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Abstract

This note studies self-triggering in sampled-data systemigere the next task release time and
finishing time are predicted based on the sampled states. rdf@mge a self-triggering scheme that
ensures finite-gai, stability of the systems. This scheme relaxes the assumjtithe previous work
that the magnitude of the process noise is bounded by a lfagation of the norm of the system state.
We show that the sample periods generated by this schemdwargsagreater than a positive constant.
We also provide state-based deadlines for delays and pgapegy that may enlarge those deadlines
without breakingl. stability.

I. INTRODUCTION

Sampled-data systems are such systems that sample caisignals and make control
decisions based the sampled data. Traditional approaohegptement such systems are based
on periodic task models, in which consecutive invocatiohga task are released in a periodic
manner [1], [2], [3], [4], [5], [6], [7]. Periodic task modglhowever, may be undesirable in many
situations due to their conservativeness. Under pericab& models, the selection of sample
periods is done before the system is deployed. One therbBseo ensure adequate behavior
over a wide range of uncertainties. As a result, these seleperiods may be shorter than
necessary, which results in significant over-provisiorofighe real-time system hardware. This
over-provisioning may negatively impact the schedulingptifer tasks on the same processing

system. In these applications it may be better to considerratives to periodic task models
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that can more effectively balance the real-time systemraptational cost against the control
system’s performance.

In recent years, sporadic task models have been consideredai-time control. A hardware
realization of such models is called event-triggering. &mdvent-triggering the system states
are sampled when some error signal exceeds a given threfdjp[@], [10], [11], [12]. Event-
triggering has the ability to dynamically adjust the taskiges to variations in the system
state. This “on-line” property enables event-triggerig generate longer task periods than
periodic task models [13]. One thing worth mentioning i #agent-triggering requires hardware
event detectors that may be implemented using applicapeaific integrated circuits (ASIC)
or field-programmable gate array (FPGA) processors. In sappéications, however, it may be
unreasonable or impractical to retrofit an existing systath wuch “event detectors”. In these
cases, a software approach such as the self-triggered samey be more appropriate.

Under self-triggering the next task release time and finghiime are predicted by the
processing computer based on the sampled data. A selétadgtask model was introduced
by Velasco et al. [14] in which a heuristic rule was used taustdjask periods. Further work
was done by Lemmon et al. [15] which chose task periods based.gapunov-based technique.
But the authors did not provide analytic bounds for taskquksi Most recently, Wang et al. [13]
provided the first rigorous examination of what might be respito implement self-triggered
feedback control systems fdt, stability. A space-time scaling law for the execution tinoés
control tasks was derived in [16] for asymptotic stabilifynmmogeneous systems.

A critical assumption in [13] is that the magnitude of the qg@ss noise is bounded by a
linear function of the norm of the system state. It means tihatdisturbance should vanish as
the state is close to the equilibrium. Such disturbances amese in uncertain systems when
there are unmodeled dynamics caused by fluctuations in pemimeters. In practice, however,
the disturbances usually do not depend on the state. Wigetlindependent” disturbances, the
self-triggering scheme in [13] cannot theoretically gudea £, stability of the sampled-data
system any more. It is, therefore, important to relax thsuasgption so that the self-triggering
scheme can apply to a wider class of systems.

This note extends the work in [13]. We present a novel sgjfiaring scheme that ensures
finite-gain £, stability of the resulting self-triggered feedback systeifhis scheme pertains to

linear time-invariant systems. The task release time anshfimy time are predicted as functions
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of previously sampled states. It relaxes the assumptiofi3hthat the magnitude of the process
noise is bounded by a linear function of the norm of the systeate. We show that the sample
periods generated by this scheme are always greater thasitv@@onstant. We also provide
state-based deadlines for delays and propose a way thatmteage predicted deadlines without
breakingL, stability of the system. Simulations show that the sampleéopde generated by our
scheme are longer than those generated by the scheme in [13].

This note is organized as follows. Section Il introducesdyxgtem model. Section Ill presents
self-triggering schemes for sampled-data systems. Stronleesults are presented in section 1V

and conclusions are stated in section V.

