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A necessary and sufficient feedback dropout condition to
stabilize quantized linear control systems with bounded noise

Qiang Ling and Michael D. Lemmon

Abstract— This paper studies the almost sure input-to-state stability
of quantized linear systems with bounded noise under non-deterministic
feedback dropouts. It proposes a dropout condition which is both
necessary and sufficient for stabilizing the quantized linear system at
a finite constant bit rate. Sufficiency of that dropout condition is proven
by constructing appropriate quantization policies. Note that the obtained
dropout condition does not require reliable dropout acknowledgments
(ACKs). Moreover, this paper derives a lower bound on the constant bit
rates under which the quantized system is stabilizable. That bound is
achievable when dropout ACKs are available. When dropout ACKs are
not available, the bound can be achieved in some systems. Simulations
are used to verify some of the analytical results.

I. INTRODUCTION

Recently there has been great interest in implementing a con-
trol system’s feedback loop over a shared non-deterministic digital
communication network [1]. The benefits of such networked control
systems include reduced cost, ease of maintenance and so on. The
use of communication networks, however, may introduce errors in the
feedback signals due to quantization (signals are quantized into a fi-
nite number of bits before transmission) and dropouts (the transmitted
signal packets may be dropped). These errors may adversely effect the
control system’s performance and many important control properties
could be destroyed. Due to its importance, stability is the first
property to check. So this paper studies the joint effects of dropouts
and quantization on stability. In particular, it proposes a necessary
and sufficient dropout condition to stabilize the quantized system at
a finite bit rate. It then examines the minimum stabilizing constant bit
rate under that dropout condition. This paper confines its attention to
the input-to-state stability (ISS) in the almost sure sense [2] [3]. We
characterize the dropouts in terms of the dropout rate, the dropout
pattern and the availability of dropout ACKs (acknowledgments).
To explain this paper’s motivation and put its contributions into the
appropriate context, we first review the relevant literature below.

The present paper is related to two areas, dropout and quantization.
In the dropout literature, it is often assumed that the quantization error
is negligibly small and real-valued signals are transmitted losslessly.
The dropout rate plays a critical role in the stability of control
systems with i.i.d. (independent and identically distributed) feedback
dropouts [4]. When the dropout rate is above a certain level, the
system can never be stabilized [4], even in the weaker mean square
sense. The (average) dropout rate, however, may not fully determine
the system’s performance when dropouts are modeled by a Markov
chain. Different dropout Markov chains represent different dropout
patterns and may yield quite different system performance, even at
the same average dropout rate [5]. So the dropout pattern has to be
considered. The present paper chooses a bounded dropout pattern
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model, which can cover both the stochastic models (including i.i.d.
or Markov chain models) and the more wide-spreading deterministic
ones.

Besides the dropout rate and the dropout pattern, one must also
consider the ACKs used to acknowledge dropped packets. Dynamic
quantization algorithms often use ACKs to synchronize the code-
books of the system’s encoder and decoder. There is evidence,
however, that such ACKs may not be necessary. It may be possible
to infer the dropout information from the observed output signal [6]
[7]. In [8], it was shown that ACKs are not needed to achieve the
optimal LQG performance. In [7], it was shown that the lack of ACKs
does not change the critical stabilizing rate of the i.i.d. dropouts.
Both of the papers assumed that all accumulated information could
be transmitted as real numbers, so that the network essentially has
infinite bandwidth. Whether or not the ACKs are required to stabilize
quantized system with finite bandwidth is still an open question and
will be answered in the present paper.

As mentioned before, quantization, as well as dropouts, can
significantly affect the stability of control systems. Many quanti-
zation results are achieved under the errorless packet transmission
assumption [9]. Quantization policies can be categorized into static
and dynamic ones. Static quantization requires the quantization range
and bit mapping policy be fixed. Under this policy, noise-free linear
systems cannot be asymptotically stabilized at a finite bit rate [10].
Dynamic quantization uses time-varying quantization range and/or
bit mapping policy. Under dynamic quantization, one can stabilize
noise-free linear systems at a finite bit rate [11]. The present paper
focuses on dynamic policies due to their efficiency. The minimum bit
rate under which a linear system can be asymptotically stabilized has
been determined for time-varying bit rates [12] and constant bit rates
[13]. For systems with bounded disturbances, minimum stabilizing bit
rates have been determined for deterministic [12] and mean square
[14] bounded-input-bounded-output (BIBO) stability. Similar results
have been obtained for input-to-state stability [15].

