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Abstract—There is a tradeoff between energy saving and real-
time stream deadline meeting in wireless sensor transmission.
Existing work has proposed rate control methods to minimize
energy consumption based on several ideal assumptions, e.g., a
packet arriving earlier has an earlier deadline, packet arrival
times are known precisely, and a packet transmission can be
preempted. We remove these unrealistic assumptions and propose
an online rate control approach that adjusts transmission rates
efficiently to minimize energy dissipation. Preliminary results
indicate that our method greatly improves existing approaches.

I. INTRODUCTION

Wireless sensor network is widely used in cyber-physical
applications, such as the health care and environment mon-
itoring (e.g. [13], [17]). Most of the wireless sensors are
powered by batteries and store a limited amount of energy,
hence require the transmission to be energy efficient. Lower
transmission rates can greatly reduce transmission energy.
However, if the lowest transmission rate is selected, many
messages could miss their deadlines, which degrades the
quality of service (QoS) for real-time applications. Therefore,
it is important to design an efficient approach for adjusting
transmission rates in order to not only achieve energy saving,
but also maximize the QoS.

There are some recent publications on the transmission
rate adjustment to minimize energy dissipation while still
satisfying the timing requirement of real-time streams under
earliest deadline first (EDF) scheduling. Some papers, [18],
[20] and [6], propose optimal approaches, by assuming a
given amount of data needed to be transmitted within an
absolute deadline, to minimize the energy consumption and
maximize the data throughput, respectively. The works of [5],
[16] assume that all packets to be transmitted have a common
absolute deadline. The situation considered in these papers,
cannot be directly applied to handle cases where different
packets have different absolute deadlines. There are works
selecting rates for packets based on that each packet has its
own absolute deadline. Some of these, e.g., [4], [9], [21],
assume that the energy function for all the packets are the
same, while other more general approaches, e.g., [15], [22]
are proposed based on the fact that the energy functions are
influenced by the fading channel state, transmission distance,
and so on. All of these works assume that a packet arriving
earlier always has an earlier deadline. Furthermore, some of
the above approaches [4], [5], [16], [21] assume that the arrival
times of future packets are known apriori precisely, and others
[6], [18], [20], [21], assume that a packet transmission can be

preempted at arbitrary timing during transmission, neither of
which are realistic in wireless sensor networks. Moreover, the
algorithms proposed by [6], [15] is extremely time consuming.

In addition to the study of the rate control in wireless
sensor networks, there is also much research work on dynamic
voltage frequency scaling (DVFS), which is similar to the rate
control in sensor nodes. Some papers, e.g., [10], [11], [19],
propose CPU speed selection approaches for a set of preemp-
tive jobs. The preemptive execution of CPU jobs does not map
well to packet transmission in wireless sensor networks. The
work in [8] proposes a CPU speed slow down method for
periodic tasks that have maximum blocking times. However,
the schedulability condition [1], [2], [12] employed in this
paper [8] is not only pessimistic, but also time consuming.
A busy period decomposition method is proposed in [14] for
a set of non-preemptive jobs based on the assumption that a
job arriving earlier always has an earlier deadline. All of the
proposed approaches know the release times of jobs exactly,
which is unrealistic in wireless sensor networks.

In this paper, we propose an online transmission rate selec-
tion approach based on an optimal dynamic voltage frequency
scaling algorithm Lp-EDF [19]. Our approach exploits the
periodicity property of the real-time streams to predict the
future jobs’ timing information and find an optimal transmis-
sion rate schedule. We are designing our approach to make
more messages meet their deadlines. Preliminary results show
that our approach achieves a higher success ratio with a lower
timing cost compared with existing works, although the energy
dissipation caused by our approach sees a small increase.