1. SYSTEM MODEL

We consider a sampled-data implementation of linear timariant closed-loop systems. In
such systems, the plant’s contral, is computed by a computer task. This task is characterized
by two monotone increasing sequences of time instants;eflease time sequende; }7°, and
the finishing time sequencgf;.}>,. The timer, denotes the time when theh invocation of
a control task (also called a job) is released for executiothe computer’s central processing
unit (CPU). The timef, denotes the time when théh job has finished executing. Notice that
one job includes sampling the state, computing the contymlit, and feeding the input back to
the plant. The contrak is computed based on the last sampled state. The contralsigad by
the plant is held constant by a zero-order hold (ZOH) un# text finishing timef,;. This

means that the sampled-data system under study satisfies,
. = Axy+ Biu + Bowy 1)
uw, = —B] Pz,

for t € [fx, fre1) @and allk € N. In equation (1), : [0,00) — R™ is the state trajectory,
u : [0,00) — R™ is a control inputw : [0,00) — R' is an exogenous disturbance functionn
space, and® € R™*" is a symmetric positive semi-definite matrix satisfying tHg, algebraic
Riccati equation (ARE),
1
0=PA+A"P—PBB/P+ 1+ —PB,B} P (2)
Y

for some real constant > 0. For notational convenience, let, = A — B, BI' P, ¢f = 2, — x,,

denote the measurement err@, = r,,; — . denote thekth inter-release time (known as
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“sample period”) andD, = f, — r, denote the time interval between thth job’s release and
finishing time (known as “delay”).
Definition 2.1: The system (1) is said to be finite-gailh stable fromw to = with an induced

gain less thany if there exist non-negative constantsandd such that

(/ Hmr%dt) m(/ HthSdt) o @)
0 0

for any w satisfying ( ;~ Hth%dt)% < 0.
Objective: Design a self-triggering scheme to determineand f, such that finite-gainC,

stability can be preserved far to x.

[1l. SELF-TRIGGERED FEEDBACK SYSTEMS

This section proposes a self-triggering scheme for sarndea systems. This scheme ensures
finite-gain £, stability of the resulting sampled-data systems. The ideahat we first seek real-
time constraints on the time instanisand f; such thatC, stability of the sampled-data system
can be guaranteed; then we derive a self-triggering scheateehsures the satisfaction of these
constraints.

Before we show the desired real-time constraints, we neednanh to help the proof, which
provide an upper bound for the derivative of the storagetfancTo make the note easy to read,
we put all of the proofs in the appendix.

Lemma 3.1:Consider the sampled-data system in equation (1). Let R® — R* be a
positive semi-definite function defined By(z) = 7 Pz with the matrix P given in equation

(2). For any real constant € (0, 1], the directional derivative of satisfies
. T
V < =0 |ladlly + 72 wells + (ef)” Mef — af, N, (4)
holds for allt € [f, frr1) and allk € N, where M, N satisfy
M = (1-p)1+PBBI'P (5)
1
N = 5(1 — I+ PB,B!'P, (6)

respectively.

It is easy to see that if we can enforce
()" Me; < plar,)” (7)
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for all t € [fi, fr+1), then the inequality in equation (4) implies
V<=8l + 77wl

which meansC, stability. That is the main idea in [13]. It is, however, diffit to predict the
future time when we expect inequality (7) to be violated dwuehie uncertaintyw, involved in
ek, To solve this issue, an assumption was made in [13] fthatl, < W| ||, must hold for
some positive constamt’” € R. In this way, uncertainty can be reduced. This assumptionlmea
justified if the noise term is generated by state-dependealefmg uncertainty, but in general if
the disturbance is independent of the process model, thigrgstion will be overly restrictive.

We are interested in relaxing this assumption so thatan be any signal i, space. We
are able to do this by splitting the effect that the samplediest,, and the noisev, have on
the erroref for t € [fi, fri1). In other words, we boundv/Me¥||, by a functional ofw plus
another term that is only a function of the previously sam@&tesr,, andz,, ,. Lemma 3.2
provides such a bound dh/Me¥ ||, over [f, fri1)-

For the notation convenience, we define R x N — R”, p : R" — R, pg : R* — R,

1 R" xR" - R, anda € R as

b= e ®)
p(r) = VaT Nz @)
po(y,) = VM Agy, |15 (10)
(e, ) = |V (Azy, = BuB Pa, )| (11)
o= |VMAVM |, (12)

respectively.

