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Abstract—This paper examines output feedback control of This method, therefore, can adapt its usage of the commu-
wireless networked control systems where there are sepamtinks  njcation in channel to the importance of the data that it must
between the sensor-to-controller and controller-to-actator. The transmit

proposed triggering events only rely on local information & that _ . . N
the transmissions from the sensor and controller subsystesnare The existing work in the event triggering literature, hoegv

not necessarily synchronized. This represents an advancevey ~Can not be easily applied to the large-scale WNCS with simple
recent work in event-triggered output feedback control whee extension, not only because most prior work consideredesing

transmission from the controller subsystem was tightly copled  sensor case, but also because the structure in the prior work
to the receipt of event-triggered sensor data. The paper peeNts a5 not suitable for the large-scale WNCS. In the largeescal
an upper bound on the optimal cost atained by the closed- WNCS, the controller can be far away from both the sensors
loop system. Simulation results demonstrate that transmions ! . }
between sensors and controller subsystems are not tightlyys- and the actuators, which requires that the whole contrg loo
chronized. These results are also consistent with derivedpper has to be closed over network. However, most prior work
bounds on overall system cost. assumed that only part of the control loop was closed over
wireless network [9]-[11], which can not be used in the
case when the controller is far away from both sensors and
Large-scale wireless networked control systems (WNC8§tuators. Another work in [12] did consider the case when
are invaluable in many civil and military applications foom the whole control loop is closed over the wireless network,
itoring and controlling in complex environment. An imparta but the transmissions from sensor-to-controller and cliet
issue for large-scale WNCS concerns energy efficiency.d@entp-actuator were strongly synchronized (the transmission
nodes need to operate on an extremely frugal energy budgete link triggered the transmission in the other link). The
since they are battery driven and since battery replacemé&hpng synchronization prohibits the extension from sngl
is not an option for large-scale WNCS with thousands @fnsor case to the multiple sensor case, since a large number
physically embedded nodes. To conserve power, it is import®f sensors would trigger very frequent transmissions from
to manage wireless communication as such communicatiorcf@troller to actuator, which is neither desired nor neagss
a major source of power consumption [1]. There has bedherefore, as a pre-step of applying event triggering tgelar
a great deal of prior work seeking to conserve power [2§cale WNCS, we first present weakly coupled event triggered
[3] through energy efficient networking protocols. Anotheputput feedback control system (the transmission in orie lin
way of conserving power, however, is to make the applicatistpesn’t necessarily trigger the transmission in the otim) |
power aware, and attempt to minimize the application’s dse i this paper. Since the transmissions from sensor-toratbert
the communication network, while still maintaining a desir and controller-to-actuator are only weakly coupled, thegr
level of control system performance. One recent method fit"g number of sensors will not necessarily cause the frequen
realizing this goal is known asvent-triggeredsampling. transmissions from controller to actuator. The weakly dedp
Event triggering can be seen as a communication protod@nsmission structure, therefore, provides a path fotyapgp
where information is transmitted only if some event occurfle event triggering technique to the large-scale WNCS.
In particular, information is transmitted when a measure of This paper designs local event-triggers for a wireless net-
data 'novelty’ exceeds a specified threshold. In contrast ¥orked control system in which there are separate communica
more commonly used periodic transmission schemes, eveifin links from sensor-to-controller and controller-tctaator.
triggering tends to generate traffic patterns thatsperadicin ~ The event-triggers attempt to be optimal in the sense tfeat th
nature. Prior experimental results has demonstrated veate triggering sets of the sensor-to-controller link minimittee
triggering can use fewer communication resources than pdrleéan square estimation error discounted by communication
odic transmission schemes while maintaining the comparapst and the triggering sets of the controller-to-actuditte
performance levels [4]-[8]. The reason for this more effitie are designed to minimize the mean square cost of the estimate
use of communication resources is that event-triggeringesia System state discounted by the communication cost in thiat li

use of on-line information to make transmission decision§he sum of these two separate optimization problems provide
an upper bound on the optimal mean square performance of the
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event-triggered output feedback control that will be stddin to the controller subsystem. We require thdtis forward
future papers. progressing, i.e. for any > 0, there always existslasuch that