There has been recent interest in investigating the joint effects of
quantization and dropouts on stability. In [16], a quantitative relation-
ship between the dropout rate and the coarseness of the stabilizing
static quantizers was established under the assumption of an infinite
feedback bit rate. When ACKs are available to acknowledge the
dropped packets, the bit rate is stochastic under random dropouts.
Some mean square stability conditions were given in [17] [18] for
the linear systems with a stochastic feedback bit rate. In [19], it
was asserted that the almost sure stabilizability of quantized linear
systems with i.i.d. feedback dropout is preserved if the average bit
rate R satisfies R >

∑n

i=1
max(0, |log2λi|) with λi (i = 1, · · · , n)

representing the eigenvalues of the open-loop discrete-time system
matrix. This statement, however, was proven to be incorrect in [20].
Furthermore, it is shown that the system state almost surely diverges
for any R [20]. This stability issue mainly results from the fact
that under i.i.d. dropouts, there is always a finite probability that a
particularly long string of consecutive dropouts may drive the system
far from the equilibrium [20]. The input noise is another reason of
this stability issue (the noise-free quantized system can still be almost
surely stabilized under i.i.d. dropouts [21]).
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To resolve the above stability issue, one may choose a weaker
notion of stability, such as mean square stability [6] [17], under the
given i.i.d. dropout condition. Or one can place constraints on the
dropout sequences as [22] and achieve the deterministic ultimate state
boundedness. This paper mainly focuses on the dropout constraint
approach because sample path properties are more important than
the average or moment behavior in real applications. We study two
questions,

• What is a necessary and/or sufficient dropout condition for
(input-to-state) stabilization at a finite bit rate? We propose
a necessary and sufficient dropout condition, which does not
require dropout ACKs.

• Under the given stabilizing dropout condition, what is the
minimum constant bit rate at which the system can be stabilized?
We give a lower bound on all stabilizing constant bit rates. In
some systems, that bound can be achieved and is the minimum
constant bit rate.

The rest of this paper is organized as follows. Section II presents
the mathematical model and some assumptions. Section III proposes
a necessary dropout condition for stability, and a lower bound on
all stabilizing constant bit rates. Section IV constructs a quantizer
with reliable dropout ACKs which can stabilize the quantized linear
system under the necessary dropout condition and at the lower bit rate
bound given in Section III. Section V repeats the work of Section IV
when there are NO ACKs by implementing the Reed-Solomon coding
strategy to combat the unknown dropouts. It shows the necessary
dropout condition in Section III is again sufficient and verifies the
results through simulations. Some final remarks are put in Section
VI. Technical proofs are included in Appendix, Section VII.

II. MODEL OF QUANTIZED LINEAR SYSTEMS

This paper studies the system in Fig. 1. In that system, x[k] ∈ Rn
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Fig. 1. A quantized linear system

is the state at time instant k(= 0, 1, 2, · · ·). x[k] is quantized into a
R-bit symbol s[k], and sent over the digital communication network.
The transmitted symbol s[k] is either received by the decoder with 1
step delay or dropped. There may or may not exist ACKs to notify
the transmitter (encoder/quantizer) regarding dropouts (a dotted line
stands for the possible ACK feedback). Define a dropout indicator
d[k] and the network’s output s[k] as

d[k] =

{
1, Dropout at time k
0, Success at time k

, (1)

s[k] =

{
s[k − 1], d[k] = 0
φ, d[k] = 1

.

{d[k]} is referred to as a “dropout sequence”. The decoder uses
all received symbols {s[k], · · · , s[0]} to estimate the state x[k] with

xq[k], which can be viewed as a quantized version of x[k]. The
control input u[k] ∈ Rm is then computed from xq[k]. w[k] ∈ Rn

represents an exogenous bounded noise signal, i.e., supk≥0 ‖w[k]‖ ≤
0.5W with ‖ · ‖ standing for the infinity norm of a vector. Under a
linear controller, the overall system equation is

x[k + 1] = Ax[k] + Bu[k] + w[k], u[k] = Gxq[k], (2)

where the matrices A, B and G are of appropriate dimensions, and
k = 0, 1, · · ·. The system is assumed to be stabilizable under the
perfect state feedback. So there exists a stabilizing gain G. Without
loss of generality, the system matrix, A, is assumed to be in real
Jordan canonical form [23]

A = diag(J1, J2, · · · , JP ), (3)

where Ji is an ni×ni real matrix with a single real eigenvalue λi (of
the multiplicity of ni). For simplicity, we assume that A’s eigenvalues
are real. The following results can be extended to the complex
eigenvalues using the coordination transformation techniques in [12].
It is assumed that |λi| ≥ 1 for all i. For notational convenience,
define α(A) =

∏P

i=1
|λi|ni . We want to guarantee the input-to-state

stability (ISS) [3], i.e.,

‖x[k]‖ ≤ β′(‖x[0]‖, k) + γ′(sup
j≥0

‖w[j]‖), ∀k ≥ 0, (4)

where β′(·, ·) and γ′(·) are KL and K functions 1 , respectively. x[k]
is effected by the quantization error e[k] = x[k] − xq[k]. It can be
shown [12] that eq. (4) is equivalent to

‖e[k]‖ ≤ β(‖e[0]‖, k) + γ(sup
j≥0

‖w[j]‖), ∀k ≥ 0, (5)

where β(·, ·) and γ(·) are KL and K functions, respectively. Due to
the non-determinism of dropouts, this paper considers a weaker (and
more realistic) notion of stability, almost sure input-to-state stability,
which just requires eq. (5) be satisfied with the probability of 1 [2].