Lemma 3.2:Consider the sampled-data system in equation (1) Sl any positive constant
in the interval(0, 1] such that the matriX/ defined in equation (5) has full rank. #f, < f; <
fra+1 holds for somek € N, then the following inequality must hold:

v

< ea(t_fk)ul(l'rkal‘rk_1) (eaD’“ _ 1) X to(r,) (ea(t—fk) _ 1)
2 Q@ «

+e IO Jlws v, fi] + J[w; fr, t] (13)

holds for allt € [f, frr1), Where

b
Jw; a, b :/ e0=3)

VB[l d. (14)
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With the preceding lemmas, we are able to present the thethi&gives inequality constraints
onr, and f;.

Theorem 3.3:Consider the sampled-data system in equation (1)5let any positive constant
in the interval(0, 1] such that the matrix}/ defined in equation (5) has full rank. Given three
positive constants € [0,1], 7, 7» € R* and a positive sequend@y };°, satisfying) .-, 0 <

oo, If for any k£ € N, the following inequalities

Te < fro < Thya (15)
Tev1 — Je <71 (16)
Je =1 <7 (17)
0 (Ly Try_ys Srats Jiy D) < (27, Nt + k) (fasr — fi) (18)
hold, where
0 (T, Ty frrts foo Di) = % (evPr — 1)2 (e2tn=f) — 1) + %(ﬁwﬂ — fx)

+% (e2in=h) — 1) — % (eotfin=f) — 1)
(19)

then the sampled-data system is finite-géinstable fronmw to = with an induced gain less than

a positive constang, where

N e N e [ e (20)

Remark 3.4:The introduction ofry, 75 is tﬁg safety requirement of systems. It requires the
system updates at least every+ » unit-time so that some accidents can be detected. Notice
that, andr, also affect the induced gain.

Remark 3.5:The introduction o5, can enlarge the threshold en as we can see in equation
(18). With a large threshold, we have more flexibility to cheothe sampling periods and
deadlines. In the following discussioh, is chosen in a way that can enlarge the predicted
deadlines for delays.

Theorem 3.3 provides constraints on task release and figisime instants in equations (15) —
(18). These constraints are algebraic inequalities. Givenz,, ,, and Dy, let&(z,,, x.,_,, Di)
be an upper bound o/}, — fr such that the inequality in equation (18) holds. Then wittneo

e € [0,1], we may have a self-triggering scheme where the next rekeager; . is
Tk+1 = fk‘ + min{Tla eg(xrku :L‘Tk_la Dk‘)} (21)
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and thek + 1st delay satisfies
Dyy1 < min{m, (1 —€)é(xy,, xr,_,, Di)} (22)

If we can guarante€(z,,,z,,_,,Dx) > 0 for all k& € N, then the scheme can ensure the
satisfaction of equations (15) — (18) and therefore the $edinglata system i€, stable.

According to the above discussion, it is important to enguse, , ., ., D;) > 0. Notice that
when Dy =0, {(z,,, zr,_,, Dy) > 0 always holds. WheD,, > 0, we need more constraints on
D). besides equation (22) such thgtr,,,z,,_,, Dx) > 0 holds. Another challenge lies in the
computation of(x,,, z,,_,, D). Itis hard to obtain the explicit form of in terms ofz,,, z,, |,
and D,. As a result, the inequalities must be solved online. It r&gua lot of computational
resource, which is unexpected in real-time control. Anraliéve way is to obtain a more
conservative self-triggering scheme that ensures thefaetiion of equation (18), but uses less
computational resource. The following theorem addredsesetissues.