- — —_ — Lk
Té > k. Let X(k) = ,TKF(T;),,TKF(TSQ),"' ,.%'KF(TS( ))
denote the filter estimates that are transmitted to the con-

Consider a dynamic system whose control loop is closgger subsystem by step wherel(k) = max {l ol < k}
over the network. A block diagram of the closed loop syste{fe can think of this as the ’'information set’ available

is shown in Figure 1. This closed loop system consists gf the controller subsystem at time The local observer

four components: glant subsystema sensor subsystena generates an a posteriori estimata,o : ZT — R?

controller subsysterand anactuator subsystem _ of the process state that minimizes the weighted MSEE,
The plant subsystem consists of two parts: a plant ang llz(k) —fRo(k)IIQZIX(k)}, at time k conditioned on the

a sensor. The plant is a controllable and observable linggfsrmation received up to and including tinke The a priori
discrete time process whose state Z™ — R (Z* indicates agtimate of the local observer,,, : Z* — R, minimizes

nonnegative integer set) satisfies the difference equation p [Hx(k:) — T (B)% | X (k — 1)] the weighted MSEE at

2(k) = Az(k — 1) + Bua(k — 1) + w(k — 1), Fime k conditioned on the inf_ormation received up to and
including stepk — 1. These estimates take the form

Il. PROBLEM STATEMENT

fork=1,2,---, whereA € R"*", B € R"*™, u, € R™ is
the actual control input applied into the plant which will be Tro(k) =AZro(k — 1) + Buu(k — 1) (1)
further explained when the actuator subsystem is intradiuce 3 Tro k), if €xpno(k) € S;

andw € R™ is a zero mean white Gaussian noise process with Tro(k) =4 _ h . (2)
variancelV. The initial stater(0) is assumed to be a Gaussian Tir(k), otherwise,

random variable with meapy and variancdl,. The sensor
generates a measurement Z+ — RP which is an output
with noise. The sensor measurement at timnis

where e po(k) = Txr(k) — Tro(k), Ss € R™ is the
triggering set in sensor subsystem, afyg}, (0) = /.

The event detector in sensor subsystdatects the a priori
y(k) = Cx(k) + v(k), gapegr ro(k) and compares the gap with the triggering set
S,. If the gap is inside the triggering s&t,, then no data

+ T+ i : . . . ;
for k € Z7, whereC' € RP*", andv : ZT — R” is another s yransmitted. Otherwise, the state estimate of Kalmaerfilt
zero mean white Gaussian noise process with varidnce 1 is sent to the controller subsystem.

Notice thatw, v andz(0) are independent from each other. 14 controller subsystem which is in the lower part of

The corrupted measurement is fed into the sensor subsys&g@hre 1 has three componentseanote observer controller

that decides when to transmit information to the controll%{nd anevent detector in controller subsysteffhe remote

subsystem. , _ observer has the same behavior as the local observer, and
The sensor subsystem shown in the right upper comgr,q,ces an a posteriori state estimaig, (k) which is fed

of Figure 1 consists Of_ &alman filter a local observer j i, the controller. The controller generates a controluinp
and anevent detector in sensor subsystemet V(k) = u.(k) = KZro(k), where K is the controller gain. Notice

{y((_))’y(l)’ -+, y(k)} denote the measurement informatiofy, ¢ this control input is not the actual control input fedoin
available at stefy. TheKalman filtergenerates a state estimatgy, o plant

Tixr : ZT — R™ that minimizes the weighted mean square
estimation error (MSEE)E [||z(k) — Tk r(k)||% | V(k)] at
each step conditioned on all of the sensor information vecki
up to and including steg, where Z > 0 is a symmetric
weighting matrix and||¢||% = 67 Z6. Let P, be the square
root of Z (i.e. Z = PL Pz). For the process under study th
filter equation is

