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Abstract—This paper examines output feedback control of
wireless networked control systems where there are separate links
between the sensor-to-controller and controller-to-actuator. The
proposed triggering events only rely on local information so that
the transmissions from the sensor and controller subsystems are
not necessarily synchronized. This represents an advance over
recent work in event-triggered output feedback control where
transmission from the controller subsystem was tightly coupled
to the receipt of event-triggered sensor data. The paper presents
an upper bound on the optimal cost attained by the closed-
loop system. Simulation results demonstrate that transmissions
between sensors and controller subsystems are not tightly syn-
chronized. These results are also consistent with derived upper
bounds on overall system cost.

I. I NTRODUCTION

Large-scale wireless networked control systems (WNCS)
are invaluable in many civil and military applications for mon-
itoring and controlling in complex environment. An important
issue for large-scale WNCS concerns energy efficiency. Sensor
nodes need to operate on an extremely frugal energy budget,
since they are battery driven and since battery replacement
is not an option for large-scale WNCS with thousands of
physically embedded nodes. To conserve power, it is important
to manage wireless communication as such communication is
a major source of power consumption [1]. There has been
a great deal of prior work seeking to conserve power [2],
[3] through energy efficient networking protocols. Another
way of conserving power, however, is to make the application
power aware, and attempt to minimize the application’s use of
the communication network, while still maintaining a desired
level of control system performance. One recent method for
realizing this goal is known asevent-triggeredsampling.

Event triggering can be seen as a communication protocol
where information is transmitted only if some event occurs.
In particular, information is transmitted when a measure of
data ’novelty’ exceeds a specified threshold. In contrast to
more commonly used periodic transmission schemes, event-
triggering tends to generate traffic patterns that aresporadicin
nature. Prior experimental results has demonstrated that event-
triggering can use fewer communication resources than peri-
odic transmission schemes while maintaining the comparable
performance levels [4]–[8]. The reason for this more efficient
use of communication resources is that event-triggering makes
use of on-line information to make transmission decisions.
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This method, therefore, can adapt its usage of the commu-
nication in channel to the importance of the data that it must
transmit.

The existing work in the event triggering literature, however,
can not be easily applied to the large-scale WNCS with simple
extension, not only because most prior work considered single
sensor case, but also because the structure in the prior work
was not suitable for the large-scale WNCS. In the large-scale
WNCS, the controller can be far away from both the sensors
and the actuators, which requires that the whole control loop
has to be closed over network. However, most prior work
assumed that only part of the control loop was closed over
wireless network [9]–[11], which can not be used in the
case when the controller is far away from both sensors and
actuators. Another work in [12] did consider the case when
the whole control loop is closed over the wireless network,
but the transmissions from sensor-to-controller and controller-
to-actuator were strongly synchronized (the transmissionin
one link triggered the transmission in the other link). The
strong synchronization prohibits the extension from single
sensor case to the multiple sensor case, since a large number
of sensors would trigger very frequent transmissions from
controller to actuator, which is neither desired nor necessary.
Therefore, as a pre-step of applying event triggering to large-
scale WNCS, we first present weakly coupled event triggered
output feedback control system (the transmission in one link
doesn’t necessarily trigger the transmission in the other link)
in this paper. Since the transmissions from sensor-to-controller
and controller-to-actuator are only weakly coupled, the grow-
ing number of sensors will not necessarily cause the frequent
transmissions from controller to actuator. The weakly coupled
transmission structure, therefore, provides a path for applying
the event triggering technique to the large-scale WNCS.

This paper designs local event-triggers for a wireless net-
worked control system in which there are separate communica-
tion links from sensor-to-controller and controller-to-actuator.
The event-triggers attempt to be optimal in the sense that the
triggering sets of the sensor-to-controller link minimizethe
mean square estimation error discounted by communication
cost and the triggering sets of the controller-to-actuatorlink
are designed to minimize the mean square cost of the estimated
system state discounted by the communication cost in that link.
The sum of these two separate optimization problems provide
an upper bound on the optimal mean square performance of the
entire system. The events generated by this approach are only
weakly coupled, rather than strongly coupled as seen in [12].
The results in this paper serve as a foundation for large-scale



event-triggered output feedback control that will be studied in
future papers.

