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We consider the problem of subspace optimization for

centralized noncoherent multiple input-multiple output (MIMO)

radar based on various measures such as capacity, diversity, and

probability of detection. In subspace centralized noncoherent

MIMO radar (SC-MIMO), a subset of stations is selected based

on channel knowledge or channel statistics to reduce system

complexity while simultaneously attempting to optimize the

performance of the reduced-dimension centralized MIMO

radar system. The radar transmitters are assumed to be

sufficiently separated (e.g., at different locations) to yield spatially

white channel transfer gains and are assumed to operate on a

noninterference basis through time-division or frequency-division

multiplexing. Detection optimization for the SC-MIMO system

in a Neyman Pearson (NP) sense is found to be equivalent to

selecting the subspace that maximizes the Frobenius norm of the

corresponding channel matrix. Information-theoretic measures

for capacity and diversity are also applied to the problem of

subspace selection. Channels with temporal coherence times that

are long relative to the radar system’s latencies and channels

with coherence times that are short relative to the radar system’s

latencies are considered. In the former case, metrics are based

upon instantaneous channel estimates, whereas in the latter

case, average channel estimates are used. Numerical analyses

are conducted to illustrate the use of the metrics for optimizing

system performance.
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I. INTRODUCTION

Distributed multiple input-multiple output (MIMO)
radar is a research area that has received increasing
attention lately, see, e.g., [5, 3, 10]. A salient feature
of distributed radar is its ability to simultaneously

engage a target from multiple aspect angles. While
the legacy radar is confined to viewing the target from
a single aspect angle at any given time instant, the
distributed radar utilizes waveforms from spatially
diverse stations to illuminate the target and detect

reflected target energy from multiple aspect angles,
taking advantage of aspect-dependent radar cross
section (RCS) to significantly improve the ability
to detect and track targets. The benefit over a single

station implementation comes at the cost of increased
system complexity including more demanding
inter-station communications for data fusion and
coordination among the stations. Given a multiplicity
of stations, down-selecting the number of stations

used in processing provides one mechanism to reduce
system complexity, where the stations are selected in a
manner that optimizes the performance for the number
of resources that are dedicated to the task. We refer to
this architecture as subspace centralized noncoherent

MIMO radar (SC-MIMO). The SC-MIMO radar
architecture, exemplified in Fig. 1, is characterized
by the optimized selection of a subset of spatially
diverse radar stations and joint processing of the
received signals from this subset at a common fusion

center. The transmitters are assumed to be sufficiently
separated to yield spatially white channel transfer
gains and are assumed to operate on a noninterference
basis through time or frequency multiplexing, which
facilitates both the separation of the signals at the

receivers and the application of associated Doppler
compensation tapering for signal conditioning.
Subspace optimization measures in SC-MIMO are

explored to optimize system performance in terms
of probability of detection, information-theoretic

capacity, and channel diversity, where optimized
system performance in each of these senses is
achieved by selecting the subspace that maximizes
measures associated with the MIMO channel matrix.
Information-theoretic metrics such as capacity and

diversity are considered because of their ability to
characterize MIMO channels in a manner that could
potentially be exploited by an SC-MIMO system. For
the case of SC-MIMO radar detection performance,
joint detection optimization in a Neyman-Pearson

(NP) sense with noncoherent square-law processing is
shown to be equivalent to maximizing the Froebenius
norm of the SC-MIMO radar channel matrix. The
channel capacity measure is optimized by maximizing
the determinant of the channel matrix [6, 12].