III. A NECESSARY DROPOUT CONDITION TO STABILIZE THE

QUANTIZED SYSTEM

As mentioned in Section I, we can guarantee the almost sure
stability under some (good) dropout sequences, e.g., the ones in
[22], and cannot do it under other (bad) ones, e.g., the i.i.d. dropout
sequences [20]. This section separates “good” and “bad” dropout
sequences by proposing a dropout condition necessary for stabilizing
quantized systems at a finite bit rate.

That dropout condition needs to define a “local” dropout rate,
εl[k] = 1

l

∑l−1

i=0
d[k + i], where d[k] is the dropout indicator in

eq. (1). So 0 ≤ εl[k] ≤ 1 and the following limit must exist

ε̂ = lim
l0→∞

sup
l≥l0

(
lim

k0→∞
sup
k≥k0

εl[k]

)
. (6)

ε̂ is a kind of asymptotic dropout rate and puts emphasis on the “bad”
dropout patterns (or large εl[k]). ε̂ is different from the common
average dropout rate ε = liml→∞ 1

l

∑l−1

k=0
d[k]. Consider an i.i.d.

dropout model with the rate of 0.5. It is almost sure that under
each dropout sequence, the patterns with any number of consecutive
dropouts will occur infinitely often and ε̂ = 1 while ε = 0.5.
Actually ε̂ in eq. (18) represents not only a dropout rate, but also
a constraint on the dropout pattern. A dropout condition necessary
for stabilizability is presented below.

1A K function f(x) is continuous, strictly increasing and f(0) = 0. A KL
function g(x, y) is a K function w.r.t. x by fixing y and limy→∞ g(x, y) = 0
for any fixed x.
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Theorem 3.1: The quantized system in eq. (2) with W > 0 can
be almost surely input-to-state stable at a finite bit rate only if there
exists 0 ≤ ε̂ < 1 such that

lim
l0→∞

sup
l≥l0

(
lim

k0→∞
sup
k≥k0

εl[k]

)
≤ ε̂ almost surely. (7)

Remark: A dropout sequence {d[k]} is defined to be “good” if it
can satisfy liml0→∞ supl≥l0

(
limk0→∞ supk≥k0

εl[k]
)
≤ ε̂. Eq. (7)

means that the total probability of “good” dropout sequences is 1.
The necessity of eq. (7) is proven in Section VII when ACKs are
available to acknowledge the dropped packets. It is, therefore, also
necessary for the weaker case without ACKs. Eq. (7) will also be
shown to be sufficient for stability in Sections IV and V.
Remark: The dropout condition in eq. (7) may be viewed as
a quality-of-service (QoS) constraint that the communication link
enforces through appropriate coding and rate control. Such QoS
constraints are frequently found in real-time computing under the
name of (m, k)-firm guarantees [24] or skip-over constraints [25].

Under the dropout condition in eq. (7), the following Lemma places
a lower bound on all constant bit rates being able to stabilize the
system in eq. (2). Its proof closely follows that of Theorem 3.1 and
that of (Proposition 3.2, [19]), and is omitted here.

Lemma 3.2: Under eq. (7), a constant bit rate R can stabilize the
system in eq. (2) only if

R ≥ Rmin =
⌊

1

1 − ε̂
log2 (α(A))

⌋
+ 1, (8)

where �·� stands for the flooring operation over a real number.
IV. A STABILIZING QUANTIZER WITH ACKS AT R = Rmin

The decoder does not know the exact value of the state x[k] at time
k, but can know a bounded set P [k] which x[k] lies within. P [k] is re-
ferred to as “uncertainty set” and takes the rectangular shape with the
center xq[k] and the side length vector L[k] = [L1[k], · · · , Ln[k]]T .
It can be expressed as P [k] = xq[k] + rect(L[k]) (rect(L[k])
represents the Cartesian product

∏n

i=1
[−0.5Li[k], 0.5Li[k]]). The

decoder estimate x[k] with the center xq[k] and the estimation
(quantization) error is e[k] = x[k] − xq[k] ∈ rect(L[k]). {e[k]}
satisfies eq. (5) if