II. PROBLEM STATEMENT

Consider a dynamic system whose control loop is closed
over the network. A block diagram of the closed loop system
is shown in Figure 1. This closed loop system consists of
four components: aplant subsystem, a sensor subsystem, a
controller subsystemand anactuator subsystem.

The plant subsystem consists of two parts: a plant and
a sensor. The plant is a controllable and observable linear
discrete time process whose statex : Z+ → R (Z+ indicates
nonnegative integer set) satisfies the difference equation

x(k) = Ax(k − 1) +Bua(k − 1) + w(k − 1),

for k = 1, 2, · · · , whereA ∈ R
n×n, B ∈ R

n×m, ua ∈ R
m is

the actual control input applied into the plant which will be
further explained when the actuator subsystem is introduced,
andw ∈ R

n is a zero mean white Gaussian noise process with
varianceW . The initial statex(0) is assumed to be a Gaussian
random variable with meanµ0 and varianceΠ0. The sensor
generates a measurementy : Z+ → R

p which is an output
with noise. The sensor measurement at timek is

y(k) = Cx(k) + v(k),

for k ∈ Z
+, whereC ∈ R

p×n, andv : Z+ → R
p is another

zero mean white Gaussian noise process with varianceV .
Notice thatw, v and x(0) are independent from each other.
The corrupted measurement is fed into the sensor subsystem
that decides when to transmit information to the controller
subsystem.

The sensor subsystem shown in the right upper corner
of Figure 1 consists of aKalman filter, a local observer
and an event detector in sensor subsystem. Let Y(k) =
{y(0), y(1), · · · , y(k)} denote the measurement information
available at stepk. TheKalman filtergenerates a state estimate
xKF : Z+ → R

n that minimizes the weighted mean square
estimation error (MSEE)E

[

‖x(k)− xKF (k)‖
2
Z | Y(k)

]

at
each step conditioned on all of the sensor information received
up to and including stepk, whereZ ≥ 0 is a symmetric
weighting matrix and‖θ‖2Z = θTZθ. Let PZ be the square
root of Z (i.e. Z = PT

Z PZ ). For the process under study the
filter equation is

xKF (k) =AxKF (k − 1) +Bua(k − 1) + L (y(k)

−CAxKF (k − 1)− CBua(k − 1)) ,

where L = AXCT (CXCT + V )−1, and X satisfies the
discrete linear Riccati equation

AXAT −X −AXCT (CXCT + V )−1CXAT +W = 0.

The steady state estimation erroreKF (k) = x(k) − xKF (k)
is a Gaussian random variable with zero mean and weighted
varianceE(eKFZeTKF ) = Q = (I − LC)X .

Let {τ ls}
∞
l=1 denote a sequence of increasing times (τ ls ∈

[0,+∞]) when information is transmitted from the sensor

to the controller subsystem. We require thatτ ls is forward
progressing, i.e. for anyk ≥ 0, there always exists al such that
τ ls ≥ k. Let X (k) =

{

xKF (τ
1
s ), xKF (τ

2
s ), · · · , xKF (τ

l(k)
s )

}

denote the filter estimates that are transmitted to the con-
troller subsystem by stepk wherel(k) = max

{

l : τ ls ≤ k
}

.
We can think of this as the ’information set’ available
to the controller subsystem at timek. The local observer
generates an a posteriori estimatexRO : Z

+ → R
n

of the process state that minimizes the weighted MSEE,
E
[

‖x(k)− xRO(k)‖
2
Z | X (k)

]

, at timek conditioned on the
information received up to and including timek. The a priori
estimate of the local observer,x−

RO : Z+ → R
n, minimizes

E
[

‖x(k)− x−
RO(k)‖

2
Z | X (k − 1)

]

, the weighted MSEE at
time k conditioned on the information received up to and
including stepk − 1. These estimates take the form

x−
RO(k) =AxRO(k − 1) +Bua(k − 1) (1)

xRO(k) =

{

x−
RO(k), if e−KF,RO(k) ∈ Ss;

xKF (k), otherwise ,
(2)

where e−KF,RO(k) = xKF (k) − xRO(k), Ss ⊆ R
n is the

triggering set in sensor subsystem, andx−
RO(0) = µ0.