II. PRELIMINARIES

We consider a system composed of a set of streams {Si} =
{S1, S2, ..., SN}. Stream Si periodically generates a message
of Ci bytes with a period Ti. The message generated at
time Rij = Oi + (j − 1) · Ti − Jij is denoted as Mij ,
where Oi is the release offset of the stream Si and Jij is
the jitter of the message arrivals. We assume that the jitter
satisfies a uniform distribution Jij ∼ U(0, Ti). Each message
Mij has a relative deadline Di, and its absolute deadline
ADij = Oi + (j − 1) · Ti + Di − Jij . According to [7],
the fragmentation threshold Threshold is the maximum non-
preemption length of each message. Each message Mij is
fragmented to Xi = d Ci

Thresholde packets, and the first Xi− 1
packets and the last packet have the length Threshold and
Ci−(Xi−1)·Threshold, respectively. Similar to 802.11a [7],



before a node transmits a packet, it needs Overhead T ime
time to transmit the preamble and the ”Signal” part of the
PLCP header. Then, the ”Service” part of the PLCP header,
with its size PLCP Length, will be transmitted with the
payload. Based on these definitions, we define the intensity
g(I) of a time interval I = [t, t′] to be,

g(I) =
∑N

i=1 Yi · (Ci + Xi · PLCP Length)

t′ − t−∑N
i=1 Yi ·Xi ·Overhead T ime

, (1)

where Yi is the number of messages with [Rij , ADij ] ⊆ I .
We consider a single wireless sensor node which has

transmission rate r, which can take on any value in
[min rate, max rate], where min rate and max rate are
the minimum and maximum allowed rates for the node, re-
spectively. The wireless node handles the given set of streams
{Si}. The transmission power P is a convex function of the
transmission rate according to [16]. In this paper, we assume
that the transmission power function is,

P (r(t)) = max rate ·Noise · L2(2
2·r(t)

max rate − 1), (2)

where L is the transmission distance and Noise is the noise
power according to [22]. The packets of the streams are stored
in a buffer, whose size is MaxSize.

We refer to [Rij , ADij ] as the active interval of the message
Mij . A schedule S(t0, t1) is a pair of (r(t),Message(t))
functions defined over the given time interval [t0, t1], where
Message(t) defines the message being transmitted at time t
with rate r(t) (or idle if r(t) = 0). The total energy consumed
during a given time interval [t0, t1] is

E(S) =
∫ t1

t0

P (r(t))dt. (3)

The goal of our scheduling problem is to find a feasible
schedule that minimizes the transmission energy, while the
following constraint is satisfied for any message whose interval
is within the time interval [t0, t1],

∫ ADij

Rij

r(t)δ(Message(t),Mij)dt = Ci,

∀Mij , [Rij , Dij ] ⊆ [t0, t1], (4)

where δ(Message(t),Mij) = 1 if Message(t) = Mij and 0
otherwise. To make all the messages reach their destinations
within their deadlines, the constraint (4) should be satisfied
for any message. However, in wireless sensor networks, the
jitters of the message arrivals, the non-preemption property of
a packet, and the dynamic interference in the transmission
environment will cause some of the messages miss their
deadlines inevitably. We define the message success ratio SR
within a given time interval to be

SR =
Num Message Sucess

Num Message
, (5)

where Num Message is the number of transmitted messages
within the time interval, while Num Message Sucess is
the number of messages successfully delivered within the

deadlines. Message success ratio SR represents the percentage
of the messages that satisfy constraint (4) within a given time
interval if we assume that the impact of interference has been
adequately handled by the rate assignment.

Our problem is to find rates for the messages to be
transmitted within a given time interval, in order to not
only minimize the transmission energy (3), but also to make
as many messages as possible to satisfy the schedulability
constraint (4). To accomplish this, we need an adaptive rate
control approach that is able to adjust the rates efficiently in
response to the jitters of the message arrivals, and effectively
reduce the influence of the packet non-preemption property on
the success ratio. Specifically, when a new message arrives at
the buffer at time t0, we have

min
r(t)

∫ t1

t0

P (r(t))dt (6)

s.t.
∫ ADij

Rij

r(t)δ(Message(t),Mij)dt = Ci,

∀Mij , [Rij , Dij ] ⊆ [t0, t1], (7)

where t0 is the current time, i.e., the release time of the new
message, and t1 is set to be maxMij |Rij≤t0{ADij}.

We use EDF scheduling algorithm since it is optimal in
scheduling a set of periodic streams on a single sensor node.
An optimal minimum energy scheduler Lp-EDF is proposed
in [19] under preemptive EDF scheduling. Though Lp-EDF
was originally for scheduling CPU tasks, it can be modified
to schedule messages in wireless sensor networks, where mes-
sages are fragmented to non-preemptive packets and message
arrival times are not known precisely.

