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Abstract— State dependent event-triggered systems sample
the system state when the difference between the current
state and the last sampled state exceeds a state-dependent
threshold. These systems exhibit theminimum attention property
when the intersampling time increases monotonically as a
function of the sampled state’s distance from the origin. The
minimum attention property may partly explain why event-
triggered systems sometimes exhibit intersampling periods that
are much longer than those found in comparably performing
periodically sampled control systems. This paper establishes
sufficient conditions under which an event-triggered system is
minimally attentive. These conditions depend on the relative
rates of growth in the classK functions used in dissipative
characterizations of the input-to-state stability (ISS) property.
Since these functions determine the type of controller used
by the system, these results suggest that a suitable choice
of controller can increase the intersampling periods seen in
event-triggered control systems. In other words, the design
of minimally attentive event-triggers with sufficiently long
sampling periods may really be an issue of nonlinear controller
design.

I. I NTRODUCTION

Event-triggered control systems are of great interest in the
development ofnetworked control systems[1]. State depen-
dent event-triggered systems [2] are sampled-data systems
that sample the system state when the difference between
the current state and the last sampled state exceeds a state-
dependent threshold. These systems exhibit the so-called
minimum attention property[3], [4] where intersampling
time goes to infinity as the system state approaches the
system’s equilibrium. The minimum attention property is
of great interest because systems with this property tend
to exhibit very long intersampling times when operated
close to the equilibrium point. This property, therefore,
may partly explain why event-triggered systems sometimes
exhibit intersampling periods [5] that are much longer than
the periods in comparably performing periodically sampled
control systems. Event-triggered systems possessing the min-
imum attention property, therefore, may be of great practical
value in reducing the complexity of the communication
infrastructure supporting networked control systems.

The scaling behavior of event-triggered intersampling
times has attracted a great deal of attention. In [2] it was
shown that these times could be bounded away from zero
in a manner that prevented the occurrence of arbitrarily

Xiaofeng Wang is with the department of Mechanical Science and
Engineering, University of Illinois at Urbana-Champaign,Urbana, IL 61801,
USA, e-mail: wangx@illinois.edu; Michael Lemmon is with the department
of Electrical Engineering, University of Notre Dame, NotreDame, IN
46556, USA, e-mail:lemmon@nd.edu. The authors gratefullyacknowledge
the partial financial support of the National Science Foundation NSF-ECCS-
0925229.

fast sampling frequencies (also known as Zeno sampling
[6]). In [5] a lower bound on the intersampling time was
presented which was a function of the past sampled state;
thereby suggesting that with the appropriate choice of event-
triggering threshold and controller, one might obtain a system
exhibiting the minimum attention property [6]. Very precise
bounds on the intersampling time were developed in [7],
[4] for homogeneous systems without disturbances. These
bounds could be scaled with respect to system state in a
manner that exhibits the minimum attention property. These
prior results suggest that it may be possible to design event-
triggered systems that have the minimum attention property.
Recent steps in this direction were taken in [4].

The design methods used in [4] represent a first step
toward addressing the minimum attention problem in event-
triggered systems. That paper sought controllers that max-
imize the intersampling time subject to an event-triggering
condition, where the intersampling time is estimated using
methods from [8]. The method, however, can be computa-
tionally intensive.

The approach adopted in this paper seeks an approach
that simultaneously designs both the event-triggering rule
and the controller so that the minimum attention property is
achieved. Unlike the methods in [4], we are less interested in
maximizing the intersampling times, but are more concerned
with finding the conditions on the event-trigger under which
we can guarantee in a computationally efficient manner that
the system possesses the minimum attention property. In
particular, this property makes the following contributions.

• We develop event-triggering rules that assure the input-
to-state stability (ISS) of a nonlinear system;

• We establish sufficient conditions on the ISS dissipa-
tive inequalities that ensure the event-triggered system
possesses the minimum attention property;

• We use universal constructions for ISS controllers [9] to
develop minimum attention event-triggered controllers.

It also appears this approach can be used to assure integral
input-to-state stability (iISS) [10] of event-triggered systems.