Let's define an increasing and forward progressing time
sequencg7/}>2,, wherer] is the jth time when the control
input is sent to the actuator subsystem from the controller
subsystem. Theevent detector in the controller subsystem
transmits the current control input.(k) to the actuator
Subsystem whefEro (k) uq(k)]T lies outside of a triggering
setS.. Once the current control input is sent to the actuator,
Trr(k) =ATgp(k — 1) + Bua(k — 1) + L (y(k) an acknowledgement is transmitted to the sensor subsystem
—CAZp(k—1) — CBug(k — 1)) to let it know that the control input has been updated. When
KF a 5 . .
the sensor subsystem receives the acknowledgement, it uses
where L = AXCT(CXCT + V)~', and X satisfies the theTro (k) generated by the local observer to obtain the new
discrete linear Riccati equation control input applying to the actuator subsystem.
_ The actuator subsystem has two parts: a zero order hold
AXAT - X - AXCT(CXCT +V) 'CXAT+ W =0. and an actuator. Let,(k) denote the actual control input
The steady state estimation er@g (k) = z(k) — Txr(k) @applied to the plant. When,(77) is transmitted, the actuator
is a Gaussian random variable with zero mean and weigh@éPsystem updates, (k) to beu.(7?), and holds this value
varianceE (expZeky) = Q = (I — LC)X. until the next transmission occurs,(k), therefore, takes the
Let {r!}°, denote a sequence of increasing times ¢ form
[0, +00]) when information is transmitted from the sensor uq (k) = ue(td),Vk € [77,7311).

c)r'c
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Fig. 1. Structure of the event triggered output feedbackrobsystems

The average cost of the closed loop system is defined asf the sensor-subsystem. It is the conditioning on the senso
subsystem in this second term which weakly couples the svent
(5.,5.) = lim — Z E(c ), 54, 5.)) generated b)_/ the sensor and controller subsystems. N
N—oo N The following lemma formally states the decomposition of
the total system cost(S;, S.) that will be used later to derive

where the cost function is the triggering events.

c(z(k), Ss, o) =|lz(k)||Z + Nsl(exrro(k) & Ss) Lemma 3.1:Let ERo(k). = z(k) — Tro(k). The average
_ cost.J(Ss, S.) may be written as
.I'Ro(k)
L ¢S
ta (k) J(Ss.8c) = Jo(Ss) + Je(Se, Ss),

where A\, and \. are the communication prices for trans-
missions over the sensor-to-controller link and contrette Where
actuator link, respectivelyi.(-) is the characteristic function.

M-1
Our objective is to design the triggering séts and S, to TS = 1i 1 E [200 (k)2
minimize the average cost(S,, S.), i.e. 5(55) Moo M kZ:O [Ero (k)2
J* = min J(S,, S.). +Asl(exrro(k) ¢ Ss)]
Ss,Se 1 M-1
[1l. M AIN RESULTS Je(Se; 85) = lim = Z E [[|Zro (F)[|%
=0
The main result in this section derives event-triggers for Zro (k)
the sensor and controller subsystem. The novel feature of +A1 ([ ] ¢ S) 551
these event triggers is that they ameakly coupledn the a(k)

sense that transmissions over the sensor-to-contratierdo
not necessarily trigger transmissions over the contradler ~Remark 3.2:The second cost/. is conditioned on the
actuator link. By breaking the strong coupling between tiensor’s triggering sefls, because the expectation taken/in
two channels, we provide a path for extending event-triggermust be computed with respect to the probability distritnuti
control to large-scale wireless networked systems. of the state estimateTro(k). As this random variable’s
The derivation of these weakly coupled triggering evenglistribution is a function of the sensor subsystem’s trigue
is done by decomposing the average cd%iS,,S.) into Set, we see that the expectationinmust also be conditioned
two parts. The first part is only a function of the sensdin Ss, thereby weakly coupling the cost of the controller
subsystem and represents the cost introduced by remoge saPsystem to the cost of the sensor subsystem.
estimation. The second part relies on information from the Proof: The key step in separating into the two costs
controller subsystem and the statistics of the state essnal; and J. relies on the fact thafro(k) and ego(k) are
generated by the sensor subsystem. This second partdreretincorrelated. This is shown in Lemma A.1. Realizing) =
represents the controller cost conditioned on the evégders Tro(k) + ero(k) together with the fact thaEro (k) and



ero(k) are uncorrelated/(Ss, S¢) can be rewritten as To compute S, we need to compute the functioh,