Theorem 3.6:Consider the sampled-data system in equation (1)5let any positive constant
in the interval(0, 1] such that the matriX/ defined in equation (5) has full rank. Given positive
constants: € [0,1], 7, » € R and a positive sequendeé; };>, satisfying ;- d; < oo, if

« the initial condition isry = f, = 0,

« the k + 1st task release time, ; satisfies

Thp1 = fx +min{7, eLy(2,, )}, (23)
for all k € Z*, whereL, : R" — R is defined by

Lin (14 720l) o, £0

Lo(xr,) = VBkolany) (24)
00 Ty, =0
o the k + 1st task finishing timef,,, satisfies
Diy1 = foy1 — Tk+1 < min {72, (1 - G)Lz(ﬂfrk)7 Ls(l’rmpﬂfrk; 5k+1)} ) (25)

where Lz : R” x R” x R — R is defined by

ay/p?(zy, 41
Lg(xrk+17l‘7,k; 514:—}—1) = i]n <]_ + P*( k+1)+26k+ ) : (26)

\/gea min{Tl +79,Lo (z»,«k )}

p1(Zryy ysry,)
then the sampled-data system is finite-gAinstable fromw to = with an induced gain less than

a positive constant, wheren is defined in equation (20).
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Remark 3.7:In the self-triggering scheme defined by equations (23);(&& & + 1st task
release time is determined when= f,. The deadline for thé& + 1st task delay is determined
whent = r.,,. 74 and 7, are used to bound the time intervdlf, 7x.1) and [rei1, fri1),
respectively, for the consideration of the system security

Remark 3.8:The prediction of the deadline may take some computatiasaurce. One may
wonder whether it is better to use this resource to computéraoinput directly. This might
be true if the delays are only caused by the computation ofrgbimputs. In many situations,
however, the computation is not the main reason to causgsidiathose cases, it is still worthy
of using some computational resource to predict deadliff@is.is particularly true in networked
systems, where communication resource is much more exgetigin computational resource.

Remark 3.9:By the definition ofL,, we know thatL,(z,,) is always greater than a positive
constant. Sinc€, > Lo(z,,), it implies the sample periods generated by this self-aigw
scheme are always greater than a positive constant. Thimpgsrtant to establish because it
avoids continuously sampling.

Remark 3.10:Equation (25) implied,, < Ls(x,,,z,,_,; k). If we re-visit the self-triggering
scheme in equations (21) and (22), this inequality actuatiyurest(z,,, ., ,, Dy) > 0.

Remark 3.11:The introduction ob can increase the value éf(x,,, z,,_,;d). This suggests
that by selecting largé,, we can enlarge the predicted deadlines, provided that ¢lelithes
are dominated by.3. It would be an interesting research topic in the future angblection of

0, to ensure the deadlines are greater than a positive constant

IV. SIMULATIONS

In this section, we used the inverted pendulum problem i} {@3lemonstrate the proposed

self-triggered scheme. The plant’s linearized state égusitwvere

0 1 0 0 0 1
0 0 —mug/ms O 1/m 1
i‘t = 1g/ 2 Tt + / 2 Ut + Wy
0 0 0 1 0 1
(00 g/t 0] | —1/(mal) | 1

wherem,; was the mass of the pendulum boh; was the cart masg, was the length of the
pendulum arm, andg was gravitational acceleration. For these simulations,leten, = 1,

a7
mo = 10, £ = 3, andg = 10. The system state was the vector [ y uy 0 0 ] wherey
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was the cart’'s position and was the pendulum bob’s angle with respect to the verticaé Th
system’s initial state was the vectoy = [ 098 0 02 0 ]T. The controller was, = Ku,
where K = [ 2 12 378 210 } ~ was set to be 200.

We compared the sampling period generated by three diffexefitriggering schemes: the
scheme defined by equations (23)-(26), the scheme definedjimtiens (21)-(22), and the
scheme proposed in [13]. In the simulations, we assumedhbkatelays are zero. For the first
two schemes, we set = 0.3, » =0, 3 = 0.5, 6, = 0 ande = 1. The induced gains in the first
two systems, therefore, are less th&#rR6. according to equation (20).

Recall that the self-triggering scheme in [13] requites||> < W ||x||» holds for soméV > 0

and thek + 1st task release;, 1, is triggered in the following way:

L Gl Na,, ||z
Tkl =Tk + — ln
a !V MAqy,||2

where

M = (1-p3*)I+PBB’'P,

N = %(1 — I + PB,BTP,

IVMAVM || + W|VMB,|||VD .

Qi
Il

The induced gain of the resulting self-triggered systeness Ithan%. To make it a fair com-
parison, we seti = 0.0406 such that the theoretical bounds on the induced gains inhifee t
self-triggered feedback systems are the same.

