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Abstract— State dependent event-triggered systems sample
the system state when the difference between the current

state and the last sampled state exceeds a state-dependen

threshold. These systems exhibit theninimum attention property
when the intersampling time increases monotonically as a
function of the sampled state’s distance from the origin. Tle
minimum attention property may partly explain why event-
triggered systems sometimes exhibit intersampling pericglthat
are much longer than those found in comparably performing
periodically sampled control systems. This paper establies
sufficient conditions under which an event-triggered systa is
minimally attentive. These conditions depend on the relatie
rates of growth in the class K functions used in dissipative
characterizations of the input-to-state stability (ISS) poperty.
Since these functions determine the type of controller used

by the system, these results suggest that a suitable choice

of controller can increase the intersampling periods seenni
event-triggered control systems. In other words, the desigy
of minimally attentive event-triggers with sufficiently long
sampling periods may really be an issue of nonlinear contrdér
design.

I. INTRODUCTION

fast sampling frequencies (also known as Zeno sampling
[6]). In [5] a lower bound on the intersampling time was
tpresented which was a function of the past sampled state;
thereby suggesting that with the appropriate choice ofteven
triggering threshold and controller, one might obtain desys
exhibiting the minimum attention property [6]. Very preeis
bounds on the intersampling time were developed in [7],
[4] for homogeneous systems without disturbances. These
bounds could be scaled with respect to system state in a
manner that exhibits the minimum attention property. These
prior results suggest that it may be possible to design event
triggered systems that have the minimum attention property
Recent steps in this direction were taken in [4].

The design methods used in [4] represent a first step
toward addressing the minimum attention problem in event-
triggered systems. That paper sought controllers that max-
imize the intersampling time subject to an event-trigggrin
condition, where the intersampling time is estimated using
methods from [8]. The method, however, can be computa-

Event-triggered control systems are of great interesten tﬁlonally Intensive.

development ohetworked control systenj§]. State depen-

The approach adopted in this paper seeks an approach

dent event-triggered systems [2] are sampled-data systethat simultaneously designs both the event-triggering rul
that sample the system state when the difference betweand the controller so that the minimum attention property is
the current state and the last sampled state exceeds a stattieved. Unlike the methods in [4], we are less interested i
dependent threshold. These systems exhibit the so-callewhximizing the intersampling times, but are more concerned
minimum attention property3], [4] where intersampling with finding the conditions on the event-trigger under which
time goes to infinity as the system state approaches the can guarantee in a computationally efficient manner that
system’s equilibrium. The minimum attention property ighe system possesses the minimum attention property. In
of great interest because systems with this property tenmhrticular, this property makes the following contribuiso

to exhibit very long intersampling times when operated

close to the equilibrium point. This property, therefore,  We develop event-triggering rules that assure the input-

may partly explain why event-triggered systems sometimes

exhibit intersampling periods [5] that are much longer than e
the periods in comparably performing periodically sampled
control systems. Event-triggered systems possessingitie m
imum attention property, therefore, may be of great prattic

value in reducing the complexity of the communication
infrastructure supporting networked control systems.

to-state stability (ISS) of a nonlinear system;

We establish sufficient conditions on the ISS dissipa-

tive inequalities that ensure the event-triggered system
possesses the minimum attention property;

We use universal constructions for ISS controllers [9] to

develop minimum attention event-triggered controllers.

The scaling behavior of event-triggered intersamplindf also appears this approach can be used to assure integral
times has attracted a great deal of attention. In [2] it wal§iput-to-state stabilityi(SS) [10] of event-triggered systems.
shown that these times could be bounded away from ZeI0The remainder of this paper is organized as follows.

in a manner that prevented the occurrence of arbitrarilgection Il introduces the mathematical preliminaries t®ec
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[l provides the formulation of the event-triggered feedba
systems; Lower bounds on the intersampling periods are
derived in Section IV and the minimum attention property
is discussed in Section V. A controller design method is
presented in Section VI. Simulation results are in Section
VII. Finally, Section VIII draws the conclusion.