M—1 which satisfies Equation (4). This equation can only be sblve
J(Ss,8:) = lim — Z E (|ero (k)% + |[Tro(k)||% numerically, which means that the functién can only be
M—oo M k=0 expressed in a numerical way, and we need a large table to

<[ Zro (k) ] )) store the functiork;. Computation and storage of such a large
+Xs1(exrro(k)) + Al ¢ Se table will be impractical for many applications. We themefo
Ua(k) introduce a suboptimal triggering set for sensor subsystem
=J(Ss) + J(Sc, Ss), whose computational complexity is tractable and the cost ca
be bounded from above.

Lemma 3.4:Given a quadratic triggering set

%—IS S )\s - Cs}v (7)

[ ]
Since bothJ; and J. rely on S, the S; which minimizes
Js doesn’t necessarily minimizes We can see, however that
the minimum cost/* is bounded above by

Ss = {e;(F,RO(k) : ||e;(F,RO(k)|

J* < J(ST, 8t = Jf + J(sh 3) where then x n matrix H, > 0 satisfies the Lyapunov
- srme s eNTs inequality
where Si is the optimal sensor triggering set that mini- ATH. A A
mizes J,(Ss). The sensor cost achieved by} is JI = 1+02 s T 1+02 <0,

r%in Js(Ss). In a similar way we can se&; as the con-

s 2
troller's event-triggering strategy that minimizes then€o for somed; > 0, and

troller cost J.(S., S1) assuming the sensor is the optimal 82Xs +tr(H,R)
event-triggerSI. In this case the controller's cost becomes Gs = 1+02 ’
JI = min J.(Se, ST). The problem of search for the optimal °

triggerincg sets can now be obtained by solving two couplé@ereR =Py

optimization problems. The first optimization problem see

the sensor triggering ses,!, that minimizesJ,(S;). The sec- Jo(Ss) < To(Ss) =tr(QZ) + min{tr(H,R) + (s, As} (8)

ond optimization problem seeks an optimal triggering $kt, -

that minimizes the cosf.(S,, S{). The next two subsections Remark 3.5:For any A and Z > 0, there always exists

present methods for solving these two optimization proklenan H, > 0 and ad? > 0 such that the Lyapunov inequality

A. The optimal and suboptimal triggering sets in sensé?"‘) @lds' We should notice that the greatest singulareval

subsystem of A, 5(A), |s_always greater than or equal to the absolute
i o i , i . value of any eigenvalue ofl. So if we set? to be the value

This subsection first characterizes the optimal triggesiely ¢, .1, that(A) < /1 + 62, thenA/+/1 + o2 is always stable,

minimizing the estimation cosf,. Determining the optimal and there always existi, > 0 such that (3.4) holds for any
triggering set from this characterization has high Com'pm@emi-positive definite matris

tional complexity both in terms of terms of computation time

and space (memory). We therefore present a suboptimal tngl- Optimal and suboptimal triggering sets in controller sub
gering set whose computational complexity is more traetabdystem

and bounds the cost achieved by this suboptimal trigger fromThis subsection first studies the optimal triggering settier

above. The results presented in this subsection were afigin : -
: . i . controller subsystem and the corresponding minimum aeerag
described in [13], so we only review the main results below.