III. OUR APPROACH

Our problem is to find message transmission rates within
a given time interval such that the transmission energy is
minimized and the transmission success ratio is as high as
possible. We solve the problem by an online approach so as
to better respond to dynamic variations including arrival time
jitters, failed delivery, etc. An outline of our approach is as
follows. Every time a new message arrives at the buffer, the
sensor node will compute the rates for the messages in the
buffer by solving an optimization problem as given in (6)
and (7). If a packet is being transmitted upon the arrival of
a new message, the node will finish the transmission of this
packet before computing a new schedule. To make the online
approach work well, we need to address issues including
prediction of future load and solving the resulting optimization
problem. With the predicted packets and the packets already
in the buffer, solving the optimization problem defined in (6)
and (7) can employ the Lp-EDF algorithm introduced in [19].

Since future messages may compete for the time resource
with the messages already in the buffer and greatly influence
the transmission success ratio and the energy consumption,
it is necessary to predict the future messages that release
within some time window. We define the time interval
[t0,maxMij |Rij≤t0{ADij}] as the scheduling window W at
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Fig. 1. Comparison of original Lp-EDF, ZM, Lp-EDF-p and
Lp-EDF-c in terms of average success ratio.

Fig. 2. Comparison of original Lp-EDF, ZM, Lp-EDF-p and
Lp-EDF-c in terms of energy consumption.

Fig. 3. Comparison of original Lp-EDF, ZM, Lp-EDF-p and
Lp-EDF-c in terms of average success ratio.

Fig. 4. Comparison of original Lp-EDF, ZM, Lp-EDF-p and
Lp-EDF-c in terms of energy consumption.

time t0. When computing the transmission rates at time t0,
the node considers not only the messages Mij already in the
buffer, but also the future messages Mkm whose release time
Rkm is larger than t0 but smaller than maxMij |Rij≤t0{ADij}.

We consider two ways to predict the future messages.
The first one is called proportional prediction (Lp-EDF-
p). If the absolute deadline ADkm of a predicted mes-
sage Mkm is within the window W , we include message
as is. However, if ADkm > maxMij |Rij≤t0{ADij}, we
modify the message size and deadline to C ′k and AD′

km,

where C ′k = Ck ·
maxMij |Rij≤t0{ADij}−Rkm

ADkm−Rkm
and AD′

km =
maxMij |Rij≤t0{ADij}, respectively. The packet number X ′

k

under this schedule computation is equal to d C′k
Thresholde. The

other way is to treat the future message Mkm with ADkm

beyond the window W by the same way as treating the
messages whose absolute deadlines are within the window W ,
which is called complete prediction (Lp-EDF-c). Any future
message Mkm with its release time within the window W has
the message size Ck and absolute deadline ADkm.

The improved Lp-EDF algorithm identifies a critical interval
I∗ = [t′, t′′] whose intensity g(I∗) is maximum within the
time interval [t0, t1]. We incorporate the timing overhead of
the packet transmission, such as the preamble and the PLCP
header, into the intensity computation as shown in (1). Then,
the rates r of the messages are set to be g(I∗) if their release
times and absolute deadlines are within the critical interval
I∗, and these messages are deleted from the message set. This
process is repeated until all the messages obtain their rates.

IV. PRELIMINARY RESULTS

We evaluate the performance and efficiency of our pro-
posed online approach on randomly generated stream sets and

compare the modified Lp-EDF approach, both Lp-EDF-p and
Lp-EDF-c, with the original Lp-EDF and ZM algorithm in
[21]. Our modified Lp-EDF algorithm was implemented in
C++, running on an AMD Phenom(tm) II X4 940 workstation
with Red Hat Enterprise Linux 4. 1000 stream sets consisting
of 5 streams each were randomly generated for 9 different
bandwidth levels (Bandwidthlevel = 0.1Mbps, ..., 0.9Mbps)
with a total of 9000 stream sets. The bandwidth level is
defined to be Bandwidthleveli =

∑5
j=1

Cj

Tj
, i = 0.1, ..., 0.9.