‖L[k]‖ ≤ βL(‖L[0]‖, k) + γL(sup
j≥0

‖w[j]‖), ∀k ≥ 0, (9)

where βL(·, ·) is a KL function and γL(·) is a K function. Now we
construct a quantizer that can enforce the constraint in eq. (9). Let
Q = 2Rmin . Choose ρ > 1 so that

Q1−ε̂ > α(A)

(
1 + Q

3

ρ

)n

. (10)

Assume both the encoder and the decoder agree upon that x[0] ∈
P [0]. The quantizer chooses the “longest” side at k = 0 by the
following rule

(Ik, Jk) = arg max
i,j

(
Q2ρ

)j
Li,j [k], (11)

where Li,j [k] is the m-th (m =
∑i−1

l=1
nl + j) element of L[k]

and ni is the size of Ji in eq. (3). Partitioning side (Ik, Jk) into Q
equal parts, we get a modified side length vector LIk,Jk [k] with
L

Ik,Jk
Ik,Jk

[k] = LIk,Jk [k]/Q and L
Ik,Jk
i,j [k] = Li,j [k] for (i, j) 	=

(Ik, Jk). The original set P [k] can be represented as the union of Q
smaller subsets,

Ps[k] = xq
s[k] + rect(L(Ik,Jk)[k]), s = 0, · · · , Q − 1,

where xq
s[k] = xq[k] + x

(Ik,Jk)
s and x

(Ik,Jk)
s is a n-dimensional

vector with the (Ik, Jk)-th element equal to −Q+(2s+1)
2Q

LIk,Jk [k]
and other elements of 0. When x[k] ∈ Ps0 [k], the encoder sets
s[k] = s0, codes s[k] into Rmin bits (or a symbol with Q levels) and

sends these bits to the decoder through the network. Upon receiving
s[k], the decoder sends ACKs back. Due to ACKs, the encoder and
the decoder always agree upon the information regarding x[k], either
x[k] ∈ xq[k] + rect(L[k]) (when s[k] is dropped, i.e., d[k] = 1)
or x[k] ∈ xq

s0 [k] + rect(L(Ik,Jk)[k]) (when s[k] is successfully
transmitted, i.e., d[k] = 0). Based on eq. (2), the encoder and the
decoder update the uncertainty set in which x[k + 1] lies, P [k + 1]
(= xq[k + 1] + rect(L[k + 1])), as⎧⎪⎪⎨
⎪⎪⎩

{
L[k + 1] = KL[k] + [W, · · · , W ]T

xq[k + 1] = Axq[k] + Bu[k]
, d[k] = 1{

L[k + 1] = KLIk,Jk [k] + [W, · · · , W ]T

xq[k + 1] = Axq[k] + Bu[k] + Ax
(Ik,Jk)

s[k]

, d[k] = 0

(12)

where u[k] = Gxq[k], K = diag(K1, · · · , KP ) and Ki = |Ji| (see
Ji in eq. (3)), i.e., the entries of Ki are the absolute values of the
corresponding ones of Ji. The above procedure is summarized into
the following algorithm.

Algorithm 4.1: Encoder/Decoder initialization:
Initialize xq[0] and L[0] so that x[0] ∈ xq[0] + rect(L[0]) and set
k = 0.
Encoder Algorithm:

1) Select the indices (Ik, Jk) by eq. (11).
2) Quantize the state x[k] by setting s[k] = s if x[k] ∈ xq[k] +

x
(Ik,Jk)
s + rect(L(Ik,Jk)[k]).

3) Transmit the quantized symbol s[k] and wait for ACKs. If
an ACK is received before time k + 1, d[k] = 0; otherwise,
d[k] = 1.

4) Update xq[k +1] and L[k +1] by eq. (12) immediately before
time k + 1. Update time index, k := k + 1 and return to step
1).

Decoder Algorithm:

1) Compute control at time k by u[k] = Gxq[k].
2) Wait for the quantized data, s[k], from the encoder. If s[k] is

received before time k, send an ACK to the decoder and set
d[k] = 0; otherwise, set d[k] = 1.

3) Update xq[k +1] and L[k +1] by eq. (12) immediately before
time k + 1. Update time index, k := k + 1 and return to step
1).