The event detector in sensor subsystemdetects the a priori
gape−KF,RO(k) and compares the gap with the triggering set
Ss. If the gap is inside the triggering setSs, then no data
is transmitted. Otherwise, the state estimate of Kalman filter
xKF (k) is sent to the controller subsystem.

The controller subsystem which is in the lower part of
Figure 1 has three components: aremote observer, acontroller
and anevent detector in controller subsystem. The remote
observer has the same behavior as the local observer, and
produces an a posteriori state estimatexRO(k) which is fed
into the controller. The controller generates a control input
uc(k) = KxRO(k), whereK is the controller gain. Notice
that this control input is not the actual control input fed into
the plant.

Let’s define an increasing and forward progressing time
sequence{τ jc }

∞
j=1, whereτ jc is thejth time when the control

input is sent to the actuator subsystem from the controller
subsystem. Theevent detector in the controller subsystem
transmits the current control inputuc(k) to the actuator
subsystem when[xRO(k) ua(k)]

T lies outside of a triggering
setSc. Once the current control input is sent to the actuator,
an acknowledgement is transmitted to the sensor subsystem
to let it know that the control input has been updated. When
the sensor subsystem receives the acknowledgement, it uses
thexRO(k) generated by the local observer to obtain the new
control input applying to the actuator subsystem.

The actuator subsystem has two parts: a zero order hold
and an actuator. Letua(k) denote the actual control input
applied to the plant. Whenuc(τ

j
c ) is transmitted, the actuator

subsystem updatesua(k) to be uc(τ
j
c ), and holds this value

until the next transmission occurs.ua(k), therefore, takes the
form

ua(k) = uc(τ
j
c ), ∀k ∈ [τ jc , τ

j+1
c ).



Fig. 1. Structure of the event triggered output feedback control systems

The average cost of the closed loop system is defined as

J(Ss, Sc) = lim
N→∞

1

N

N−1
∑

k=0

E (c(x(k), Ss, Sc)) ,

where the cost functionc is

c(x(k), Ss, Sc) =‖x(k)‖2Z + λs1(eKF,RO(k) /∈ Ss)

+ λc1

([

xRO(k)

ua(k)

]

/∈ Sc

)

,

where λs and λc are the communication prices for trans-
missions over the sensor-to-controller link and controller-to-
actuator link, respectively.1(·) is the characteristic function.

Our objective is to design the triggering setsSs andSc to
minimize the average costJ(Ss, Sc), i.e.

J∗ = min
Ss,Sc

J(Ss, Sc).

III. M AIN RESULTS

The main result in this section derives event-triggers for
the sensor and controller subsystem. The novel feature of
these event triggers is that they areweakly coupledin the
sense that transmissions over the sensor-to-controller link do
not necessarily trigger transmissions over the controller-to-
actuator link. By breaking the strong coupling between the
two channels, we provide a path for extending event-triggered
control to large-scale wireless networked systems.

The derivation of these weakly coupled triggering events
is done by decomposing the average costJ(Ss, Sc) into
two parts. The first part is only a function of the sensor
subsystem and represents the cost introduced by remote state
estimation. The second part relies on information from the
controller subsystem and the statistics of the state estimates
generated by the sensor subsystem. This second part, therefore,
represents the controller cost conditioned on the event-triggers

of the sensor-subsystem. It is the conditioning on the sensor-
subsystem in this second term which weakly couples the events
generated by the sensor and controller subsystems.

The following lemma formally states the decomposition of
the total system costJ(Ss, Sc) that will be used later to derive
the triggering events.