Lemma 3.3:If there exists a bounded functidn, : R" — cost of control. As was found in the preceding subsection,
R and a fini.te.number]’ such that ' direct computation of the optimal triggering set is complex
S

We therefore introduce a suboptimal event-trigger and doun
Jo 4+ hs(egpro(k)) = Gs (hs(e;(F,RO(k))) (4) the performance obtained by this trigger.
Since minimizingJ.(S., Ss) with respect taS, is a discrete
time average optimal control problem, the method in [14] can

G (hs(9)) :min{E(hs(e}F_Ro(k-l- 1))|lexr.ro(k) =0) be applied to our problem. So we have the lemma below

S ' to state the optimal triggering set and cost in controller

+es(6,5:)} subsystem.
then the optimal average cost of remote state estimation is Lemma 3.6:Given S, if there exists a bounded function

, he : R* xR™ — R, and a bounded functiof, : S* — R (S"
JE=tr(Q2) + J, ®) indicates the collection of all subsets ]Efl()mscuch that

and the optimal triggering set in sensor subsystem

5 Jé(Sg)‘ic (ERO(k)aua(k_ 1))
Sh= {9 : E(hs(exp po(k +1))lexrro(k) =0) + 10|l —min { B [he (Tro(k + 1), ua(k)) [Tro (k). ta(k — 1), S.]

< As + E(hs(egp po(k +1))lexrro(k) = 0)} . (6) + C. (Fro(k), ua(k — 1), 8.)}, 9)

'L(CAQATCT + cwCT + V)LT(P,; 1T,

where
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then dynamic behavior ofZro us]? during the interval between
, two consecutive transmissions from controller subsystem t
HCHEPACIHE (10)  actuator subsystem.
and the optimal triggering set in controller subsystem is _ Jc(S¢,Ss) is less if the controller is more aggressive.
Je(Se, Ss) is monotonically decreasing with respect td
gt — { l 0 " <l Tro(k+1) ) [ Tro(k) ] which indicates how aggressive the controller is. The great
c ¢ uq (k) ug(k —1) the p? is, the more aggressive the controller is. So a more
_ aggressive controller will provides a greajer, and hence a
[ h, <l Tro(k +1) ) lessJ.(S., Ss).
n uq (k) The more precious the communication resource between
TR 0 controller and actuator subsystem is, the greater uppencou
[ vk — 1) [ K0 +A } we will have. Tr_ns is easy to .see.from Equatloq (15), since
@ higher communication price.. implies more precious com-
To determine the optimal triggering set in controller subhnunication resource.
system Sf, one must find the functionh., which satisfies A larger triggering set in sensor subsysténresults in a
Equation (9). This equation would be numerically solved t@rger upper bound on the average cost of control. In Section
obtain a concrete representation for the functionhofand IlI, we have said thatl.(Sc, S5) is influenced by the triggering
hence the controller’s event-trigge$. Due to its concrete set in sensor subsystesi,. The second term i/.(S., Ss)
representation, the event-trigger would require a greaf déwvolves all the parameters ifi;, so it is the impact of5; on
of memory to store. We therefore introduce a suboptiméile upper bound on the average cost of controller. This term
triggering set for the controller subsystem which is easy ®(Py,) ' He1uPyl)(As — () reflects how bigS, (centered
computer and store. The next lemma describes this subdptirgout the origin) is. IfS; is big, the value of the second term
triggering set and provides an upper bound on its cost.  of J.(S., Ss) is great, which results in a great upper bound
Lemma 3.7:Let S in Equation (7) be the triggering on the average cost of controller.
] A B From the results in Equation (3), Lemma 3.3, and 3.6, we
set in sensor subsystemd, = o 1 |' ¢ T can give the optimal weakly coupled triggering sets in senso
and controller subsystems, and an upper bound on the optimal

A+BK 0
, Zy = , and Hy, = P} Py, COSt
K 0 0 0 Theorem 3.8:The optimal triggering set in sensor subsys-
iven a quadratic triggering set of controller subsystem  tem Si defined in Lemma 3.3 minimized,(S,), and the
2 optimal triggering set in controller subsystesi defined in

¢ Lemma 3.6 minimizes/.(S., SI). The optimal cost of the

g — IRO k
c closed loop system/* is bounded from above by’ =

k—1)

(B

H,
‘ JI+J1(ST), whereJ! and JI(ST) are described in Equation
a3 HxRO( %+ )‘C}’ (11) (5) and((lg), respectively. (5
where H, > Z, and controller gaink satisfy From the analysis following Lemma 3.3 and 3.6, we know
- ) that the optimal triggering sef! and S/ are hard to compute
Ay HeAuw + (14 62)(Za — He) <0, (12) and store. So suboptimal triggering sets and an upper bound
ATH A+ (1 - p?)(Z, — H,) <0, (13) on the cost of closed loop system triggered by these triggeri

sets are derived, which are computationally effective aagy e
to store. From the results in Lemma 3.1, 3.4 and 3.7, we can
2+p2-1 have the theorem below.