We employ IEEE 802.11a [7] as the MAC protocol, which
has the minimum and maximum rates as 6Mbps and 54Mbps,
respectively. To fully show different performance of the stream
sets at different bandwidth levels in 802.11a, we multi-
ply the message length of each stream by 54 times, and
change the bandwidth levels to be 5.4Mbps, ..., 48.6Mbps.
In addition, the fragmentation threshold Threshold, the over-
head time Overhead T ime and the length of PLCP header
PLCP length are set to be 2346 bytes, 40 µs, and 2 bytes,
respectively. We assume that the stream Si with the highest
density Ci

Di
in a stream set releases its messages with jitter Jij ,

which satisfies a uniform distribution Jij ∼ U(0, Ti). For the
details of the stream set generation, readers can refer to [3].

Although Lp-EDF is optimal under preemptive EDF, its
computation time is extremely long because of its time com-
plexity O(NUM3) for NUM messages. In addition, the
performance of Lp-EDF is negatively influenced by the jitters
of the messages and the packet non-preemption property.

Another energy minimization scheduling algorithm, denoted
as ZM, presented in [21], dynamically computes the lowest
rate for the messages to minimize the energy consumption.
There are two disadvantages of ZM. First, ZM is not optimal
when a message arriving later has an earlier deadline. Second,



ZM suffers less but still obviously from the jitters of message
arrivals and packet non-preemption property.

In the first experiment, we compare energy consumption
resulted from applying the original Lp-EDF, ZM and our
approach, as shown in Figure 1. The x-axis represents the
bandwidth level, while the y-axis represents the average energy
consumption per stream set. It is illustrated that the original
Lp-EDF performs a little better than our approach and ZM in
energy saving, while our approach achieves the energy saving
comparable with that of ZM at all bandwidth levels.

The second experiment shows the average success ratio
obtained by the original Lp-EDF, ZM, and our approach in
Figure 2. The x-axis shows the bandwidth level, whereas
the y-axis represents the average success ratio, which is the
percentage of the successfully transmitted messages among the
1000 stream sets at each bandwidth level. First, the average
success ratios resulted from the original Lp-EDF are much
lower than the results by our approach at bandwidth levels
5.4Mbps to 43.2Mbps, because the original Lp-EDF statically
computes all the rates for the whole time interval under
preemptive EDF and neglects the message jitters. Second, for
bandwidth levels greater than 16.2Mbps, the performance of
ZM degrades drastically, because ZM cannot handle the case
that a message arriving later has an earlier deadline, which
appears frequently when bandwidth levels become higher.

To further compare the performance of different approaches,
the minimum success ratio among the 1000 stream sets at each
bandwidth level is shown in Figure 3. The x-axis represents
the bandwidth level, while the y-axis represents the minimum
success ratio. For the bandwidth levels less than or equal to
16.2Mbps, the minimum success ratios by ZM are a little
lower than those obtained by our approach, while for band-
width levels greater than 16.2Mbps, the minimum success
ratios resulted by ZM are much lower than those obtained
by our approach. In contrast, for bandwidth levels 21.6Mbps
to 48.6Mbps, the minimum success ratios by the original Lp-
EDF are a little higher than those by our approach.

We study the average computation time of a stream set by
our approach and compare them with the original Lp-EDF and
ZM in the third experiment, as shown in Figure 4. The x-axis
represents the bandwidth level, while the y-axis represents the
average rate computation time. As shown in Figure 4, our
method runs 200 to 4000 times faster than the original Lp-
EDF, while it is 10 to 36 times slower than the ZM algorithm.

Based on the preliminary results, our approach can achieve
much higher success ratios on average than the original Lp-
EDF and ZM, though the energy dissipation by applying our
approach sees a small increase compared with the original
Lp-EDF. Furthermore, the computational cost of our approach
is significantly smaller than that of the original Lp-EDF. ZM
takes less time than our approach to compute the rates, but its
success ratios are not satisfactory at high bandwidth levels.

V. SUMMARY AND FUTURE WORK

We have presented an online transmission rate control ap-
proach to minimize energy dissipation while still guaranteeing
deadline requirement of real-time streams in wireless sensor

networks. Our approach is based on several assumptions,
i.e., each packet has its own deadline, the arrival times of
messages are unknown apriori precisely, and a packet trans-
mission cannot be preempted. Our approach formulates the
rate control problem as an optimization problem and solves
it by improving the original Lp-EDF algorithm. Preliminary
results show that our approach works excellently in energy
saving and deadline meeting with a low timing cost. We
are improving our approach to make more messages meet
deadlines and speed up our algorithm. We will implement our
approach in a testbed, and compare it with existing methods.
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