Lemma 3.1:Let eRO(k) = x(k) − xRO(k). The average
costJ(Ss, Sc) may be written as

J(Ss, Sc) = Js(Ss) + Jc(Sc, Ss),

where

Js(Ss) = lim
M→∞

1

M

M−1
∑

k=0

E
[

eRO(k)‖
2
Z

+λs1(eKF,RO(k) /∈ Ss)]

Jc(Sc, Ss) = lim
M→∞

1

M

M−1
∑

k=0

E
[

‖xRO(k)‖
2
Z

+λc1

([

xRO(k)

ua(k)

]

/∈ Sc

) ∣

∣

∣

∣

∣

Ss

]

Remark 3.2:The second costJc is conditioned on the
sensor’s triggering set,Ss, because the expectation taken inJc
must be computed with respect to the probability distribution
of the state estimate,xRO(k). As this random variable’s
distribution is a function of the sensor subsystem’s triggering
set, we see that the expectation inJc must also be conditioned
on Ss, thereby weakly coupling the cost of the controller
subsystem to the cost of the sensor subsystem.

Proof: The key step in separatingJ into the two costs
Js and Jc relies on the fact thatxRO(k) and eRO(k) are
uncorrelated. This is shown in Lemma A.1. Realizingx(k) =
xRO(k) + eRO(k) together with the fact thatxRO(k) and



eRO(k) are uncorrelated,J(Ss, Sc) can be rewritten as

J(Ss, Sc) = lim
M→∞

1

M

M−1
∑

k=0

E
(

‖eRO(k)‖
2
Z + ‖xRO(k)‖

2
Z

+λs1(eKF,RO(k)) + λc1

([

xRO(k)

ua(k)

]

/∈ Sc

))

=J(Ss) + J(Sc, Ss),

Since bothJs andJc rely on Ss, theSs which minimizes
Js doesn’t necessarily minimizesJ . We can see, however that
the minimum costJ∗ is bounded above by

J∗ ≤ J(S†
s , S

†
c) = J†

s + J†
c (S

†
s) (3)

where S†
s is the optimal sensor triggering set that mini-

mizes Js(Ss). The sensor cost achieved byS†
s is J†

s =
min
Ss

Js(Ss). In a similar way we can seeS†
c as the con-

troller’s event-triggering strategy that minimizes the con-
troller cost Jc(Sc, S

†
s) assuming the sensor is the optimal

event-triggerS†
s . In this case the controller’s cost becomes

J†
c = min

Sc

Jc(Sc, S
†
s). The problem of search for the optimal

triggering sets can now be obtained by solving two coupled
optimization problems. The first optimization problem seeks
the sensor triggering set,S†

s , that minimizesJs(Ss). The sec-
ond optimization problem seeks an optimal triggering set,Sc

that minimizes the costJc(Sc, S
†
s). The next two subsections

present methods for solving these two optimization problems.

A. The optimal and suboptimal triggering sets in sensor
subsystem

This subsection first characterizes the optimal triggeringset
minimizing the estimation costJs. Determining the optimal
triggering set from this characterization has high computa-
tional complexity both in terms of terms of computation time
and space (memory). We therefore present a suboptimal trig-
gering set whose computational complexity is more tractable
and bounds the cost achieved by this suboptimal trigger from
above. The results presented in this subsection were originally
described in [13], so we only review the main results below.

Lemma 3.3:If there exists a bounded functionhs : Rn →
R and a finite numberJ ′

s such that

J ′
s + hs(e

−
KF,RO(k)) = Gs

(

hs(e
−
KF,RO(k))

)

(4)

where

Gs (hs(θ)) =min
Ss

{

E(hs(e
−
KF,RO(k + 1))|eKF,RO(k) = θ)

+cs(θ, Ss)} ,

then the optimal average cost of remote state estimation is

J†
s = tr(QZ) + J ′

s, (5)

and the optimal triggering set in sensor subsystem

S†
s =

{

θ : E(hs(e
−
KF,RO(k + 1))|eKF,RO(k) = θ) + ‖θ‖2Z

≤ λs + E(hs(e
−
KF,RO(k + 1))|eKF,RO(k) = 0)

}

. (6)

To computeS†
s , we need to compute the functionhs

which satisfies Equation (4). This equation can only be solved
numerically, which means that the functionhs can only be
expressed in a numerical way, and we need a large table to
store the functionhs. Computation and storage of such a large
table will be impractical for many applications. We therefore
introduce a suboptimal triggering set for sensor subsystem
whose computational complexity is tractable and the cost can
be bounded from above.