Diversity can be optimized by evaluating correlations
between the elements of the channel matrix [8].
These subspace optimization measures are applied
in the case of slowly changing channels wherein the
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Fig. 1. Example of a SC-MIMO radar architecture.

channel changes can readily be tracked and utilized
by the radar system for optimal subspace selection.
Optimization measures are also applied in the case of
channels that change faster than can be tracked and
exploited by the radar system. In this case, average
channel estimates, rather than instantaneous channel
estimates, are employed in the optimization strategies.
The channel capacity measure in this case is achieved
by selecting the subspace that maximizes the sum of
the eigenvalues associated with the corresponding
channel matrix. In relation to the waveform design
approaches addressed in [2], these metrics represent
alternative approaches to optimizing the performance
of a MIMO radar system.
The remainder of the paper is organized as

follows. The system model, including the MIMO
radar channel matrix G is introduced in Section II.
Using this model, Section III provides a theoretical
development of target detection optimization in
centralized MIMO radar. Subspace architectures are
considered in Section IV and the Frobenius norm of
the subspace channel matrix is identified as a measure
for optimizing detection probability in SC-MIMO.
Optimization in channels with long coherence
times (i.e., such that the radar can estimate the
instantaneous channel and exploit this knowledge in
the subspace selection) are addressed, and a numerical
example is given that illustrates the impact of the
subspace dimension of the detection performance.

Information-theoretic optimization measures for
capacity and diversity are also introduced. In
Section V, adaptation of the measures for channels
with short coherence times are addressed. In these
dynamic channels, the radar cannot adequately track
and utilize the instantaneous channel estimate and
must instead resort to exploiting average channel
estimates. Results illustrating the potential for joint
optimization of detection probability, capacity and
diversity are presented based upon the revised metrics.
Section VI contains the conclusions of the paper.

II. SYSTEM MODEL

A general system model, in accordance with
Fig. 1, is given below:

z(t) =

0BBBB@
z1(t)

z2(t)

...

zK(t)

1CCCCA=
0BBBB@
g11(t) ¢ ¢ ¢ g1K(t)

g21(t) ¢ ¢ ¢ g2K(t)

...
...

...

gK1(t) ¢ ¢ ¢ gKK(t)

1CCCCA

£

0BBBB@
s1(t¡ ¿1)
s2(t¡ ¿2)

...

sK(t¡ ¿K)

1CCCCA+w(t) (1)

=G(t)S(t)+w(t) (2)
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where

zl(t) =
KX
k=1

zlk(t) =
KX
k=1

glk(t)sk(t¡ ¿k),

l = 1,2, : : : ,K, k = 1,2, : : : ,K (3)

are the received waveforms at each receiver, zlk is the
received signal component at the lth receive station
from the kth transmit station, glk is the complex
channel transfer gain from the kth transmit station to
the lth receive station, ik(t¡ zk) is the orthogonal unit
norm waveform from the kth transmit station delayed
by ¿k, and w(t) is additive Gaussian noise. Note that
G 2 CK£K is not necessarily symmetric (for example
if the radar stations transmit on different frequencies)

and that each element glk in G is proportional to the

square root of the target’s RCS and will depend on

the target aspect angle relative to both the transmit

station and the receive station (see Fig. 1). In general,

glk will also be a function of the directional transmit
and receive antenna gains, propagation losses, and

other link budget parameters. We assume that the

stations are deployed in a manner that results in

spatially white, but temporally colored, channel

transfer gains.

III. TARGET DETECTION OPTIMIZATION IN
CENTRALIZED MIMO RADAR

We present formulations based on NP detection for

the centralized detection approach. The development

is similar to one found in [4], although we assume

the utilization of either short-term statistics or

long-term averages, leading to noncentral chi-square

distributions for the alternative hypothesis, H1.
We also employ weighted noncoherent detection,

where the contributions from the radar stations are

normalized relative to the measured noise level at each

station. This serves to accommodate asymmetric noise,

such as intentional jamming, that may be present

in the RF environment. We also link the optimal

detection solution with the maximization of a channel

matrix norm, giving a mechanism for subspace

optimization by expeditiously selecting a subset of

radar stations employed in detection processing.

Assuming that waveform orthogonality is

preserved, the outputs of the bank of matched filters

ẑlk
¢
=

Z
zl(¿)s

¤
k(t¡ ¿)d¿ (4)

can be expressed as

H0 : ẑlk = nlk

H1 : ẑlk = glk + nlk
, l = 1,2, : : : ,K, k = 1,2, : : : ,K

(5)
where nlk is the matched filter output’s noise
component, which is assumed to be zero-mean

complex Gaussian with variance ¾2nlk . The channel
transfer gain glk is a complex random variable that

is approximately constant over the coherence time.