[l. MATHEMATICAL PRELIMINARIES wheref(-) : R” x R™ x R! — R" is locally Lipschitz. The

Throughout this paper the linear space of reatectors input signalw(-) : R* — W C R’ is an essentially bounded
will be denoted a®”™ and the set of non-negative reals will Signal such thafw|, . = w, a constant. Theontrol signal
be denoted a®*. The Euclidean norm of a vectar ¢ u(") : RT = R™is
R™ will be denoted a$z|. Consider the real-valued function A

. u = k(&) (5)
xz(-) : Rt — R™. x(t) denotes the value takes at time
t € RT The essential supremum of this function is definedvhere the controller functioh(-) : R™ — R™ is continuous,
as and thesampled statei(-) : R™ — R", is piecewise
constant. Given a continuous function: R™ — RP, we

define thenormalized measurement erras
where|z(t)| is the Euclidean norm of the vecte(t) € R". ~ .
The fllnf:t?(')na: will be said to be essentially (bz)unded if n(t) = n@(t)) = n=(?)).
lz|c.. = M < oo and the linear space of all essentiallyNote that if we choos@(-) to be the identity function, then
bounded real valued functions will be denoted&g. A  the local error is exactly the measurement eef@y = & (¢)—
given real valued functioi’(-) : R™ — R is positive definite x(¢); if n(-) = k(-), the error is thecontrol error u(t) —
if V(x) > 0 for all z # 0. The function will be said to be k(x(t)).
radially unbounded i (z) — co as|z| — co. The function Let us introduce a sequence sdmpling instants
V will be said to besmoothor C* if all of its derivatives
exist and are continuous. T ={r0, 71, ,7i, -}

A function a: RT — Rt is cIass_IC if it is continuous, wherer; € R+ andr < 754y for all i = 0,1,2,..., .
strlctl_y increasing and(0) = O._If ais qu:bourlded th_en the 11is means that the sampled stateiig) = =(r;) for all
function IS of CIaS.gCOO' A function :.R xR™ = Ris of t € [ri,7y1) and alls = 0,1,2,...,00. By the definition
classCL if 5(:, 1) is classk for each fixedt = Oar!dﬁ(r, t) of 7, one can see that the magnitude of the normalized
decreases t0 as¢ — oo for each fixedr > 0. Given two o« aant errdi(r;)| = 0. For the system in equation

i o i
functionsa, 8 : Rt — R, we say theorder of 3 is greater (4), the sequenc® = {r;}>°, is generated by an inductive

i B(r)
thana if oy — 0 asr = 0. method. Letry = 0. Thei + 1st sampling instant;; is the

Consider a general system of the form time instant whenever

&= f(z,w) 1)

_ o _ _ In(x(7:)) = n(x()] = 0(j=(8)]) (6)
wheref is locally Lipschitz andw is an essentially bounded _ ) N
input disturbance. The functiar(-) : R+ — R" that satisfies IS true, wheref(-) : R* — R is any continuous positive
this system equation is called tisgstem’s state trajectory ~definite function. Mathematically;;,., is defined by

This system isnput-to-state stabl€lSS) with respect to .
s system isnpu 415S) with resp rier = min{t > 7 | Ina(r)) — n(a(t))] > 6(lz(0)}.

