place the following upper bound.
Proposition 5

p(tk) < 2
“
2ρ2nγk‖L(t0)‖∞

”n

, ∀k. (a28)

Proof For k = 0, Eq.(a28) holds. Suppose it also holds when
k = k0. Now we prove it also works for k = k0 + 1. There are 2
cases.

1) When Eq.(a20) holds, we know, by Eq.(a27),

p(tk0+1) � 1

2

1

1 − (n − 1)FTM

ρ

0
BB@ 1

1 − (n − 1)FTM

ρ

1
CCA

n−1

p(tk0)

� γnp(tk0)

< γn × 2
“
2ρ2nγk0‖L(t0)‖∞

”n

= 2
“
2ρ2nγk0+1‖L(t0)‖∞

”n

,

i.e., Eq.(a28) holds for k = k0 + 1.
2) When Eq.(a20) does NOT hold, we know, by Eq.(a26),

p(tk0+1) <

0
BB@ 1

1 − (n − 1)FTM

ρ

1
CCA

n

p(tk0)

� 2γnp(tk0)

< 2γn ×
“
2ρ2nγk0‖L(t0)‖∞

”n

= 2
“
2ρ2nγk0+1‖L(t0)‖∞

”n

,

i.e., Eq.(a28) holds for k = k0 + 1.
In summary, Eq.(a28) holds for both cases. This completes the

proof.
Now we are ready to prove Proposition 3.
Proof Because

p(tk) =
nQ

i=1

L̄i(tk)

and L̄j(tk) � ρnγk‖L(t0)‖∞ for any j = 1, 2, · · · , n, we get

L̄i(tk) � p(tk)

(ρnγk‖L(t0)‖∞)n−1 , ∀i. (a29)

Furthermore, Li(tk) � 1

ρi
L̄i(tk). So

Li(tk) � 1

ρi

p(tk)

(ρnγk‖L(t0)‖∞)n−1 , ∀i. (a30)

Substituting the bound in Eq.(a28) into the above equation yields

Li(tk) � 1

ρi

2
`
2ρ2nγk‖L(t0)‖∞

´n

(ρnγk‖L(t0)‖∞)n−1

< 2n+1ρn2+n−1γk‖L(t0)‖∞, (a31)
i.e., Eq.(23) holds. This completes the proof.
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