Appropriate Doppler compensation of the received

signal is assumed to have been employed at each

receiver. Doppler compensation involves compensating

for Doppler shift imparted on the received signal

using methods such as those discussed in [9],

[14], [13], [15], and [16]. Doppler compensation

in the noncoherent MIMO radar case is enabled

by the assumption of orthogonal waveforms. The

orthogonal property can be achieved through various

tactics, including time multiplexing (e.g., where each

transmitter is assigned to a time slot) or frequency

multiplexing (e.g., where each transmitter is assigned

to a different frequency). This stands in contrast to the

methods of [1] in which the radar waveforms occupy

the same bandwidth and where pseudo-orthogonality

is achieved through waveform design.

The proposed model exploits short term statistics

associated with the bistatic returns, leading to

returns (represented by glk) that exhibit negligible
variability over the coherence time. Normalizing each

output with respect to the noise level (which may

be measured, e.g., through constant false-alarm rate

(CFAR) techniques), the normalized outputs are

H0 : zlk = ñ

H1 : zlk = g̃lk + ñ
, l = 1,2, : : : ,K, k = 1,2, : : : ,K

(6)

where the noise components are zero-mean Gaussian

with variance ¾2. The probability density function
(pdf) of zlk under each hypothesis is

pZ(zlk)»
½CN (0,¾2) under H0

CN (g̃lk,¾2) under H1
(7)

where CN (¹,¾2) denotes a complex normal
distribution with mean ¹ and variance ¾2. The
test static is obtained by noncoherently combining

the normalized filter outputs. The corresponding

distributions of the test statistic y = kzk2 for each
hypothesis is given by

y = kzk2 =

8><>:
¾2

2
Â2
2K2

H0

(s2 +¾2)

2
Â02
2K2

H1

(8)

where Â2d denotes a chi-square random variable

having d degrees of freedom [11] and Â02d denotes a
noncentral chi-square random variable [11] having d
degrees of freedom and a noncentrality parameter

s2(G) =
KX
i=1

KX
j=1

g̃2ij : (9)

For optimal detection in the NP sense, the relations

between the probability of false alarm, Pfa, the
probability of detection, Pd, and the threshold are
governed by NP Theorem. The probability of false
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alarm is given by

Pfa =

Z 1

±

p(y jH0)dy = 1¡FÂ2
2K2

μ
2±

¾2

¶
: (10)

For a desired Pfa and with the knowledge of ¾
2, ± may

be set using

± =
¾2

2
F¡1
Â2
2K2

(1¡Pfa) (11)

where F¡1
Â2
2K2

is the inverse cumulative distribution

function of a chi-square random variable with 2K2

degrees of freedom. Note that ± is independent of
the MIMO radar channel gains. The probability of

detection is given by

Pd =

Z 1

±

p(y jH1)dy (12)

= 1¡FÂ02
2K2

μ
2±

(s2(G)+¾2)

¶
(13)

= 1¡FÂ02
2K2

μ
¾2

(s2(G)+¾2)
F¡1
Â2
2K2

(1¡Pfa)
¶

(14)

where FÂ02
2K2
is the cumulative distribution function of

a noncentral chi-square random variable with degree

2K2.

IV. SUBSPACE OPTIMIZATION FOR CENTRALIZED
DETECTION: THE CASE OF SHORT TERM
STATISTICS

The concept of subspace optimization for

centralized MIMO radar processing may be addressed

using results from the above theoretical development.

Subspace optimization assumes that a set of radar

stations are available for organization into a MIMO

radar system. Rather than utilizing all of the resources

for a given detection problem, the premise is that it

might be more desirable from a resource utilization

perspective to employ only a subset of these resources

for a given detection problem, where the resources are

carefully selected to ensure that detection performance

does not suffer substantially. We assume a centralized

topology, and hence the central processor needs

access to all of the K statistics in order to identify the

subspace that will suitably optimize performance. A

centralized approach based upon short-term statistics

can readily be achieved in systems where information

sharing between nodes does not introduce latencies

that are on the order of the temporal decorrelation

times of the channel transfer gain statistics. Where

latencies associated with information sharing exceeds

a major fraction of the temporal decorrelation times,

subspace optimization based on short-term statistics

will be marginalized. In this case, optimizations

based upon longer term average statistics (as

described in Section V) would be more appropriate.