w if there existsy € K> and g € KL such that for any
initial state.(0) and everyw € Lo, the system’s resulting  The inequality in equation (6) is called avent-trigger It
state trajectory satisfies the following inequality, represents atate-dependerthreshold that forces the system
lz(t)] < B(Jz(0)],£) +v(|w]c) (2 in equgtion (4) to resample the system state whenever th_e
normalized measurement error gets too large. The combi-
for all # RJ_F' . , nation of equations (4) and (6) is called a state-dependent
Thg fupc_uo_nV(-) _:.IR{ — _R_ is callt_ad anlSS-Lyapunov event-triggerectontrol systems [2].
function if it is positive deﬁmte, radially l_anounded and Consider the event-triggered system in equations (4) and
smooth such that there exist claks, functionsa and v (6) which generates the state trajectoryand measured
such that state trajectoryz. Define z; € R™ to be equal to the
V= B_Vf(x’w) < —a(|z]) +~v(jw)) (3) state measurement at time instant i.e. &; = #(r;) =
O z(r;). LetT = {(&;,7;)};-, be a sequence. The sequence,
for all x € R™ and all w € R*. The existence of an I will be called the system'deedback informatiorsince
ISS-Lyapunov function}’, is necessary and sufficient forit represents thénformation transmitted over the control
the system in equation (1) to be ISS. We will sometimesystem’s feedback channel.
refer to the inequality in equation (3) as the I8iSsipative Definition 3.1: Arbitrarily given a positive constari, the
inequality. event-triggered system iminimally attentiveat the equilib-
1. EVENT-TRIGGEREDSYSTEMS rium = = 0, if for any e > 0, there exists) > 0 such that
for any |#;] <4,

|x| .. = esssup |z(t)|
t

Let us consider a nonlinear system. The system staje
R+ — R satisfies the following differential equation Ti=7it1—1i >T — e @)

i = f(z,u,w) (4)  Moreover if T, — oo asi; — 0, then the event-triggered
z(0) = a0 system isstrictly minimally attentive



To be minimally attentive requires that tlir@ersampling By the event-triggering rule in equation (6) and the assumed
period T; = 7,41 — 7; IS bounded below by a desired lowerevent-triggerd, we know that
boundT as #; (the sampled system state) approaches the _
system’s equilibrium point at the origin. In other words, as il <yt (M) )
the system settles into its equilibrium, the frequency with x(J])
which information is transmitted over the feedback channgle can see that
becomes smaller. When the event-triggered system islgtrict ]
minimally attentive, it means th&t, goes to infinity asi; — V < —1-=a)a(z]) +y3(w) + y2(Jw|)
0. This notion of minimum attention control was introduced < —(1—=o)a(z|) + 7(w)
in [4]. A good example of minimally attentive event-trigger
systems will be found in the homogeneous event-triggeraherey = 42 + v3. This inequality means that the event-
systems found in [7]. triggered system is ISS with respect to the external distur-
The main problem considered in this paper concerns th@ncew. Also it suggests inequality (10). u
design of the event-triggering functighin equation (6) and Since the system is ISS and the disturbance is bounded, we
the state feedback controlléf-) : R — R™ such that the know the state trajectory stays in a compact set, denoted by
event-triggered system in equations (4) and (6) is input-td\ € R". If we use the event-trigger in (6) to trigger the next

state stable and minimally attentive. sampling instant, thewj(r;y1)| = 0(|Zi+1|) holds. Then a
lower bound on the intersampling peridd = 7,41 — 7; IS
IV. LOWERBOUNDS ONINTERSAMPLING INTERVAL given by the following proposition.

. ) . . Proposition 4.3:Under the assumptions of Proposition
Let us consider the system in equation (4) with thg 5 here exist positive real constapish and§ such that
controller in equation (5). We can rewrite it as the intersampling period; satisfies the following inequality

r = 7k r ) 8 A'L'
q s p A (&4, k(2),0)| + 0w )
and|w|z,. = w. Proof: By Proposition 4.2, the event-triggered system

Assume that there exist a smooth positive definite functiog |ss. Since the external disturbaneés bounded, the state
V() : R* = R, a contlnumis, IocaIJIry Lipschitz func- trajectoryx(t) is inside a compact set for all> 0. Let us
tion n(-) : R — R?, x : RT — RT, and functions consider the error system equation foover [r;, 7;,1):
a1, o, q,7v1,72 € Ko such that

e(t) = —f(z,k(&;),w)

on(|a]) < V(z) < as(lal) (©) o) = 0.