Theorem 4.1: Let Rmin =
⌊

1
1−ε̂

log2 (α(A))
⌋

+ 1 and Q =

2Rmin . Under the dropout condition in eq. (7), the system in eq.
(2) is almost surely input-to-state stable under Algorithm 4.1.
Remark: Eq. (7) guarantees that the probability
of all “good” dropout sequences, which satisfy
liml0→∞ supl≥l0

(
limk0→∞ supk≥k0

εl[k]
)

≤ ε̂, is 1. We
prove eq. (9) to hold under all “good” dropout sequences in Section
VII. Therefore the probability of the validity of eq. (9) is 1, which
means the quantized system in eq. (7) is almost surely input-to-state
stable [2].
Remark: Although Algorithm 4.1 is close to the quantization policy
in [22], Theorem 4.1 can guarantee the almost sure input-to-state
stability, which can quantitatively characterize the system’s robust-
ness against both the input noise and the initial conditions [3] and
is stronger than both the ultimate state boundedness in [22] and
the asymptotic stability in [13]. It also extends [15] by explicitly
taking the feedback dropouts into account. Moreover, it shows that
the minimum constant bit rate Rmin is achievable when the dropout
ACKs are available. Theorem 4.1 is proven in Section VII.
Remark: The assumption that P [0](x[0] ∈ P [0]) is known by both
the encoder and the decoder can be relaxed by the “zoom-out”
method in [11]. Moreover, the 1 step feedback delay in Fig. 1 can
be extended to any bounded delay and Theorem 4.1 still works.
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V. STABILIZING QUANTIZERS WITHOUT ACKS AT A FINITE R

In Section IV, under the reliable ACK assumption, a quantizer
is constructed to stabilize the system at the bit rate of R = Rmin

(Theorem 4.1). If the reliable ACKs are not available, can we still
stabilize the system at a finite constant bit rate? This section gives
an affirmative answer to that question by constructing a quantizers
to stabilize the system without ACKs at a finite bit rate. Moreover, it
shows that the lower bit rate bound Rmin in Lemma 3.2 is achievable,
even without ACKs, in some systems.

We first study a lifted system. For a given integer M , eq. (2) can
be lifted into

x[k + 1] = Ax[k] + Bu[k] + w[k], k = 0, 1, · · · , (13)

where x[k] = x[kM ], A = AM , B = [AM−1B, AM−2B, · · · , B],

u[k] =
[
uT

kM
, · · · , uT

kM+M−1

]T

, w[k] =
∑M−1

i=0
AM−1−iw[kM +

i] and {w[k]} is also bounded. A state feedback gain G can be found
to stabilize the system in eq. (13) (under the perfect state feedback).

Suppose the state x[k] is quantized into xq[k] with R bits (per lifted
step) and successfully transmitted, i.e., d[k] ≡ 0 ({d[k]} satisfies the
necessary condition in eq. (7)). Implementing Algorithm 4.1 to the
lifted system in eq. (13), together with u[k] = Gxq[k], we know from
Theorem 4.1 that the lifted system can be stabilized at the minimum
constant lifted bit rate

Rmin,M =
⌊
log2

(
α(A)M

)⌋
+ 1 = �Mlog2 (α(A))� + 1. (14)

The condition in eq. (7) is necessary for stabilizing the quantized
system in eq. (2) at a finite bit rate. Under that condition, for any
δ ∈ (0, 1 − ε̂), there exist large enough Mδ and kδ to satisfy

εMδ [k] ≤ (ε̂ + δ) < 1 almost surely, ∀k ≥ kδ. (15)

Define the total number of successful transmissions in the time slot
[k, k + Mδ − 1] as Sk,Mδ =

∑Mδ−1

i=0
(1 − dk+i). By eq. (15) and

the integer nature of Sk,Mδ , we get

Sk,Mδ ≥ SMδ = �Mδ(1 − ε̂ − δ)� almost surely, ∀k ≥ kδ, (16)

where �·� stands for the ceiling operation over a real number. Eq.
(16) means that among any Mδ consecutive packets, at least SMδ

ones can be successfully transmitted. But we may not know which
packet is successfully transmitted.

By choosing δ > 0 small enough and Mδ large enough, we can
guarantee that

Sk,MδRmin ≥ SMδ Rmin ≥ Rmin,Mδ , ∀k ≥ kδ, (17)

where Rmin and Rmin,Mδ are defined in eq. (8) and (14), respec-
tively. If we can construct a quantizer with no ACKs to guarantee eq.
(17), then no less than Rmin,Mδ bits can be successfully transmitted
from time k to k + 1 for the lifted quantized system in eq. (13) and
that lifted system can be almost surely stabilized (Theorem 4.1). Now
we start to construct the desired quantizer.

For the given δ, Mδ and Rmin, define R0 =
max (Rmin, �log2(Mδ + 1)� + 1). We can construct the following
quantizer at the bit rate R0 to stabilize the system in eq. (2).