Lemma 3.4:Given a quadratic triggering set

Ss = {e−KF,RO(k) : ‖e
−
KF,RO(k)‖

2
Hs

≤ λs − ζs}, (7)

where then × n matrix Hs ≥ 0 satisfies the Lyapunov
inequality

ATHsA

1 + δ2s
−Hs +

Z

1 + δ2s
≤ 0,

for someδ2s ≥ 0, and

ζs =
δ2sλs + tr(HsR)

1 + δ2s
,

whereR = P−1
Z L(CAQATCT + CWCT + V )LT (P−1

Z )T ,
then

Js(Ss) ≤ Js(Ss) =tr(QZ) + min{tr(HsR) + ζs, λs} (8)

Remark 3.5:For anyA and Z ≥ 0, there always exists
an Hs > 0 and aδ2s ≥ 0 such that the Lyapunov inequality
(3.4) holds. We should notice that the greatest singular value
of A, σ(A), is always greater than or equal to the absolute
value of any eigenvalue ofA. So if we setδ2s to be the value
such thatσ(A) ≤

√

1 + δ2s , thenA/
√

1 + δ2s is always stable,
and there always existsHs ≥ 0 such that (3.4) holds for any
semi-positive definite matrixZ.

B. Optimal and suboptimal triggering sets in controller sub-
system

This subsection first studies the optimal triggering set forthe
controller subsystem and the corresponding minimum average
cost of control. As was found in the preceding subsection,
direct computation of the optimal triggering set is complex.
We therefore introduce a suboptimal event-trigger and bound
the performance obtained by this trigger.

Since minimizingJc(Sc, Ss) with respect toSc is a discrete
time average optimal control problem, the method in [14] can
be applied to our problem. So we have the lemma below
to state the optimal triggering set and cost in controller
subsystem.

Lemma 3.6:Given S†
s , if there exists a bounded function

hc : R
n×R

m → R, and a bounded functionJ ′
c : S

n → R (Sn

indicates the collection of all subsets ofR
n) such that

J ′
c(S

†
s) + hc (xRO(k), ua(k − 1))

=min
Sc

{ E [hc (xRO(k + 1), ua(k)) |xRO(k), ua(k − 1), Sc]

+ Cc (xRO(k), ua(k − 1), Sc)} , (9)



then

J†
c (S

†
s) = J ′

c(S
†
s), (10)

and the optimal triggering set in controller subsystem is

S†
c =

{[

θ

η

]

: E

[

hc

([

xRO(k + 1)

ua(k)

])∣

∣

∣

∣

∣

[

xRO(k)

ua(k − 1)

]

=

[

θ

η

]]

≤ E

[

hc

([

xRO(k + 1)

ua(k)

])∣

∣

∣

∣

∣

[

xRO(k)

ua(k − 1)

]

=

[

θ

Kθ

]]

+ λc

}

To determine the optimal triggering set in controller sub-
systemS†

c , one must find the function,hc, which satisfies
Equation (9). This equation would be numerically solved to
obtain a concrete representation for the function ofhc and
hence the controller’s event-trigger,S†

c . Due to its concrete
representation, the event-trigger would require a great deal
of memory to store. We therefore introduce a suboptimal
triggering set for the controller subsystem which is easy to
computer and store. The next lemma describes this suboptimal
triggering set and provides an upper bound on its cost.

Lemma 3.7:Let Ss in Equation (7) be the triggering

set in sensor subsystem,Au =

[

A B

0 I

]

, Ac =

[

A+BK 0

K 0

]

, Za =

[

Z 0

0 0

]

, and Hs = PT
HsPHs.

Given a quadratic triggering set of controller subsystem

Sc =







[

xRO(k)

ua(k − 1)

]

:

∥

∥

∥

∥

∥

[

xRO(k)

ua(k − 1)

]
∥

∥

∥

∥

∥

2

Hc

+ ζc

≤ ‖xRO(k)‖
2
Z + λc

}

, (11)

whereHc ≥ Za and controller gainK satisfy

AT
uHcAu + (1 + δ2c )(Za −Hc) ≤0, (12)

AT
c HcAc + (1− ρ2c)(Za −Hc) ≤0, (13)

for some constantδ2c ≥ 0 and0 ≤ ρ2c ≤ 1, and

ζc =
δ2c + ρ2c − 1

δ2c + ρ2c
λc, (14)

the optimal controller cost is bounded from above by

Jc(Ss, Sc) ≤ Jc(Sc, Ss)

=
δ2c

δ2c + ρ2c
λc + σ((PT

Hs)
−1Hc,luP

−1
Hs )(λs − ζs), (15)

whereσ(·) indicates the greatest singular value, andHc,lu is
the left uppern× n sub-matrix ofHc.