ov
— k(2 < — i
ox F@, k(@) w) < —afel) + Xz al) + 2wl Since f is locally Lipschitz with respect ta, k(z;), and

i +
wherei; = 5(i) — n(z). Note that if x(|z|) is a constant, there existly, L, € R™ such that

thenV is an ISS control Lyapunov function (ISS-CLF) for d ) . R

the system with respect to the eripand the disturbance. at ()l < [e(t)] = £ (@ — e, k(3:), w)l
Remark 4.1:1f a(|x|) is replace byx(z) that is positive < |f(&i,k(),0)| + Lyle] + La|w] (12)

definite andy, 1,72 € K but notKC.,, the analysis in this < |f(@i, k(2),0)| + Lile| + Low

paper is still applicable to ensure integral ISS (iISS) & th

resulting event-triggered control system [10]. holds for allt € [7;, Tit1).

Proposition 4.2: Consider the system in equation (8) with  This is a linear differential inequality where(r;)| = 0.
V satisfying equation (9). If the event-triggered threshol&Ve can therefore integrate it to see that faf [7;, 7:+1),
function, #, in equation (6) takes the following values ) < | (@, k(24),0)| + Low (eLl(t—n) _ 1) .

sl — et (@0l + () = L
lz) =\ ——gm——
x(J2]) holds.

for any0 < o < 1, wherevs € K, then the event-triggered  Sincer(-) is locally Lipschitz, there existd € R* such
system is ISS w.r.tw and there exists a positive constdnt  that

(13)

such that _ A
) ) 1 = In(@:) — ()|
()] < arloasoa”! <M) (10) < Lla; — o(t)] = Lle(®) (14)
. holds for allt € [, Ti41)-
holds for anyt > 7", wheres € (o, 1). Combining equations (13) and (14) yields

Proof: Under the assumptions, we know that

|ﬁ(t)| < |f(j?1’ k(jjl)voﬂ + LQ@ (eLl(tf‘ri) _ 1)

Vo< —a(ll) + x(2 D (7]) +y2 (). - Ly/L



Note that the next sampling instant occurs when Case Il: Wheny is non-decreasing, we can find an upper
[7(Ti+1)] = 0(Jz(7i41)]). We can therefore see that bound onz;. ;. By Proposition 4.2, we know that there exists
. . . _ T a positive constarit™* such that inequality (10) holds for any
0(2is1]) < (NIf @i, k(@:), 0)] + 6w) (" — 1) t > T*. Therefore, wherr;,; > T*,

wherep =Ly, A = Lil 5= LLLIZ, andT; = 7,41 — 7; is the . 1 (72(@) + ~3(@)
ith intersampling interval. Solving the above inequality fo [Zis1] S cazoa (T) :
T; yields the desired lower bound,

Sincey is non-decreasing, when,; is sufficiently large,

771 3 (W)
b\ xea; toazoa1 (20050
o(|&;|) + ow

T, > llog (1 4 9(|£Ci+1|) ) )
P

A f (@i, k(24),0)| + 6w

1
m 7, > —-log|1l+
P

V. MINIMUM ATTENTION PROPERTY

With the bounds derived in Proposition 4.3, we are able

. o : In this case, ifXO(Jél‘loonoof1 grows slower than a linear
to discuss the minimum attention property of the system. Tf?mction we can still choose; () to be large such that the
ensure ISS, we selected an event-trigger such that '

bound in the preceding inequality is close to the desifed
. 1 (oa(|Zir1]) + y3(w) Case lll: Wheny is not monotonic, we can still bourid.
0(1Zi41]) =
where0 < o < 1. Recall thaty;, x and « are classC,