A downselection approach has the benefit of reducing

the overall complexity of the problem in terms of

required resources, the backhaul communications for

coordination and passing of data (once a subspace

is assigned), and also the signal processing at each

radar station and at the fusion center. In this section,

short-term statistics are assumed. This approach would

be representative of implementations with low-latency

inter-station communications. In the next section,

longer term statistics that exploit average channel

characteristics are addressed.

For the specific case of short-term statistics, the

following theorem and the subsequent corollary define

the mechanism for optimizing selection of the radar

stations for subspace centralized detection.

THEOREM 1 Let G1,G2, : : : ,GL represent a set of L
N £N channel matrix realizations. Given a constant

false alarm rate, Pfa, and assuming a constant noise
variance ¾2 at the receivers, the channel matrix
realization with the largest Froebenius norm yields the

largest probability of detection in the NP sense.

PROOF For identical ¾2 at all receivers, and a
constant prescribed Pfa, the threshold ± is given
by (11) and is constant. Using ± with (9) in (15)
where N is used in place of K and G® in place of

G (to enable indexing among the different channel

realizations), and recognizing that the cumulative

distribution function is nonincreasing with increasing

s2(G®) leads to the conclusion that Pd is monotonically
nondecreasing with s2(G®), and hence the maximum
s2(G®) leads to the highest Pd. But the Froebenius
norm of each channel realization, G®, with ® 2
f1, : : : ,Lg, is given by

kG®kF =
vuut NX

i=1

NX
j=1

jg̃®,ij j2 =
q
s2(G®)

=

q
Tr[GH®G®] =

vuut NX
`=1

¸®,` (15)

where the g̃®,ij are the normalized channel transfer
gains of G® for i,j = 1, : : : ,N, the ¸®,` are the

eigenvalues of GH®G®, and the dependence of s
2 on

the channel realization G® is expressed. Therefore it

follows that the channel realization yielding the largest

Froebenius norm maximizes s2(G®) and hence the
probability of detection in the NP sense. As evidenced

in (16), this metric corresponds to a maximization of

the sum of the eigenvalues of GH®G® over the index

range ®= 1, : : : ,L.

From a systems perspective, this result implies that

maximum system performance generally cannot be

achieved if each radar station independently attempts

to maximize its own monostatic return (e.g., through

beamsteering, maneuvers, etc.). Rather, improved

performance is more readily achieved if the radar

stations take on a global perspective in their responses
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Fig. 2. Detection performance for subspace MIMO radar using Frobenius norm with Pfa = 10
¡5.

in order to maximize the sum of the reflected energy

received by all of the sensors. We also note that the

requirement for identical ¾2 implies that the stations
influenced by noise in the environment, such as

from a local interferer, will incur channel power

transfer attenuations in the signal processing that are

inversely proportional to the variance of the noise, i.e.,

all contributing signals are normalized to have unit

variance.

COROLLARY 1 Under similar assumptions as in

Theorem 1, but with K >N stations, the subset of N
stations yielding the channel matrix with the largest

Froebenius norm provides the maximum probability of

detection in the NP sense, assuming a constant false

alarm rate.

PROOF Define L= (K N) as the number of possible
N £N channel realizations. Application of Theorem 1

then proves the corollary.

Computational simulations were employed

to evaluate the relative performance of subspace

configurations. Fig. 2 depicts results using (15) and

(16) that illustrate the detection performance of the

subspace optimization approach as a function of the

SNR (defined here as jGHGj2=¾2 where G 2 RN£N
and K is the number of available stations) and the

subset size. For these simulations, a topology of K = 6
stations was assumed, and subspace sizes of two,

three, and four radar stations were considered using

a false alarm probability of Pfa = 10
¡5. The channel

gains assumed in the investigation were drawn from

a CN (0,1) distribution. Ten channel realizations were
averaged to obtain the results. The figure indicates

performance advantages of K-choose-N topologies

over topologies with N fixed stations. The results also

illustrate the performance dependence on the subset

size.