We first ran the self-triggered systems in [13] with a distumte satisfying|w;||2 < 0.01]|z¢||2
(W = 0.01). Then the same disturbance was added into the other twriggjéred systems.
Figure 1 shows the periods generated by different schetriesblvious that the periods generated
by our self-triggering schemes, in general, are much lottygan those by the scheme in [13]. It
suggests that our schemes are not conservative. Also rtbatehe scheme by equation (21)-
(22) has the longer periods than the scheme by (23)- (26} iBhbecause the periods in the
latter scheme are basically a conservative estimate ofeéheds in the former scheme.

We then examined the effect @f on the deadlines in the self-triggered feedback scheme
in equations (23) — (26). The parameters are= 0.3, » = 0.2, 6 = 0.5, ande = 0.5. We

assumed that the delays are equal to the predicted deadintes, = 0. Two different cases
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035 T T T

Scheme in [1]

O  Scheme by equations (23)—(26)
Scheme by equations (21)—-(22)

+

0.3

0.25 b

0.2

0.15

Sampling Period

0.1

0 5 10 15 20
Time

Fig. 1. A comparison of the sampling period generated by theme in equations (23)-(26) (circle), the scheme in eqosti

(21)-(22) (dot), and the scheme in [13] (cross)

were considered), = 0 andJ, = %’ In the simulation, both self-triggered feedback systems
approached the equilibrium after the systems ran for 30rmkcd-igure 2 plots the predicted
deadlines in the systems with, = 1,%5 (diamond) andj, = 0 (dot). It is obvious that the
predicted deadlines with, = 1,%; are much longer than those in the system with= 0. It
suggests that appropriate selectionipfcan result in longer deadlines, which might be useful
in dealing with very short deadlines. Another interestirigge@rvation is that wheh becomes
large and thereforé, becomes small, the level of the increase in deadlines remtha same.

It suggests that our method is not only a solution of templgramcreasing deadlines. It may
work over the entire time zone. How to efficiently selégtwould be an interesting research

topic in the future.
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Fig. 2. A comparison between the predicted deadlines gextelzy the systems in equations (23)-(26) with= k—; (circle)
andd, = 0 (dot)

V. CONCLUSIONS

This note proposes a self-triggering scheme that ensuiigs-@ain £, stability of the resulting
self-triggered feedback systems. This scheme relaxessthergptions in [13] that the magnitude
of the process noise is bounded by a linear function of thennair the system state. We show
that the sample periods generated by this scheme are alwegtegthan a positive constant.
We also provide dynamic deadlines for delays and proposeyatat may enlarge predicted

deadlines without breaking, stability.
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APPENDIX

Proof: [Proof of Lemma 3.1] Let) = PB,; BT P. Consider the directional derivative &f
att € [fx, frr1):
vV = 8—V (Axt BlBlTP:Crk + Bth)
= o= Qe [ 3B+l - 247 Qa,
< =l (I = Q)ze + 7 [lwill; — 22 Q.

Insertz, = e} + z,, into the above equation to obtain

Vo< a2+ (e ) Qe +a) — 2 (F + )" Quy + 7 (w2

= Bzl — (1= 52) 2l + ()" Qe — a7 Qapy + 7 el (27)
Notice that
lzelly; = Het+me2—HetHﬁerkuiwxrket 1 8)
[ 1 o A IV P Y P 9

Applying equation (28) into equation (27), we obtaln

. 2
Vo< =3l = (0= 82 (= llebls + 3 len ) + ()" Qe = o, Quy, + 72 leell
T
= = |y + 72 lwell; + (ef) Mef — ], N,
where M and N are defined by equation (5) and (6), respectively. [ |

Proof: [Proof of Lemma 3.2] Notice that
iy = Axy— BlBlTPx,«k_1 + Bowy, Vt € [rg, fr), and
iy, = Axy— BB Px, + Bowy, Yt € [fu, for1)[re, fu)-

We first consider:} over the time intervalry, fi). Let &, = {t € [y, fi) : ||2F||, = 0}. The

.

time derivative of||zf ||, for ¢ € [ry, fi)\®; satisfies
d ) .
Ly, < o] - v

< alletlly+ e, wn ) + VB

- H\/M (Az; — B,BT Pa,,_, + Bow,)

[l ;

where the righthand sided derivative is used whenr,.
Using standard comparison principle on the preceding émuater the interval € [ry, fx)
with the initial condition|| 2% ||, = 0, we have

t
HZfHQ < Ul(ffrkal'rk—l) (ea(t_rk) . 1) -l—/ ea(t_s)
Tk

VB fuflyds (29)

o
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for all ¢ € [ry, fx) becausd|z;||, =0 for all ¢ € ®;.