The upper bound onJc(Sc, Ss), Jc(Sc, Ss), is greater when
the uncontrolled system is more unstable. It is easy to see
thatJc(Sc, Ss) is monotonically increasing with respect toδ2c
which can be seen as a measure of how unstable the matrix
Au is. The (n + m) × (n + m) matrix Au indicates the

dynamic behavior of[xRO ua]
T during the interval between

two consecutive transmissions from controller subsystem to
actuator subsystem.
Jc(Sc, Ss) is less if the controller is more aggressive.

Jc(Sc, Ss) is monotonically decreasing with respect toρ2c
which indicates how aggressive the controller is. The greater
the ρ2c is, the more aggressive the controller is. So a more
aggressive controller will provides a greaterρ2c , and hence a
lessJc(Sc, Ss).

The more precious the communication resource between
controller and actuator subsystem is, the greater upper bound
we will have. This is easy to see from Equation (15), since
higher communication priceλc implies more precious com-
munication resource.

A larger triggering set in sensor subsystemSs results in a
larger upper bound on the average cost of control. In Section
III, we have said thatJc(Sc, Ss) is influenced by the triggering
set in sensor subsystemSs. The second term inJ c(Sc, Ss)
involves all the parameters inSs, so it is the impact ofSs on
the upper bound on the average cost of controller. This term
σ((PT

Hs)
−1Hc,luP

−1
Hs )(λs − ζs) reflects how bigSs (centered

about the origin) is. IfSs is big, the value of the second term
of Jc(Sc, Ss) is great, which results in a great upper bound
on the average cost of controller.

From the results in Equation (3), Lemma 3.3, and 3.6, we
can give the optimal weakly coupled triggering sets in sensor
and controller subsystems, and an upper bound on the optimal
cost.

Theorem 3.8:The optimal triggering set in sensor subsys-
tem S†

s defined in Lemma 3.3 minimizesJs(Ss), and the
optimal triggering set in controller subsystemS†

c defined in
Lemma 3.6 minimizesJc(Sc, S

†
s). The optimal cost of the

closed loop systemJ∗ is bounded from above byJ† =
J†
s +J†

c (S
†
s), whereJ†

s andJ†
c (S

†
s) are described in Equation

(5) and (10), respectively.
From the analysis following Lemma 3.3 and 3.6, we know

that the optimal triggering setS†
s andS†

c are hard to compute
and store. So suboptimal triggering sets and an upper bound
on the cost of closed loop system triggered by these triggering
sets are derived, which are computationally effective and easy
to store. From the results in Lemma 3.1, 3.4 and 3.7, we can
have the theorem below.

Theorem 3.9:Given the triggering set in sensor subsystem
Ss defined in Equation (7) and the triggering set in controller
subsystemSc defined in Equation (11), the average cost
J(Ss, Sc) given by the two weakly coupled triggering sets
is bounded from above byJ(Ss, Sc) = Js(Ss) + Jc(Sc, Ss),
whereJs(Ss) andJc(Sc, Ss) are defined in Equation (8) and
(15), respectively.

IV. SIMULATION RESULTS

In this section, an example is used to demonstrate Theorem
3.9. We first calculate the triggering setsSs andSc according
to Equation (7) and (11), and search for the controller gainK
such that Inequality (13) is satisfied. The system, then, is run
with the calculated controller gainK, and the transmission is



triggered with the computed triggering sets. Next, the average
cost given by simulation is compared with the upper bound
given in Theorem 3.9 to demonstrate Theorem 3.9. Finally, we
show the number of transmission times in sensor subsystem,
the number of transmission times in controller subsystem,
and the number of times when both sensor and controller
transmit (concurrent transmission times) to illustrate that the
transmission in sensor subsystem doesn’t necessarily trigger
the transmission in controller subsystem, or vice versa.