X(|Zix1]) Sincex(t) is inside a compact set, there must be a positive
constant such thaty(|@;+1]) <&. It means

functions that defind/(z) for the original system angs is ) -1 (%(vﬂ))
any classkC function. Also note thaif is locally Lipschitz. T, > —log |1+ 7£7
Therefore, there must exist a claksfunction ¢ such that p ¢(|2i]) + 6w

for any z; < A, Although this lower bound still approaches a positive

A f (@i, k(25),0)] < o(|24]) (15) constant whenz; is close to zero, this constant may not
i o be arbitrarily specified by choosing. It is because when
whereA is the compact set thaf() stays inside. _ we adjustys, the value of¢ also changes. Therefore in this
We discuss the minimally attentive behavior in two dif-case we can only say that the period is lower bounded by a
ferent cases; first with disturbances and then without G'Stupositive constant, but not the minimum attention property.

bances. Remark 5.1:Note that (strictly) minimal attention prop-
A. Essentially Bounded Disturbances erty does not implies thal; goes to the desired or infinity

asi increases. It simply means that the closer the state is
to the origin, the less frequent information is transmitted
When the disturbance is present, it is quite possiblefigt

This case meangu(t)| < w for anyt > 0. According to
the bound in equation (11) and the definition &ifz;+1]),

we have R always stay far from the origin due to the disturbance. Ia thi
T > llog <1 4 O(|Zi+11) ) case, frequent data transmission is still necessary, éika i
T Alf (&, k(2;),0)] + dw system is minimally attentive.
1 it (Xai(fi‘)) B. No Disturbances
p o(|24]) + dw Whenw = 0, the event-trigger ensures asymptotic stability
of the system. Let
We now need to further discussin three cases: cal|#ia])
Case I: When x is non-increasing, it is easy to see, by w(|@iga]) =" (7”1) a7)
inequality (16), X(|Zir1l)
1 [ (@) Note thatu is not necessary a clags function because of
1 g4 ( x(0) ) x- The intersampling time satisfies:
T, > —log|l+—-=% R
p o(|2:) + 0w T llog (1 + (| Zig1]) )
: T Alf (&, k(2:),0)]
Note that we can always choosgsuch that this lower bound 1 (&is1])
is larger than a pre-specified constantas 2; approaches > Zlog (1 + %) ) (18)
P T

the origin. Therefore, the system is minimally attentiveeT
cost of having this property is the degradation in the le¥el o To ensure strictly minimally attentive behavior, we expect
disturbance attenuation, although ISS is still guarantiesl! .

) ) : ST Irere T . o(|2])
reflected in the disturbance term in the dissipative indétyal m 7(@_ N
which is v, () + v3(w), but notys (w). The system is not [Bel=0 o _
strictly minimally attentive because a@s — 0, we see that Therefore, we need to discuss the relation amprand ¢.
T; approaches a finite constant. The results are presented as follows:

(19)



Proposition 5.2:Under the assumptions of Proposition Remark 5.3:Equation (20) implies that the triggering

4.2, the following statements are true: threshold converges to a positive constant or infinity as the
1) If u(s) converges to a positive constamtor infinity ~ State approaches the origin. Note that the clagey is to the
ass goes to 0, i.e. origin, the slower the normalized measurement eriér),

) grows and such growth will stop at the origin. Since the
lim u(s) = a or oo, (20)  threshold remains at the same levelof co) asz(t) — 0, it

will take more and more time for the error to hit the threshold

2) tl?en equation (19) holds. u(|z(t)]), which impliesT; goes to infinity ag increases.
Remark 5.4:By the definition of ¢ in (15), equation
. 9(s) (21) in fact places a requirement on the system dynamic
lim =0, (22) .
520 s f(z,k(x),0). It means that the order of the function
. 9(s) f(z, k(x),0) must be higher than linear functions. This result
lim =0, (22) . . . .
5—0 p(s) is consistent with the work in [7] focusing on homogeneous
lim p(s) = 0, (23) systems, which is a special case of this work.
. 50 Remark 5.5:Equations (22) places the constraints on the
then equation (19) holds. event-trigger, wherg(z) is the triggering threshold. It means