The remainder of this paper is organized as follows.
Section II introduces the mathematical preliminaries; Section
III provides the formulation of the event-triggered feedback
systems; Lower bounds on the intersampling periods are
derived in Section IV and the minimum attention property
is discussed in Section V. A controller design method is
presented in Section VI. Simulation results are in Section
VII. Finally, Section VIII draws the conclusion.



II. M ATHEMATICAL PRELIMINARIES

Throughout this paper the linear space of realn-vectors
will be denoted asRn and the set of non-negative reals will
be denoted asR+. The Euclidean norm of a vectorx ∈
R
n will be denoted as|x|. Consider the real-valued function

x(·) : R+ → R
n. x(t) denotes the valuex takes at time

t ∈ R
+ The essential supremum of this function is defined

as

|x|L∞
= ess sup

t
|x(t)|

where|x(t)| is the Euclidean norm of the vectorx(t) ∈ R
n.

The functionx will be said to be essentially bounded if
|x|L∞

= M < ∞ and the linear space of all essentially
bounded real valued functions will be denoted asL∞. A
given real valued functionV (·) : Rn → R is positive definite
if V (x) > 0 for all x 6= 0. The function will be said to be
radially unbounded ifV (x) → ∞ as|x| → ∞. The function
V will be said to besmoothor C∞ if all of its derivatives
exist and are continuous.

A function α : R+ → R
+ is classK if it is continuous,

strictly increasing andα(0) = 0. If α is unbounded then the
function is of classK∞. A functionβ : R+×R

+ → R is of
classKL if β(·, t) is classK for each fixedt ≥ 0 andβ(r, t)
decreases to0 as t → ∞ for each fixedr ≥ 0. Given two
functionsα, β : R+ → R, we say theorder of β is greater
thanα if β(r)

α(r) → 0 asr → 0.
Consider a general system of the form

ẋ = f(x,w) (1)

wheref is locally Lipschitz andw is an essentially bounded
input disturbance. The functionx(·) : R+ → R

n that satisfies
this system equation is called thesystem’s state trajectory.

This system isinput-to-state stable(ISS) with respect to
w if there existsγ ∈ K∞ and β ∈ KL such that for any
initial statex(0) and everyw ∈ L∞, the system’s resulting
state trajectory satisfies the following inequality,

|x(t)| ≤ β(|x(0)|, t) + γ(|w|L∞
) (2)

for all t ∈ R
+.

The functionV (·) : R+ → R is called anISS-Lyapunov
function if it is positive definite, radially unbounded and
smooth such that there exist classK∞ functionsα and γ
such that

V̇ =
∂V

∂x
f(x,w) < −α(|x|) + γ(|w|) (3)

for all x ∈ R
n and all w ∈ R

k. The existence of an
ISS-Lyapunov function,V , is necessary and sufficient for
the system in equation (1) to be ISS. We will sometimes
refer to the inequality in equation (3) as the ISSdissipative
inequality.

III. E VENT-TRIGGEREDSYSTEMS

Let us consider a nonlinear system. The system statex(·) :
R

+ → R
n satisfies the following differential equation

ẋ = f(x, u, w) (4)

x(0) = x0

wheref(·) : Rn ×R
m × R

l → R
n is locally Lipschitz. The

input signalw(·) : R+ →W ⊂ R
l is an essentially bounded

signal such that|w|L∞
= w, a constant. Thecontrol signal

u(·) : R+ → R
m is

u = k(x̂) (5)

where the controller functionk(·) : Rn → R
m is continuous,

and the sampled state, x̂(·) : R
+ → R

n, is piecewise
constant. Given a continuous functionη : R

n → R
p, we

define thenormalized measurement erroras

η̃(t) = η(x̂(t))− η(x(t)).

Note that if we chooseη(·) to be the identity function, then
the local error is exactly the measurement errore(t) = x̂(t)−
x(t); if η(·) ≡ k(·), the error is thecontrol error u(t) −
k(x(t)).

Let us introduce a sequence ofsampling instants,

T = {τ0, τ1, · · · , τi, · · · }

where τi ∈ R
+ and τi < τi+1 for all i = 0, 1, 2, . . . ,∞.