The understanding that the NP formulation
for subspace optimization in centralized MIMO
radar is equivalent to optimizations based on the
Frobenius norm of the MIMO radar channel state
matrix invites consideration of other channel-based
information-theoretic measures to optimize MIMO
radar system performance in some sense. We consider
here optimization metrics that have been reported for
MIMO system capacity [6, 12] and MIMO system
diversity [8]. The information-theoretic formulations
are based upon the channel product GHG and the
correlation matrix derived from the elements of the
channel matrix G, respectively. Diversity applies to
long-term statistics and is projected to be useful when
assigning MIMO resources over long periods of time,
i.e., when resource assignment updates are infrequent.
Capacity metrics apply to both short-term and longer
term statistics and provide a measure of the ability
of the MIMO system to convey information. This
attribute might be instrumental in applications where
radar transmissions serve a dual purpose of conveying
communications information while also providing
illumination signals for radar detection.

A. Capacity Measure

The (theoretical) capacity of a MIMO
communications system with a corresponding channel
matrix G® 2 CN£N is determined from

C = log

μ¯̄̄̄
I+

P

No
GH®G®

¯̄̄̄¶
(16)

where P is the signal power and No is the power
spectral density of the noise. Given a set of L N £N
channel realizations, G1,G2, : : : ,GL, it is evident
that channel capacity is maximized by selecting the
channel matrix Gmax 2 fG1,G2, : : : ,GLg for which
the determinant jGH®G®j is maximized over ®, where
®= 1,2, : : : ,L. This is equivalent to selecting the
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Fig. 3. Probability of detection versus capacity for each of the 4-station subsets.

TABLE I

Scaled Channel Gains Employed in Computational Studies

Channel Gains (columns are Tx Stations, rows are Rx Stations)

1 2 3 4 5 6

1 ¡0:62+0:51i 1:37¡ 0:20i ¡0:02¡ 1:90i ¡0:13+0:17i ¡0:31¡ 0:12i ¡0:02¡ 1:86i
2 ¡0:60¡ 0:05i ¡1:61¡ 0:63i 1:68¡ 2:15i 0:27¡ 0:48i 2:12¡ 1:43i 0:17¡ 0:25i
3 ¡0:53+0:27i ¡0:73+1:33i 1:15¡ 0:71i 0:02¡ 1:55i 2:52+1:42i 1:13+0:17i

4 ¡0:59+0:72i ¡1:48+0:51i 1:03¡ 0:39i ¡0:26+0:03i 1:39¡ 1:11i ¡0:40+0:13i
5 0:69¡ 0:46i ¡0:32+0:47i ¡0:99¡ 0:38i ¡0:10¡ 1:61i 0:94+0:54i ¡0:85+0:68i
6 ¡0:45¡ 0:11i 0:52¡ 1:07i ¡0:89+1:29i 1:48+1:43i ¡0:91¡ 0:72i 0:03¡ 0:09i

channel realization that maximizes the product of the

eigenvalues of GH®G® over ® since

jGH®G®j=
NY
`=1

¸®,`: (17)

Therefore, this strategy maximizes the product of the

eigenvalues of GH®G® over ® instead of the sum of the

eigenvalues, leading to a different form of subspace

optimization. The capacity measure yields detection

performance levels that are less than or equal to that

for the Frobenious norm measure. The degradation

will generally depend upon the specific channel

matrix realization. This form of optimization may be

useful to MIMO radar configurations that attempt to

employ radar signals that double as communications

signals (e.g., for sharing information between the

radar systems). For example, a weighted combination

of the sum of the eigenvalues and the product of

the eigenvalues of GH®G® might be employed to

ensure that both radar and communications functions

could be productively employed. For the case of the

single channel realization represented in Table I,

the detection performance and the channel capacity

for each of the six-choose-four configurations

are indicated in Fig. 3. The results illustrate the

potential tradeoff that occurs when trying to jointly

maximize the detection performance and the MIMO

communications capacity. For example the 2nd

subset yields maximum capacity with suboptimal

detection performance, whereas the 11th subset yields

maximum probability of detection but with suboptimal

capacity. While the capacity and the probability of

detection metrics are not necessarily optimized by

the same subspace, it is evident that subpaces leading

to good results for one also tend to yield reasonable

results for the other. This would be expected given the

inherent relationship between the sum of eigenvalues

and the product of eigenvalues.