Proof: Consider Statement 1. Since the system igat the order ofs must be less than or equal to that of
asymptotically stable; — 0 meansz;, — 0. Therefore, (or f(z, k(x),0). Note that the order of is greater than
with equations (20) and (18), it is obvious that equatior) (1%hat of linear function by equation (21)). By the definition
holds. of u, we know that it provides the balance between the

When lim;_,o p(s) = 0, we show an upper bound on orders ofy, and % One way of ensuring equation (22)

;F?I(AH?D tfw}t converges to 0 a;| — 0. Recall that by is to make the order ofy; greater than or equal té‘%.
the event-trigger, In this case, the order gi will be less than that of linear
pw(|Zic1]) = (@) — (@) functions and therefore less than the orderdiy equation
> Llds| — Lldi] (21). Equation (22) therefore establishes the relatiowéen
- the ISS dissipative inequality in equation (9) and the event
holds, wherel, € RT is Lipschitz constant of;. It means  ensuring minimally attentive behavior.
1 Remark 5.6:Equation (23) simply means that the order
|Zi] < [Eiv1| + 7 p(|Zi41]) 2 Y(|&ipal)- (24)  of « in the ISS dissipative inequality in equation (9) must
be higher thany.
Remark 5.7:For polynomial systems, there is a simpler
e(zil) o ¢@(2inl) (25) W& to state the results in Proposition 5.2. Assume that the

Applying this inequality into equation (18) implies

w(|&ip1])  — w(|Zig1]) polynomial f (x, k(x),0) is bounded by
To complete the proof, we need to show d
limz, 50 % = 0, which is equivalent to showing o(|z]) = Za”x pi
: W (Zig1]) _ i=
limyz, 00 =y = O 0

_ Note that for positive cqnstantﬁ,SQ in a compact set, and the event-trigger is
since¢ € K, there must exisby, bs, b3, by € R such that

G(s1 + 82) < bid(basy) + bsd(basa). 7(t)] = clz(t)]?.

Therefore, since:; 1, in a compact set, let = |i;.,| and ~ Then equation (20) implieg < 0, equation (21) is equiv-
alent to sayingmin;cgo,... 4y pi > 1, equation (22) means

¢ (1(s)) < bi(bas) + bz (b‘WT(S)> min;e(o,... ¢y pi > ¢, and equation (23) implieg > 0.
holds according to the definition @f in equation (24), which VI. CONTROLLERDESIGN
means
, This section studies the construction of the feedbackidaw
& (1(s)) bi¢(b2s) + b3 (%(S)) to guarantee the conditions for minimally attentive bebavi
1(s) < 1(s) The key is to ensure inequality (9) with some specified
ba(s) X, 1. We provide a method to construkt The idea takes
b1¢(bas) b3¢( L ) advantage of the universal formula in [9]. One thing worth
1(s) + 1(s) (26) mentioning is that the proposed feedback law is not the only

law for minimum attention property. Our discussion focuses
With equations (21) - (23), we knolim,_,o+ & = 0. on control-affine systems:
Applying this into equation (25) implies equation (19) hald

[ ] = f(z,w) + g(x)u. (27)




Given a tuple of(«, x,v1), assume that there is a CLF
V(x) such that

al(|x|) S V(x) S a2(|x|) § 1W
wt {5 few) + Gralo)ur ) o T e e
< =3a(lz]) + x(lzDr () +72(w) o 5 1o 15 20
with & € R and somex;, as, 72 € K. Let

oV 10° o © ° o ’ © 1

alr,w) = —f(x,w 3 LePo & 98 o¥e) O

( ) a ( ) Ex @@ % 8@8 Oéﬁj
b(z) = a_V () 107 %O @ o ° ,
ox '