I
Let @y = {t € [fi. fur1) : ||2F]|, = 0}. The time derivative of|zf||, for ¢ € [fi, fur1)\ P2

satisfies

d
Dbl < okl + molan) + | VATB Il

where the righthand sided derivative is used when f;.
Using standard comparison principle on the preceding émuater the interval € [f;, fri1)

with the initial condition

e, < ) ooy [ i
«

V M B,

[[wslly ds
Tk

obtained from equation (29), we have

HZfHQ < ea(t—fk)% (eOéDk _ 1) 4 ealt=fi) /fk po(fi—s)
Tk

VM By, ds

t
+7M0(§T’“) (ea(t’f’“) — 1) +/ et=s) ’\/MBQ |ws]|, ds (30)
I
holds for allt € [fy, fi+1) since||zf||, = 0 for all ¢t € @,. n

Proof: [Proof of Theorem 3.3] Since the hypotheses in lemma 3.2, legjdation (30) holds.

By squaring both sides of the inequality in equation (30),ck¢ain

2 2
a(t— M\ Ty s Loy, a r ot
157 < 4t m%(e Dk_l)} +4[% (a5 _ 1)

+4P I Plws vy, fi] + 4w fi 1] Y

holds for allt € [fx, frt1)-

By lemma 3.1, we know
V < =8 lall; + 92 lwells + 12£115 — =7, N, (32)

holds for allt € [fx, frr1) With V(z) = z7 Px. Applying equation (31) into the preceding
inequality implies that

Vo< -3 thHg + ~2 ||wt]|; — xTTkNx,«k + 462a(t*f’“)<]2[w; T, fr] + 4T [w; fr, t]
2

2
44 ea(tffk)lul(xmc’xrk—l) (eO‘D’“ . 1)} +4 {Mo(xrk) (€a(t7fk) . 1)
« (67
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holds for allt € [fx, fxi1)- Integrating both sides of the preceding inequalityt@ver [, fri1)

yields
Jre+1 | Sr+1 ) Jrt+1 ) Jrt+1
/ Vdt < —/ 3 ||xt||2dt+/ 72 ||wt||2dt—/ x) N, dt
Ik Tr Ik fr
Jr41 Jr+1
+ / 4e210) 12 [ e, frldt + / 4% w; fi, t)dt
fr fr
5 2
N / ' [m)M (oD — 1)} it
J «
Fr+1 2
+/ 4 {M (ea(t—fk) _ 1)} dt (33)
J «

Let us look at the last two terms in the preceding equatiortidddhat
2

f 2 f
/ k+1 4 [ea(t—fk)ﬂl(xrk7xrkl) (eaDk B 1):| gt +/ k+1 4 [MO(xrk) (ea(t_fk) _ 1) dt
fr fr

« «

2 2 Tk T 2 2 T
o Ml(x;3x kfl) (eaDk o 1)2 (62a(fk+1ffk) _ 1) _'_ Moo(zf k) (e2a(fk+1*fk) _ 1)
813 (z, T 4p3(z,
_% (e (fet1—fr) _ 1) 4 'uO( k)(karl _ fk)
fr+1
< @k Nan +8) Gin = f) = [ ok Vot + Gulhen — f) (34)
i

holds, where the inequality is obtained using equation.(18)

Applying equation (34), together with equations (16) and)(Into equation (33) yields

Jre+1 | Sr+1 ) ) Jrt+1 ) )
[ < = [ adar e [ e+ dutr 4

Jr Jr Tk
Jr41 fr+1
+/ 462°‘(t_f’“)J2[w;Tk,fk]dt+/ 4.J%[w; f, t]dt (35)
fk k

Let us now look at the fourth item in the right side of the inelify in equation (35). Using