Let’s consider the system withA to be

[

0.4 0

0 1.01

]

, B

to be

[

1

1

]

and C to be
[

0.1 1
]

. The variances of the

system noises areW =

[

0.2 0.1

0.1 0.2

]

, and V = 0.3. The

weight matrixZ is chosen to be an identity matrix.
Given δ2s = 1.5, λs = 3, δ2c = 1.02 andρc = 0.3, we can

obtain the triggering set in sensor subsystemSs as below
{

e−KF,RO : e−T
KF,RO

[

2.5641 0

0 4.0543

]

e−KF,RO ≤ 0.8414

}

,

the triggering set in controller subsystemSc as below






[

xRO(k)

ua(k − 1)

]

:

∥

∥

∥

∥

∥

[

xRO(k)

ua(k − 1)

]∥

∥

∥

∥

∥

2

Mc

≤ 0.9008λc







,

where Mc =







1.3315 −0.2836 −0.3512

−0.2836 3.6377 2.6808

−0.3512 2.6808 13.7606






, and the

controller gainK = [−0.1967 − 0.3133]. The closed loop
system is run for3000 steps with differentλc. We first
compare the average cost given by our simulation (J) with the
upper bound given by Theorem 3.9 (Jup), and then have a look
at the transmission times in sensor subsystem, the transmission
times in controller subsystems and the concurrent transmission
times.

The left hand side plot of Figure 2 shows that the average
cost given by simulation (J) is always bounded from above
by the upper bound given by Theorem 3.9 (Jup). The x-axis
of this plot indicates the communication price in controller
subsystemλc, and the y-axis is the average cost. we can
see that for anyλc, the average costJ (blue star) is always
bounded from above by the upper bound given by Theorem
3.9 (black cross), which demonstrates Theorem 3.9.

The right hand side plot of Figure 2 shows that the
transmission in sensor subsystem doesn’t always trigger the
transmission in controller subsystem, or vice versa. The x-axis
of this plot is the communication price in controllerλc, and
the y-axis indicates the transmission times. We can see that
the number of concurrent transmission times (pink circle) is
always less or equal to both the numbers of transmission times
in sensor and controller subsystems, which indicates that the
transmission in sensor subsystem doesn’t always trigger the
transmission in controller subsystem, or vice versa.

V. CONCLUSION AND FUTURE WORK

This paper presents weakly coupled triggering events in
event triggered output feedback system with the whole control
loop closed over wireless network. By ’weakly coupled’, we
mean that the triggering events in both sensor and controller
only use local information to decide when to transmit data,
and the transmission in one link doesn’t necessarily trigger
the transmission in other link. We also show that with the
triggering events and controller we designed, the cost of the
closed loop system is bounded from above, and an explicit
upper bound on the cost is obtained. Our simulation results
demonstrate the proposed weakly coupled triggering events
and the upper bound on the cost of the closed loop system.
This paper serves as a foundation for our future work which
will study the multi sensor systems. We are interested in how
the cost increases with respect to the number of sensors, and
the methods to bound the increasing rate.

APPENDIX

Lemma A.1:xRO(k) and eRO(k) are uncorrelated with
each other.

Proof: From the dynamics of the closed system, we can
derive that

e−RO(k) = AeRO + w(k − 1)

eRO(k) =

{

e−RO(k), e−KF,RO ∈ Ss;

eKF (k), otherwise.

From the equations above, we can see thateRO(k) is a linear
combination ofeKF (τ

l(k)
s ), w(τ l(k)s ), w(τ l(k)s +1), · · · , w(k).

From Equation (1) and (2), we can see thatxRO(k) is a lin-
ear combination ofxKF (τ

l(k)
s ), xKF (τ

l(k)−1
s ), · · · , xKF (τ

1
s ).

Since eKF (τ
l(k)
s ), w(τ

l(k)
s ), w(τ

l(k)
s + 1), · · · , w(k) is

uncorrelated withxKF (τ
l′

s ) for anyl′ ≤ l(k), we can conclude
thatxRO(k) andeRO(k) are uncorrelated with each other.