0 5 1b 1‘5 20

Define

Time

c(:c) - Igfqlux {a(:z:, w) + b(:c)u N X(|x|)71(|u|) N 72(1”)} ’ Fig. 1. States and periods in an event-triggered system distiurbances
(28) and the feedback law in (30)
To ensure that(x) is well defined, it is sufficient to demand:
(1) v2(w) grows faster tham(z,w) at infinity for fixed z;

(2) v1 grows faster than any linear functions at infinity, or VIl SIMULATIONS

71 is linear and|b(z)| — x(|z|) < 0. This section provides simulation results that illustrate
As it is in [9], choosez(x) such that minimally attentive behavior in event-triggered feedback
systems. The system under consideration is
c(x) + a(lz]) <é(z) <c(z) 4+ 2a(x (29) ) w
(x) + alla]) < &) < c(2) + 20(a) P

2
holds for anyz € R™. . " (B + y;) +31
The feedback control lak(z) is defined by g2 = gy)(5e” =5+ u) =2+

) _ wherey = (y{,y5 )" andg : R? — R is a continuous
k() { —C(z)JrVlzgg‘zﬂb(m)HbT(x), b(z) #0 (30) function to be determined. The initial condition satisfies

0, b(z) = [5(0)]0o < 5.
ConsiderV (y) = y3 + y1y2 + y3:
Note that this feedback law is almost smooth. With this law, ' (291 + y2)w
we can verify that inequality (9) is satisfied with the pre- Vo= 3yt Y192
specified(a, x, 1) as follows: (251 +y2)? +1

+9(y)(2y2 + y1)(5e¥" — 5+ u) — 3y;

V.= al@w) + b)) + b(z)a We first setg(y) = y1 and

< o@) +b(@)k(z) + x(z))ra(al) + y2(w) i i
vi(lal) = [al, v2(jwl) = [wl,
wherea = k(z) — k(). With inequality (29), x(Jy|) = \/g|y|27 a(ly|) = |y|4
V < é(z) —a(|z])+b(@)k(z) +x(|z))y1 (Ja]) + 72 (w) (31) Then we can verify:(y) in equation (28) is well defined and
It follows from the result in [11] that c(y) = =3yi — 3z + y1(2y2 + 1) (5" — 5).
_ With ¢(y) = ¢(y)+1.5a(|y|), we have the feedback Iak\( ).
&(z) — blz)k(z) < 0. The disturbance satisfiesw|,_ < 20 andvs(s) = 2. We

run the system with the event-trigger in equation (6) where
o = 0.8 andn = k. Figure 1 shows the simulation results.
V < —a(lz]) + x(|z[)n (|a]) + 72 (w). The top plot shows the state trajectories of the system,twhic
oscillate around the origin. The bottom plot is the periods
Note that in this formulationp(-) = k(-) and the choice generated by the event-triggering scheme. We can see that
of 5 is independent of this feedback law. One thing wortlalthough the period is not converging to infinity, it remains
mentioning is that whenv = 0 and the pre-specified, bounded from below, which is consistent with our theoretic
X satisfies"‘g"i") — 0 as |z|] — 0, we have to resort to results.
the second statement in Proposition 5.2 to guarantee theThe feedback law proposed in Section VI is not the unique
minimally attentive behavior. In that case, we still need tsolution to the minimum attention property. A much simpler
check if the feedback law in (30) ensures equations (21) amantroller law is

(22). u=—5e% +5, (32)

Therefore, inequality (31) implies




State
N
L

0 10 20 30 40 50
Time
10°
(@)
ol o o o O ©o © © o 00
100 H 00, o o B
B e} o o e
3
107 1
1074 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Time
Fig. 2. States and periods in an event-triggered system distiurbances

and the feedback law in (32)

which implies |f(y, k(y),0)| < ¢(Jy|) = aly|> with some
positive constant.
ConsiderV (y) = y? + y1y2 + y3:
(2y1 + y2)w
(2y1 +y2)* +1
+59(y) (22 + y1) (e — ™) — 3y;
< —15[y[* +5V5[yllg(y)]e” — e[ + |w] (33)

Then we know that

vV o= -3y} +

a(s) = 1.5s%,
n(y) = e’

X(s) = 5V5s>
7(8) = 12(s) = s.