Algorithm 5.1: Encoder algorithm
1) Quantization: At each lifted time step k, select the “longest”

(I
k
, J

k
) side by eq. (11). Note that Q in eq. (11) is replaced

here by Q
SMδ
0 (Q0 = 2R0 ). Side (I

k
, J

k
) corresponds to the

m-th state component xm[k] (m =
∑I

k
−1

i=1 ni + J
k

). Side
(I

k
, J

k
) is partitioned for SMδ times. Specifically, that side

is first equally partitioned into Q0 parts. Suppose xm[k] lies
within the s1 − th part. That part is further equally partitioned
into Q0 smaller parts and suppose xm[k] lies within the s2−th

smaller part. This partitioning procedure will be repeated for
SMδ times and generate SMδ symbols sj (j = 1, · · · , SMδ ),
each of which comprises R0 bits.

2) Channel coding: We have SMδ information symbols,
s1, · · · , sSMδ

. Implement systematic (Mδ, SMδ ) Reed-
Solomon coding [26] to generate Mδ − SMδ redundancy
symbols. Each symbol (either information or redundancy
symbol) is a packet of R0 bits.

3) Transmission of packets: At time k = kMδ + i (i =
0, · · · , Mδ − 1), transmit the i-th packet si to the decoder,
which is either dropped or received before time k + 1.

4) Update the quantization variables at the lifted time k +1 with
d[k] = 0, i.e., compute x[k +1] and L[k +1], according to the
encoder’s updating procedure in Algorithm 4.1.

Decoder algorithm
1) Control computation: At the lifted time k, set u[k] = Gxq

k
.

2) Packet collection: From k to k + 1 (i.e., from k = kMδ to
k = kMδ + Mδ), wait for all incoming packets. As shown
before, at least SMδ packets can be received.

3) Channel decoding: Implement the Reed-Solomon decoding
algorithm to all received packets. All SMδ information symbols
can be correctly recovered and xq[k] is updated.

4) Update the quantization variables at time k +1 with d[k] = 0,
i.e., compute xq[k+1] and L[k+1], according to the decoder’s
updating procedure in Algorithm 4.1.

Due to eq. (7), the encoder can receive at least SMδ symbols/packets
among Mδ consecutive ones and perfectly recover all SMδ informa-
tion symbols [26]. So SMδ R0 quantization bits of x[k] can be reliably
transmitted every lifted time step. By R0 ≥ Rmin and eq. (17), we
know the network successfully transmits no less than Rmin,Mδ bits
each lifted step (Rmin,Mδ is defined in eq. (14)) and Theorem 4.1 can,
therefore, guarantee the input-to-state stability of the lifted quantized
system. Considering the finiteness of Mδ , we know the input-to-state
stability of the lifted system in eq. (13) is equivalent to that of the
original system in eq. (2), which is presented as follows.

Corollary 5.1: Under the dropout condition in eq. (7), the quan-
tized system in eq. (2) can be stabilized without dropout ACKs in
the almost sure input-to-state sense under Algorithm 5.1 at a finite
bit rate of R0 bits per step.
Remark: By Corollary 5.1, we know under the dropout condition
in eq. (7), at most R0 quantization bits (per step) are enough to
stabilize the quantized system in eq. (2), even without dropout ACKs
. This confirms that eq. (7) is not only necessary but also sufficient
for stability. When 2Rmin − 1 ≥ Mδ in some systems, R0 = Rmin

and the quantizer in Algorithm 5.1 can obtain the stability at the
minimum constant bit rate Rmin, even without dropout ACKs. In
other systems, the achievability of the lower constant bit rate bound
Rmin is still an open question.

Here we verify the obtained theoretical results through an exam-

ple system. Its parameters are A =

[
A1 A12

0 A1

]
with A1 =[ √

2 1

0
√

2

]
and A12 =

[
0 0
1 0

]
, B =

[
0 0 0 1

]T

and G =
[

−0.1837 −1.1389 −2.6221 −2.6569
]
. The

dropout sequence is governed by a (5, 7)-firm model, i.e., among
any 7 consecutive packets, at least 5 ones are transmitted suc-
cessfully. So ε̂ = 2/7, R0 = Rmin = 3 and Q0 = 8.
We choose ρ = 5.72 × 105, δ = 0.001, Mδ = M = 7

and G =
[
GT , (A + BG)T GT , · · · ,

(
(A + BG)M−1

)T
GT

]T

. A

(7, 5) Reed-Solomon code [26] is implemented in Algorithm 5.1.
The simulation results with R = Rmin are shown in Fig. 2. Note
that quantization is done every M steps due to the channel coding.
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Fig. 2. Simulation results (‖L[k]‖, ‖e[k]‖ and ‖x[k]‖)

The results confirms that there is no quantization overflow under
Algorithm 5.1 (‖e[k]‖ ≤ 0.5‖L[k]‖), the state x[k] is bounded for a
system with a bounded exogenous noise (W = 1) and exponentially
converges to 0 for a noise-free system (W = 0) as predicted by
Corollary 5.1.