B. Diversity Measure

A second subspace optimization approach that also

finds a basis in wireless communications is one that

maximizes diversity, where the diversity is measured

by [8]

ª(R®) =

μ
TrR®
kR®kF

¶2
(18)

where R® = E[vec(G®)vec(G®)
H] 2 CN2£N2 is a

correlation matrix between the elements of G®
and vec(X) is the column stacking operation. This
approach is expected to provide robust detection
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Fig. 4. Diversity measure as function of inter-station temporal correlation. All inter-station correlations are assumed identical.

performance through long-term diversity when severe

time-varying channel fading is prevalent and the

latencies encountered in subspace formation and

coordination among the stations exceeds the coherent

time of the fading channels. Fig. 4 illustrates the

magnitude of the system diversities that are achievable

in subspaces of dimension R2, R3, and R4 as a
function of the inter-station temporal correlations

in channels with coherence times less than system

latencies. Because temporal diversity estimation

requires longer term statistics, we provide comparative

examples of diversity performance in the next section.

V. SUBSPACE OPTIMIZATION. LONGER TERM
STATISTICS

In this section, the case of long-term channel

statistics is considered. Under these conditions,

the system does not exploit knowledge of the

instantaneous channel matrix. Rather, it exploits

knowledge of the average channel matrix

product E[GH®G®] and the correlation matrix
R® = E[vec(G®)vec(G®)

H]. The need to resort

to longer term statistics would be appropriate

in scenarios involving radar stations with high

intercommunications and processing latencies

such as might be experienced with widely-spaced

radar stations. We examine subspace optimization

based upon 1) probability of detection using the

Frobenius norm of the average channel estimates,

2) the capacity based on the average channel

estimates, and 3) the diversity based on the correlation

matrix R®, where these matrices take on the
following form for a 2£ 2 subspace MIMO radar
configuration:

R® =

0BBBBB@
jg®,1,1j2 g¤®,1,1g®,1,2½®,1,2 g¤®,1,1g®,2,1½®,1,3 g¤®,1,1g®,2,2½®,1,4

g¤®,1,2g®,1,1½®,2,1 jg®,1,2j2 g¤®,1,2g®,2,1½®,2,3 g¤®,1,2g®,2,2½®,2,4

g¤®,2,1g®,1,1½®,3,1 g¤®,2,1g®,1,2½®,3,2 jg®,2,1j2 g¤®,2,1g®,2,2½®,3,4

g¤®,2,2g®,1,1½®,4,1 g¤®,2,2g®,1,2½®,4,2 g¤®,2,2g®,2,1½®,4,3 jg®,2,2j2

1CCCCCA (19)

and

E[GH®G®] =

" jg®,1,1j2 + jg®,2,1j2 g¤®,1,1g®,1,2½®,1,2 + g
¤
®,21g®,2,2½®,3,4

g¤®,1,2g®,1,1½®,2,1 + g
¤
®,2,2g®,2,1½®,4,3 jg®,1,2j2 + jg®,2,2j2

#
(20)

where the g®,i,j represent the average channel
transfer gains associated with G® and ½®,i,j = ½®,j,i
corresponds to the correlation between the ith and
jth channel elements in vec(G®). Extensions to larger
configurations can be similarly computed.