62 + p2 A, (14) Theorem 3.9:Given the triggering set in sensor subsystem

th timal oll tis bounded f b b S, defined in Equation (7) and the triggering set in controller
€ optimal controfier cost 1S bounded from above by subsystemsS, defined in Equation (11), the average cost

for some constani? > 0 and0 < p? < 1, and

<c:

Je(Ss,Se) < Je(Se, Ss) J(Ss,Sc) given by the two weakly coupled triggering sets
52 is bounded from above by (S, S.) = Js(Ss) + Jc(Se, Ss),
62 s 2)\ +F(Phy) " Heyu Prl) (Ns — C5), (15) whereJ,(Ss) and J.(S,, S;s) are defined in Equation (8) and
(15), respectively.
wherea(-) indicates the greatest singular value, dtgl;,, is
the left uppem x n sub-matrix of H,. IV. SIMULATION RESULTS

The upper bound od..(S., Ss), J.(S., Ss), is greater when In this section, an example is used to demonstrate Theorem
the uncontrolled system is more unstable. It is easy to s@®. We first calculate the triggering sefs and S, according
thatJ.(S,, Ss) is monotonically increasing with respectd® to Equation (7) and (11), and search for the controller gdin
which can be seen as a measure of how unstable the mastch that Inequality (13) is satisfied. The system, thenyris r
A, is. The (n + m) x (n + m) matrix A, indicates the with the calculated controller gaifi’, and the transmission is



triggered with the computed triggering sets. Next, the ager V. CONCLUSION AND FUTURE WORK

cost given by simulation is compared with the upper bound

given in Theorem 3.9 to demonstrate Theorem 3.9. Finally, weThis paper presents weakly coupled triggering events in
show the number of transmission times in sensor subsyste¥ent triggered output feedback system with the whole obntr

the number of transmission times in controller subsystet®op closed over wireless network. By 'weakly coupled’, we

and the number of times when both sensor and controll@ean that the triggering events in both sensor and controlle
transmit (concurrent transmission times) to illustratattthe only use local information to decide when to transmit data,
transmission in sensor subsystem doesn’t necessarilgetrigand the transmission in one link doesn’t necessarily trigge
the transmission in controller subsystem, or vice versa. the transmission in other link. We also show that with the
0 ] triggering events and controller we designed, the cost ef th

Let’'s consider the system witd to be 0 101

closed loop system is bounded from above, and an explicit

upper bound on the cost is obtained. Our simulation results

to be [ ! and C to be [ 0.1 1 } The variances of the demonstrate the proposed weakly coupled triggering events
1 and the upper bound on the cost of the closed loop system.

) 0.2 0.1 This paper serves as a foundation for our future work which

system noises aré/ = | ., |, andV = 0.3. The i study the multi sensor systems. We are interested in how

weight matrixZ is chosen to be an identity matrix the cost increases with respect to the number of sensors, and
Given 62 = 1.5, A, = 3, 62 = 1.02 and p. = 0.3, we can the methods to bound the increasing rate.
s ] s ’ c . c — Iy

obtain the triggering set in sensor subsyst&mas below

) » 9 5641 0 ) - ot APPENDIX
e e e <0. ,
KFRO * "KERO 0 4.0543 | KFRO Lemma A.1:Tro(k) and ero(k) are uncorrelated with
the triggering set in controller subsyste$n as below each other. _
) Proof: From the dynamics of the closed system, we can
Tro(k Tro(k derive that
#rok) | |1} Tro(k) < 0.9008), § ,
ug(k—1) ug(k —1) o 3
M, €ro(k) = Aego + w(k — 1)
1.3315  —0.2836 —0.3512 _ ero(k), €xpro € Ss;
where M, = —0.2836 3.6377  2.6808 |, and the ero(k) = exr(k), otherwise.
—0.3512  2.6808  13.7606
controller gainK = [—0.1967 — 0.3133]. The closed loop From the equations above, we can see that(k) is a linear
system is run for3000 steps with different)\.. We first combination ofex (%)), w(ri™), w(rt* +1), -+, w(k).