By combining Theorems 3.1 and 4.1, and Corollary 5.1, we get
the main result of this paper.

Theorem 5.2: The quantized system in eq. (2) with W > 0 can
be almost surely input-to-state stable at a finite bit rate if and only
if the dropout condition in eq. (7) is satified. Note that the dropout
ACK is not necessary for stability.

VI. CONCLUSIONS

This paper studies the joint effects of the feedback dropout condi-
tion (including dropout rate, pattern and ACK) and the quantization
condition on the almost sure input-to-state stability of quantized linear
systems with a bounded noise. It derives a necessary and sufficient
stabilizing dropout condition, which does not require dropout ACK.
The sufficiency of that condition is proven through constructing some
quantization policies. Moreover, the minimum constant stabilizing bit
rate problem is also investigated.
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VII. APPENDIX:PROOFS

A. Proof of Theorem 3.1

Theorem 3.1 directly comes from the following Lemma.
Lemma 7.1: For a given dropout sequence {d[k]}∞k=0, the quan-

tized system in eq. (2) with W > 0 is stabilizable at a finite bit rate
R in the input-to-state sense (eq. (4)) only if

lim
l0→∞

sup
l≥l0

(
lim

k0→∞
sup
k≥k0

εl[k]

)
= ε̂ < 1. (18)

Proof: Define the volume of a bounded set P as vol(P ) =∫
x∈P

1 · dx. At time k, the controller/decoder knows that x[k] ∈
P [k] = {z|z = x[k], x[0] ∈ P [0], ‖w[j]‖ ≤ 0.5W, 0 ≤ j ≤ k − 1}.
Considering the updating rule x[k] = Ax[k−1]+Bu[k−1]+w[k−1]
and the fact that u[k − 1] is known to the controller, we can place
the following bounds,

vol(P [k]) ≥ vol ({zw|zw = w[k − 1]}) ≥ W n, (19)

vol(P [k]) ≥ vol ({z|z = Ax[k − 1] + Bu[k − 1]})
= α(A)vol(P [k − 1]), for d[k] = 1. (20)
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When d[k] = 0, P [k − 1] is partitioned into 2R disjoint subsets and
eq. (20) is replaced by

vol(P [k]) ≥ α(A)

2R
vol(P [k − 1]). (21)

Now eq. (18) is proven by contradiction. Suppose under a given
{d[k]}, the system is ISS (eq. (4) is satisfied), but eq. (18) is violated,
i.e., liml0→∞ supl≥l0

(
limk0→∞ supk≥k0

εl[k]
)

= 1.
The ISS property implies that ∃k0 > 0 and ∃X > 0, ‖x[k]‖ ≤

0.5X for any k ≥ k0, which means vol(P [k]) ≤ Xn for any
k ≥ k0. The violation of eq. (18) implies that, for any 0 <
δ < min

(
1, log2α(A)

2R

)
, there exist k1 > max(k0, 1) and l1 >

2 1+log2((X/W )n)
log2(α(A))

such that εl1 [k1] ≥ 1 − δ. Applying eq. (21) for
d[k] = 0 and eq. (20) for d[k] = 1 from k = k1 to k = k2 = k1+l1,

we get vol(P [k2]) ≥
(

α(A)

2δR

)l1
vol(P [k1]) ≥ 2 Xn

W n vol(P [k1]).
Substituting eq. (19) into this equation yields vol(P [k2]) > 2Xn,
which contradicts against vol(P [k2]) ≤ Xn. ♦

B. Proof of Theorem 4.1

By eq. (7) and (8), we know there exists δ > 0, N and k1 such
that it is almost sure for all l ≥ N, k ≥ k1 that{

Q1−ε̂−δ > α(A)
(
1 + 3Q

ρ

)n

εl[k] ≤ ε̂ + δ
. (22)

Define η =
n

√
α(A)

(
1+

3Q
ρ

)n

Q1−ε̂−δ (η < 1). Theorem 4.1 is proven

through showing

‖L[k]‖ ≤ c1‖L[0]‖ηk + c2W, k = 0, 1, 2, · · · , (23)

where c1 and c2 are two constants to be determined. Due to space
limitation, only the main ideas of the proof are shown.

For k ∈ {0, 1, · · · , k1}, the updating rule of L[k] can yield the
following bound on ‖L[k]‖,

‖L[k]‖ ≤ (α(A) + 2)k1 ‖L[0]‖ + (α(A) + 2)k1 W. (24)

For k ≥ k1, there are two cases, including W ≥ ‖L[k1]‖ and W <
‖L[k1]‖. We will establish upper bounds on ‖L[k]‖ for both cases.
The deriving techniques are similar to those in [22].