A. Probability of Detection Based on Average Channel
Estimates

Use of long-term statistics is applicable to

operation in time-varying channels. To circumvent the
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Fig. 5. Comparative performance of station configurations. (¤) correspond to 3-dimensional results. (²) corresponds to projection onto
Pd versus capacity plane. (£) corresponds to projection onto Pd versus diversity plane. ( ) corresponds to projection onto capacity

versus diversity plane.

difficulties faced in computing the average probability

of detection for each subset over these time-varying

fading channels, it is proposed instead to employ a

computationally simpler metric based on the average

channel product. This strategy results in replacing the

channel matrix product GH®G® with its expected value
E[GH®G®]. Thus, the proposed measure for estimating
detection performance uses (15) and (16), but where

Tr[E[GH®G®]] is used instead of Tr[G
H
®G®] in the

computation of s2(G®). The resulting detection metric,

P̂d is

P̂d(G®) = 1¡FÂ02
2K2

μ
¾2

(Tr[E[GH®G®]] +¾
2)
F¡1
Â2
2K2

(1¡Pfa)
¶
:

(21)

B. Capacity Measure Based on Average Channel
Estimates

We adopt a multiplexing gain metric proposed

in [7] to estimate average capacity based upon the

average channel product estimate E[GH®G®]. The
metric is given by

C = Tr[D(¾2I+D)¡1] (22)

where D is a diagonal matrix containing the
eigenvalues of E[GH®G®]. Note that this measure
is based on an optimization of the sum of the

eigenvalues and hence should yield a strong

correlation with the Pd measure. Whereas application
of the metric defined in (18) requires tracking

the instantaneous channels, the application of the

metric in (23) is less stringent and instead requires

tracking average channel statistics, which change

more slowly. Hence, while the performance of this

approach is moderated due to averaging, so are the

update requirements, lending the approach to practical

implementation in highly variable channels.

C. Example Performance Estimates for Longer Term
Statistics

In this subsection, the relative performance as

defined in (19), (22), and (23) is computed. For

the computations, the channel gains in Table I

are employed along with randomized correlation

coefficients uniformly distributed over the closed

interval [0 1] to generate E[GH®G®] and R®. The
resulting averages are then employed to compute

metrics for each of the channel realizations

corresponding to the radar station subsets (assuming a

six-choose-four downselection process). The resulting

measures for each subset are plotted in Fig. 5. Joint

optimization of the subspace can be achieved through

optimization with respect to all three metrics, or

with respect to either the Pd versus capacity, the
capacity versus diversity, or the Pd versus diversity
projections. Note the high correlation that is evident

between the capacity and the probability of detection

measures.

VI. CONCLUSIONS

Operationally, SC-MIMO radar involves the

selection and utilization of a subset of available radar

stations to reduce system complexity while attempting

to optimize the performance of a centralized MIMO

radar system. Subspace optimization criteria based

on the MIMO channel matrix have been proposed,

where the optimization is characterized in terms of

probability of detection, communications capacity,

and channel diversity. Subspace selection to optimize

NP detection statistics in SC-MIMO was found
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to be equivalent to the selection of the subspace

channel matrix yielding the maximum Frobenius

norm, which is equivalent to maximizing the sum

of the eigenvalues of the channel matrix product

GHG. The subspace size can be adapted to channel
conditions to limit resource utilization while meeting

prescribed performance levels. A diversity metric was

also discussed that is useful for robust performance

in fading channels. Achievable diversities for systems

employing this measure are reported as a function of

the inter-station temporal correlations. Instantaneous

capacity measures drawn from information theory

are also employed. The measures were applied to

channels with long coherence times that enabled

the radar system to exploit instantaneous channel

estimates, and to channels that changed more quickly

than could be tracked or exploited by the radar

system. In this latter case, average channel estimates,

rather than instantaneous channel estimates, were

applied to estimate the optimization measures.

When channel averaging is employed, the capacity

measure reduces to a measure that is proportional

to the sum of the eigenvalues of the channel matrix

product, and therefore is highly correlated to the

detection metric. The analysis assumes the availability

of six radar stations from which subsets were

selected for detection processing and illustrates that

joint optimization based upon all three metrics or

optimization based upon a pair of measures using

projections onto either the Pd versus capacity plane,
the Pd versus diversity plane, or the capacity versus
diversity plane is possible.
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