A. Proof of Lemma 3.7

Before the proof of Lemma 3.7, we would like to state a
lemma which will be used in the proof of Lemma 3.7.

Lemma A.2:Given anySc. If there exists a functionf :
R

n × R
m → R bounded from below and a finite constantJ

′

s

such that

J
′

c + f

([

xRO(k)

ua(k − 1)

])

≥ Cc

([

xRO(k)

ua(k − 1)

]

, Sc

)

+ E

[

f

([

xRO(k + 1)

ua(k)

])
∣

∣

∣

∣

∣

[

xRO(k)

ua(k − 1)

]

, Sc

]

, (16)

thenJc(Sc) ≤ J
′

c.
Proof: See [15].
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Fig. 2. Simulation results about average cost and transmission times

1) Proof of Lemma 3.7:
Proof: According to Lemma A.2, as long as we can find

a functionf bounded from below such that the Inequality (16)
is satisfied withJ

′

c = Jc, Lemma 3.7 is true.

Let f

([

xRO(k)

ua(k − 1)

])

=

∥

∥

∥

∥

∥

[

xRO(k)

ua(k − 1)

]∥

∥

∥

∥

∥

2

Hc

+ ζc. We

will consider two cases, and check whether the Inequality (16)
holds for both cases. If yes, then Lemma 3.7 is proven.

The first case is when
∥

∥

∥

∥

∥

[

xRO(k)

ua(k − 1)

]∥

∥

∥

∥

∥

2

Hc

+ ζc ≤ xRO(k)
TZxRO(k) + λc. (17)

In this case, the controller subsystem doesn’t transmit at step
k. The right hand side of Inequality (16) can be rewritten as

=

∥

∥

∥

∥

∥

[

xRO(k)

ua(k − 1)

]
∥

∥

∥

∥

∥

2

AT
uHcAu

+ E(‖e−KF,RO(k + 1)‖2Hc,lu
)

· 1(e−KF,RO(k + 1) /∈ Ss) + ζc +

∥

∥

∥

∥

∥

[

xRO(k)

ua(k − 1)

]∥

∥

∥

∥

∥

2

Za

≤

∥

∥

∥

∥

∥

[

xRO(k)

ua(k − 1)

]
∥

∥

∥

∥

∥

2

AT
uHcAu

+

∥

∥

∥

∥

∥

[

xRO(k)

ua(k − 1)

]
∥

∥

∥

∥

∥

2

Za

+ ζc + σ((PT
Hs)

−1Hc,luP
−1
Hs )(λs − ζs)

≤Jc + f

([

xRO(k)

ua(k − 1)

])

The first inequality is from Equation (7), and the second
inequality is from Equation (12), (17) and (14).

The second case is when

∥

∥

∥

∥

∥

[

xRO(k)

ua(k − 1)

]∥

∥

∥

∥

∥

2

Hc

+ ζc >

xRO(k)
TZxRO(k)+λc. In this case, the controller subsystem

transmit information. So the right hand side of Inequality (16)
can be rewritten as

=

∥

∥

∥

∥

∥

[

xRO(k)

ua(k − 1)

]∥

∥

∥

∥

∥

2

AT
c HcAc

+ E(‖e−KF,RO(k + 1)‖Hc,lu
)

· 1(e−KF,RO(k + 1) /∈ Ss) + ζc +

∥

∥

∥

∥

∥

[

xRO(k)

ua(k − 1)

]∥

∥

∥

∥

∥

2

Za

+ λc

≤

∥

∥

∥

∥

∥

[

xRO(k)

ua(k − 1)

]∥

∥

∥

∥

∥

2

AT
c HcAc

+

∥

∥

∥

∥

∥

[

xRO(k)

ua(k − 1)

]∥

∥

∥

∥

∥

2

Za

+ σ((PT
Hs)

−1Hc,luP
−1
Hs )(λs − ζs) + ζc + λc

≤Jc + f

([

xRO(k)

ua(k − 1)

])

.

The first inequality is from Equation (7), and the second
inequality is from Equation (13) and (14).
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