1) When W ≥ ‖L[k1]‖: For k ≥ k1, define ri,ni [k] =
max (Li,ni [k], ρW ),
ri,j [k] = max (Li,j [k], ρri,j+1[k]) for j < ni, and p[k] =∏P

i=1

∏ni

j=1
ri,j [k], where ρ is defined in eq. (10). We can get

ri,j [k] ≥ Li,j [k], ri,j [k] ≥ W .
We can place a general bound on the growth rate of ri,j [k] as

ri,j [k + 1]

ri,j [k]
≤ |λi|

(
1 +

3Q

ρ

)
, ∀i = 1, · · · , P ; j = 1, · · · , ni. (25)

When d[k] = 0 and LIk,Jk [k] ≥ Q2ρnIk
−Jk+1W , the above bound

can be tightened into

rIk,Jk [k + 1]

rIk,Jk [k]
≤ |λi|

Q

(
1 +

3Q

ρ

)
. (26)

Eq. (25) implies that p[k + 1] ≤ α(A)
(
1 + 3Q

ρ

)n
p[k] <

Qp[k]. By eq. (26), we can get, under the condition of d[k] =
0 and p[k] ≥ ∏P

i=1

∏ni

j=1

(
Q2ρni−j+1W

)
, that p[k + 1] ≤

1
Q

α(A)
(
1 + 3Q

ρ

)n
p[k].

Considering the above two upper bounds on p[k + 1] and the
dropout condition in eq. (7) (especially εl[k] ≤ ε̂+δ), we can get the
almost sure bound, p[k] ≤ Q2N

∏P

i=1

∏ni

j=1

(
Q2ρni−j+1W

)
for

any k ≥ k1. This bound on p[k] can guarantee Li,j [k] ≤ ri,j [k] ≤
Q2N

(∏P

i=1

∏ni

j=1

(
Q2ρni−j+1

))
W .

2) When W < ‖L[k1]‖: Find k2 such that ‖L[k1]‖ηk2−k1 ≥ W
and ‖L[k1]‖ηk2−k1+1 < W .

For k ∈ {k1, · · · , k2}, define r′i,ni
[k] =

max(Li,ni [k], ρηk−k1‖L[k1]‖), r′i,j [k] = max(Li,j [k], ρr′i,j+1[k])

for j < ni, and p′[k] =
∏P

i=1

∏ni

j=1
r′i,j [k]. We can place similar

bounds on the growth rates of r′i,j [k] and p′[k], which yields the
bound p′[k] ≤ Q2N

∏P

i=1

∏ni

j=1

(
Q2ρni−j+1ηk−k1‖L[k1]‖

)
.

Based on the definitions of r′i,j [k] and p′[k], we get

Li,j [k] ≤ Q2N
(∏P

i=1

∏ni

j=1

(
Q2ρni−j+1

))
ηk−k1‖L[k1]‖.

For k ≥ k2, define m0 = �(k2 − k1)/N� and W ′ =
Q2N

ηN

(∏P

i=1

∏ni

j=1

(
Q2ρni−j+1

))
W . It can be shown that k2 ≥

m0N + k1, W ′ ≥ W and Li,j [m0N + k1] ≤ W ′ for any i, j.
We redefine ri,j [k] and p[k] as r′′i,ni

[k] = max (Li,ni [k], ρW ′),
r′′i,j [k] = max

(
Li,j [k], ρr′′i,j+1[k]

)
for j < ni, and p′′[k] =∏P

i=1

∏ni

j=1
r′′i,j [k]. Like the ‖L[k1]‖ ≤ W case, we will get a

similar result

Li,j [k] ≤ Q2N

(
P∏

i=1

ni∏
j=1

(
Q2ρni−j+1

))
W ′

=

(
Q2N

(
P∏

i=1

ni∏
j=1

(
Q2ρni−j+1

)))2

1

ηN
W.

3) Final proof to Theorem 4.1: We get upper bounds on ‖Li,j [k]‖
under 4 situations, including (1). 0 ≤ k ≤ k1, (2). ‖L[k1]‖ ≤ W
and k ≥ k1, (3). ‖L[k1]‖ ≥ W and k1 ≤ k ≤ k2, (4). ‖L[k1]‖ ≥ W
and k ≥ k2. These 4 bounds can be bounded by c1‖L[0]‖ηk + c2W
from above with⎧⎪⎪⎨
⎪⎪⎩

c1 = Q2N
(∏P

i=1

∏ni

j=1

(
Q2ρni−j+1

))
η−k1 (α(A) + 2)k1

c2 =
(

Q2N
(∏P

i=1

∏ni

j=1

(
Q2ρni−j+1

)))2

η−k1−N

× (α(A) + 2)k1

.

So we get eq. (23). ♦