This means that the sampled state isx̂(t) = x(τi) for all
t ∈ [τi, τi+1) and all i = 0, 1, 2, . . . ,∞. By the definition
of η̃, one can see that the magnitude of the normalized
measurement error|η̃(τi)| = 0. For the system in equation
(4), the sequenceT = {τi}∞i=0 is generated by an inductive
method. Letτ0 = 0. The i+1st sampling instantτi+1 is the
time instant whenever

|η(x(τi))− η(x(t))| ≥ θ(|x(t)|) (6)

is true, whereθ(·) : R
+ → R is any continuous positive

definite function. Mathematically,τi+1 is defined by

τi+1 = min
t
{t > τi | |η(x(τi))− η(x(t))| ≥ θ(|x(t)|)}.

The inequality in equation (6) is called anevent-trigger. It
represents astate-dependentthreshold that forces the system
in equation (4) to resample the system state whenever the
normalized measurement error gets too large. The combi-
nation of equations (4) and (6) is called a state-dependent
event-triggeredcontrol systems [2].

Consider the event-triggered system in equations (4) and
(6) which generates the state trajectoryx and measured
state trajectoryx̂. Define x̂i ∈ R

n to be equal to the
state measurement at time instantτi, i.e. x̂i = x̂(τi) =
x(τi). Let I = {(x̂i, τi)}∞i=0 be a sequence. The sequence,
I will be called the system’sfeedback informationsince
it represents theinformation transmitted over the control
system’s feedback channel.

Definition 3.1: Arbitrarily given a positive constantT , the
event-triggered system isminimally attentiveat the equilib-
rium x = 0, if for any ǫ > 0, there existsδ > 0 such that
for any |x̂i| ≤ δ,

Ti = τi+1 − τi > T − ǫ. (7)

Moreover if Ti → ∞ as x̂i → 0, then the event-triggered
system isstrictly minimally attentive.



To be minimally attentive requires that theintersampling
period Ti = τi+1 − τi is bounded below by a desired lower
boundT as x̂i (the sampled system state) approaches the
system’s equilibrium point at the origin. In other words, as
the system settles into its equilibrium, the frequency with
which information is transmitted over the feedback channel
becomes smaller. When the event-triggered system is strictly
minimally attentive, it means thatTi goes to infinity aŝxi →
0. This notion of minimum attention control was introduced
in [4]. A good example of minimally attentive event-triggered
systems will be found in the homogeneous event-triggered
systems found in [7].

The main problem considered in this paper concerns the
design of the event-triggering functionθ in equation (6) and
the state feedback controllerk(·) : Rn → R

m such that the
event-triggered system in equations (4) and (6) is input-to-
state stable and minimally attentive.

IV. L OWER BOUNDS ON INTERSAMPLING INTERVAL

Let us consider the system in equation (4) with the
controller in equation (5). We can rewrite it as

ẋ = f(x, k(x̂), w) (8)

and |w|L∞
= w̄.

Assume that there exist a smooth positive definite function
V (·) : R

n → R, a continuous, locally Lipschitz func-
tion η(·) : R

n → R
p, χ : R

+ → R
+, and functions

α1, α2, α, γ1, γ2 ∈ K∞ such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (9)
∂V

∂x
f(x, k(x̂), w) ≤ −α(|x|) + χ(|x|)γ1(|η̃|) + γ2(|w|)

where η̃ = η(x̂) − η(x). Note that ifχ(|x|) is a constant,
thenV is an ISS control Lyapunov function (ISS-CLF) for
the system with respect to the errorη̃ and the disturbancew.

Remark 4.1:If α(|x|) is replace byα(x) that is positive
definite andχ, γ1, γ2 ∈ K but notK∞, the analysis in this
paper is still applicable to ensure integral ISS (iISS) of the
resulting event-triggered control system [10].

Proposition 4.2:Consider the system in equation (8) with
V satisfying equation (9). If the event-triggered threshold
function,θ, in equation (6) takes the following values

θ(|x|) = γ−1
1

(

σα(|x|) + γ3(w̄)

χ(|x|)

)

for any 0 < σ < 1, whereγ3 ∈ K, then the event-triggered
system is ISS w.r.t.w and there exists a positive constantT ∗

such that

|x(t)| ≤ α−1
1 ◦ α2 ◦ α−1

(

γ2(w̄) + γ3(w̄)

1− σ̂

)

(10)

holds for anyt ≥ T ∗, whereσ̂ ∈ (σ, 1).
Proof: Under the assumptions, we know that

V̇ ≤ −α(|x|) + χ(|x|)γ1(|η̃|) + γ2(|w|).