Cauchy-Schwarz inequality, we have

fr 2
Pl = ([ e [VATB| ot s)
Tk
fr fr 2 )
< ( / eo‘(f’“s)ds) ( / e?Ue=9) 1IN/ M B, st”st) (36)
Tk Tk
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for all t € [fx, fx+1). Therefore,

Sr+1
/ 4e2U=I%) J2 (s vy, fi]dt 37)
fk+1 fr Ik 2 9
- (/ (tfk)dt) (/ eza(fks>d5) </ H\/MB2 ||w5||2d5)
Tk
2 20(f fx) 1 2a(fx—r i 2
( k1= k) _ 1) _ (e RTE) H\/ Bz HwSHQdS
o 2cv Tk
1
< (@ ) (e 1) | VAT, /f w15 ds (38)
k—1

holds, where the last inequality is obtained using equati{d®) and (17).
Following the similar analysis, we obtain an upper bound lon fifth item in the right side

of the inequality in equation (35):

2
4 H\/MBQ

fr+1 g e+ )
/ 4% [w; fr, t)dt < (eo‘(nm) —1) / |ws]|5 ds. (39)
fr Ik

Applying equations (38) and (39) into (35), we obtain

Jre+1 | ) Sr+1 ) ) Jrt+1 )
/ Vdt < —ﬁ/ ||wt!|2dt+v/ [[we |l dt + (11 + 72)

i fr fr
(6201(T1+T2) . 1) 2aty H / B2 i
2
" 2 | s
@ fr—1
2
1 vars|

9 [Frt1 )
+ - (ea(ﬂ—i—m) _ 1) / st||2d5~
a I

Summarizingk in the inequality above frond to co yields

/ Vit < —ﬁ2/ ||xt]|§dt+(71+72)25k+772/ w2 ds, (40)
0 0 Pt 0

wheren is defined in equation (20).
Since) ;- dr < oo, the inequality above is sufficient to show the sampled-dgtiem is
finite-gain £, stable fromw to = with an induced gain less than [ |
Proof: [Proof of Theorem 3.6] We will show the self-triggering soedefined in equations
(23) and (25) satisfies equation (15) — (18) in Theorem 3.3.
It is obvious that equations (23) and (25) imply the satisfacof the inequalities in equations
(16) and (17), respectively. By the assumptidn, defined in equation (5) has full rank. As a
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result,/V defined in equation (6) also has full rank ahll> N > 0. Therefore, by the definitions
of L, and L3 in equations (24) and (26), we have
1 V AInin N
Ly(zy,) > —In |1+ c W) > 0,
o \/8Amax (AZIMACI)
L3(x7"k+17 Lrys 5k+1) > 0.

Therefore, by equations (23) and (25),< fr < .1 holds for allk € N,
We now show the satisfaction of equation (18). By equatid) éhd (25), we have

Ses1 — fo < min{m + 79, Lo(2r,) }, (41)

Dk‘ S L3<x’l"kax7‘k,1;6k)' (42)

With equations (41) and (42), we have

2(x, , 2y W&y, 2y
462&(t—fk)lu‘l< 1;2 k—l) (eaDk . 1)2 S 4620<(fk+1—fk)’u1( };[2 k71> (eaDk o 1)2
2
< 4e2amin{7'1+72,L2(ka)}lul(xrk?xT}cfl) (eaDk . 1)2 <

< v xy N, + 6 (43)

N | —

holds for allt € [fx, frt1)-
Also, equation (41) implies

4“(2)(xT ) a(t— 2 4#(%(‘%‘7’ ) alo(xy 2
Tk(e( fk)_l) STk(e a( k)—l) <

holds for allt € [fx, fri1)-

xTTk Nz, (44)

| —

Combining equation (43) and (44) yields

2 Ly, T 4 r
gee(-i P10 ) o~ ) (gone ) 4 Mol Ooif ) (2080 1) < 4T Ny 46 (45)

for all t € [fx, fri1)-

Integrating both sides of the preceding inequalitytaver [f, f.+1) implies the satisfaction
of equation (18). Since the hypotheses in Theorem 3.3 argfisdf we can conclude that the
sampled-data system is finite-gain stable fromw to x with an induced gain less than a positive

constant. |
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