Still, the disturbancev satisfies|w|z_ < 20, v3(s) =
ando = 0.8. The event-trigger is then

L2ly[* +1
5V5ly2

The simulation result is plotted in Figure 2. The resultkloo
very similar to the first simulation.

The third simulation considers the case whare= 0.
Thenu(s) = ;=%s°. Itis easy to verify that the assumptions
in Statement {of Proposition 5.2 hold. With= 0.8, the
event-trigger is

S
20"

|eyl _ 6.731| _

1.2]y|?
5vV5
The simulation result is plotted in Figure 3. Obviously, the
states converge to the origin and the periods go to infinit
which implies the strictly minimally attentive behavior.
We then change the event-trigger to be
L.2Jy[?
5V5

In this case, the threshold has the same ordep.dsigure

|ey1 _ e@1| _

(34)

|ey1 _ e@1| _

(35)
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bancesg(y) = y1, event-trigger in (36)



In the next simulation, we construct another event, whic
can also ensure strictly minimally attentive behavior witt
w = 0. Let us define a compact séty| € R? | |y;| < 5}.
Then forz(t) inside this set) satisfies

Vo< 15[y + 5V5y[* max{|evt], [e% [} (el — 1)
< —1.5|y|* +1659.3]y[}(elvr =0l — 1),
Then
a(s) =155, x(s) = 1659.3s2
n(y) ~u 7i(s) =e€” =1
o) =t (14 52 ) e =

Still, the assumptions in Statement 2 of Proposition 5.2 ce
be verified. The event-trigger is
|y1—ﬂ1|=1n(1+ )

1.2|y[?
1659.3
From Figure 5, we can see that although the periods still
go to infinity, but the growth is very slow. It is because the
event-trigger is chosen in a very conservative way. It shows
that there may be multiple ways to design event for minimumnyy;
attention property. The challenge is how to make the event
less conservative. . 2]
Finally, we setg(y) = |y/*>! and still w = 0. ThenV
satisfies

(36) Fig.

(3]
(4]

B

(6]

—1.5[y|* + 5V/5y[* e — ],

vV <

which meanspu(s) = W with ¢ = 0.8. Therefore
the assumptions in Statement 1 of Proposition 5.2 hold. Th
event-trigger is

1.2
5VBly [
Whenu = 0, the system is unstable. With the controller in

(32) and the event above, the system is asymptoticallyestabl7
and strictly minimally attentive, as shown in Figure 6.

|ey1 _ el)1| _

(37)

VIIl. CONCLUSIONS [8]

This paper studies the event-triggered feedback systems
possessing the minimum attention property. We develop
event-triggering rules that assure 1SS or iISS of a nontineal®l
system and establish sufficient conditions that ensure the
minimum attention property. A universal construction f86  [10]
(iISS) controllers is to develop minimum attention event-
triggered controllers. [11

There are still several open problems. For example, when
constructing the controller using the method in Section VI
for asymptotic stability ¢ = 0), if ‘;‘(E‘Ii‘lg — 0 as|z| — 0,
we have to resort to the second statement in Proposition 5.2
for the minimally attentive behavior. That means we have to
go back and check if the constructed feedback law ensures
equations (21) and (22). One question, therefore, is how to
construct a feedback law such that evetiif,| o &i‘) —

0, equations (21) and (22) can be automatically satisfied. A
further question is that “is it possible to relax the assuomst

in equations (21) and (22)?” These issues will be addressed
in the future.
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bancesg(y) = |y|3'!, event-trigger in (37)
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