By the event-triggering rule in equation (6) and the assumed
event-triggerθ, we know that

|η̃| < γ−1
1

(

σα(|x|) + γ3(w̄)

χ(|x|)

)

.

We can see that

V̇ < −(1− σ)α(|x|) + γ3(w̄) + γ2(|w|)
< −(1− σ)α(|x|) + γ̄(w̄)

where γ̄ = γ2 + γ3. This inequality means that the event-
triggered system is ISS with respect to the external distur-
bancew. Also it suggests inequality (10).

Since the system is ISS and the disturbance is bounded, we
know the state trajectory stays in a compact set, denoted by
Λ ∈ R

n. If we use the event-trigger in (6) to trigger the next
sampling instant, then|η̃(τi+1)| = θ(|x̂i+1|) holds. Then a
lower bound on the intersampling periodTi = τi+1 − τi is
given by the following proposition.

Proposition 4.3:Under the assumptions of Proposition
4.2, there exist positive real constantsρ, λ and δ such that
the intersampling periodTi satisfies the following inequality

Ti ≥
1

ρ
log

(

1 +
θ(|x̂i+1|)

λ|f(x̂i, k(x̂i), 0)|+ δw̄

)

. (11)

Proof: By Proposition 4.2, the event-triggered system
is ISS. Since the external disturbancew is bounded, the state
trajectoryx(t) is inside a compact set for allt ≥ 0. Let us
consider the error system equation forė over [τi, τi+1):

ė(t) = −f(x, k(x̂i), w)
e(τi) = 0.

Sincef is locally Lipschitz with respect tox, k(x̂i), and
w, there existL1, L2 ∈ R

+ such that

d

dt
|e(t)| ≤ |ė(t)| = |f(x̂− e, k(x̂i), w)|

≤ |f(x̂i, k(x̂i), 0)|+ L1|e|+ L2|w| (12)

≤ |f(x̂i, k(x̂i), 0)|+ L1|e|+ L2w̄

holds for all t ∈ [τi, τi+1).
This is a linear differential inequality where|e(τi)| = 0.

We can therefore integrate it to see that fort ∈ [τi, τi+1),

|e(t)| ≤ |f(x̂i, k(x̂i), 0)|+ L2w̄

L1

(

eL1(t−τi) − 1
)

. (13)

holds.
Sinceη(·) is locally Lipschitz, there existsL ∈ R

+ such
that

|η̃(t)| = |η(x̂i)− η(x(t))|
≤ L|x̂i − x(t)| = L|e(t)| (14)

holds for all t ∈ [τi, τi+1).
Combining equations (13) and (14) yields

|η̃(t)| ≤ |f(x̂i, k(x̂i), 0)|+ L2w̄

L1/L

(

eL1(t−τi) − 1
)



Note that the next sampling instant occurs when
|η̃(τi+1)| = θ(|x(τi+1)|). We can therefore see that

θ(|x̂i+1|) ≤ (λ|f(x̂i, k(x̂i), 0)|+ δw̄)
(

eρTi − 1
)

whereρ = L1, λ = L
L1

, δ = LL2

L1
, andTi = τi+1 − τi is the

ith intersampling interval. Solving the above inequality for
Ti yields the desired lower bound,

Ti ≥
1

ρ
log

(

1 +
θ(|x̂i+1|)

λ|f(x̂i, k(x̂i), 0)|+ δw̄

)

.

V. M INIMUM ATTENTION PROPERTY

With the bounds derived in Proposition 4.3, we are able
to discuss the minimum attention property of the system. To
ensure ISS, we selected an event-trigger such that

θ(|x̂i+1|) = γ−1
1

(

σα(|x̂i+1 |) + γ3(w̄)

χ(|x̂i+1|)

)

where0 < σ < 1. Recall thatγ1, χ and α are classK∞
functions that defineV (x) for the original system andγ3 is
any classK function. Also note thatf is locally Lipschitz.
Therefore, there must exist a classK function φ such that
for any x̂i ∈ Λ,

λ|f(x̂i, k(x̂i), 0)| ≤ φ(|x̂i|) (15)

whereΛ is the compact set thatx(t) stays inside.
We discuss the minimally attentive behavior in two dif-

ferent cases; first with disturbances and then without distur-
bances.