compare the average cost given by our simulatiwith the From Equation (1) and (2), we can see thab (k) is a lin-
upper bound given by Theorem 3.9,(), and then have a look ¢4 combination of s ( L(k) Té(k)fl), o Trp(Th).

2 ; . e Ts ), Trr(
at the transmission times in sensor subsystem, the trasismis

e SIS since exp (M), w(r®), wrl® + 1), -+, wik) is
::mzz in controller subsystems and the concurrent trarssoms uncorrelated withe (/') for anyl’ < I(k), we can conclude

The left hand side plot of Figure 2 shows that the averaé%athO(k) andero (k) are uncorrelated with each othem

cost given by simulationf) is always bounded from above
by the upper bound given by Theorem 3.8,(). The x-axis A. Proof of Lemma 3.7
of this plot indicates the co_mmunlcatmn price in controlle Before the proof of Lemma 3.7, we would like to state a
subsystem)., and the y-axis is the average cost. we can . : .

. emma which will be used in the proof of Lemma 3.7.
see that for any\., the average cosf (blue star) is always

bounded from above by the upper bound given by Theorer‘qll‘em':'la A.2:Given anyS.. If there eXiStS,a_ functiorf_/:
3.9 (black cross), which demonstrates Theorem 3.9. R™ x R™ — R bounded from below and a finite constafnt

The right hand side plot of Figure 2 shows that thguch that
transmission in sensor subsystem doesn’t always trigger th _ _
— Tro(k) Tro(k)
Jo+ f > C, s Se
ua(k - 1) Ua(k — 1)
F Zro(k +1) Tro(k) g (16)
ua(kz— 1) yMe|
in sensor and controller subsystems, which indicates tiet t -
transmission in sensor subsystem doesn’t always trigger thenJ.(S.) < J..

transmission in controller subsystem, or vice versa. Thig-
uq (k)
transmission in controller subsystem, or vice versa. Proof: See [15]. [ ]

of this plot is the communication price in controllgr, and

the y-axis indicates the transmission times. We can see that
the number of concurrent transmission times (pink circte) i + F
always less or equal to both the numbers of transmissiorstime
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Fig. 2. Simulation results about average cost and trangmnitsnes
1) Proof of Lemma 3.7: transmit information. So the right hand side of Inequalg)X

Proof: According to Lemma A.2, as long as we can fingan be rewritten as

a functionf bounded from below such that the Inequality (16) Zro(k) 2
is satisfied with, = 7., Lemma 3.7 is true. [ Rko . E(llegprok+1)|u.,.)
2 — s »
TRO (k) TRO (k) ’U,a( ) ATH:A.
Let f = + (. We 2
Uq(k — 1) uq(k — 1) _ Tro(k)

i i e i ‘Uegpro(k+1) ¢ 5s) + ¢ + A
will consider two cases, and check whether the Inequaligy (1 , ua(k —1)
holds for both cases. If yes, then Lemma 3.7 is proven. ) ) Za

The first case is when Tro(k) Tro(k)

+
2 uag(k —1) ug(k —1)
ATH A, Z,

+ ¢ < Tro (k)" ZTro (k) + Ac.
H.

H[ xRO

+ E((Plgs)ilHC-,luP};sl)(/\s - CS) + e + Ac
. : : — Tro(k)
In this case, the controller subsystem doesn't transmitegt s<.J . + f )
k. The right hand side of Inequality (16) can be rewritten as ua(k —1)
H 2 The first inequality is from Equation (7), and the second
[ Zro(k

E(HeI_(F,RO(k i 1)H%{C’lu) inequality is from Equation (13) and (14).
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