A. Essentially Bounded Disturbances

This case means|w(t)| ≤ w̄ for any t ≥ 0. According to
the bound in equation (11) and the definition ofθ(|x̂i+1|),
we have

Ti ≥ 1

ρ
log

(

1 +
θ(|x̂i+1|)

λ|f(x̂i, k(x̂i), 0)|+ δw̄

)

≥ 1

ρ
log



1 +
γ−1
1

(

γ3(w̄)
χ(|x̂i+1|)

)

φ(|x̂i|) + δw̄



 . (16)

We now need to further discussχ in three cases:
Case I: When χ is non-increasing, it is easy to see, by

inequality (16),

Ti ≥ 1

ρ
log



1 +
γ−1
1

(

γ3(w̄)
χ(0)

)

φ(|x̂i|) + δw̄



 .

Note that we can always chooseγ3 such that this lower bound
is larger than a pre-specified constantT as x̂i approaches
the origin. Therefore, the system is minimally attentive. The
cost of having this property is the degradation in the level of
disturbance attenuation, although ISS is still guaranteed. It is
reflected in the disturbance term in the dissipative inequality,
which is γ2(w̄) + γ3(w̄), but notγ2(w̄). The system is not
strictly minimally attentive because aŝxi → 0, we see that
Ti approaches a finite constant.

Case II: Whenχ is non-decreasing, we can find an upper
bound onxi+1. By Proposition 4.2, we know that there exists
a positive constantT ∗ such that inequality (10) holds for any
t ≥ T ∗. Therefore, whenτi+1 ≥ T ∗,

|xi+1| ≤ α−1
1 ◦ α2 ◦ α−1

(

γ2(w̄) + γ3(w̄)

1− σ̂

)

.

Sinceχ is non-decreasing, whenτi+1 is sufficiently large,

Ti ≥ 1

ρ
log











1 +

γ−1
1

(

γ3(w̄)

χ◦α−1
1 ◦α2◦α−1

(

γ2(w̄)+γ3(w̄)

1−σ̂

)

)

φ(|x̂i|) + δw̄











.

In this case, ifχ◦α−1
1 ◦α2◦α−1 grows slower than a linear

function, we can still chooseγ3(w̄) to be large such that the
bound in the preceding inequality is close to the desiredT .

Case III: Whenχ is not monotonic, we can still boundTi.
Sincex(t) is inside a compact set, there must be a positive
constantξ such thatχ(|x̂i+1|) ≤ ξ. It means

Ti ≥ 1

ρ
log



1 +
γ−1
1

(

γ3(w̄)
ξ

)

φ(|x̂i|) + δw̄



 .

Although this lower bound still approaches a positive
constant whenxi is close to zero, this constant may not
be arbitrarily specified by choosingγ3. It is because when
we adjustγ3, the value ofξ also changes. Therefore in this
case, we can only say that the period is lower bounded by a
positive constant, but not the minimum attention property.

Remark 5.1:Note that (strictly) minimal attention prop-
erty does not implies thatTi goes to the desiredT or infinity
as i increases. It simply means that the closer the state is
to the origin, the less frequent information is transmitted.
When the disturbance is present, it is quite possible thatx(t)
always stay far from the origin due to the disturbance. In this
case, frequent data transmission is still necessary, even if the
system is minimally attentive.

B. No Disturbances

Whenw̄ = 0, the event-trigger ensures asymptotic stability
of the system. Let

µ(|x̂i+1|) = γ−1
1

(

σα(|x̂i+1 |)
χ(|x̂i+1|)

)

. (17)

Note thatµ is not necessary a classK function because of
χ. The intersampling time satisfies:

Ti ≥ 1

ρ
log

(

1 +
µ(|x̂i+1|)

λ|f(x̂i, k(x̂i), 0)|

)

≥ 1

ρ
log

(

1 +
µ(|x̂i+1|)
φ(|x̂i|)

)

. (18)

To ensure strictly minimally attentive behavior, we expect

lim
|x̂i|→0

φ(|x̂i|)
µ(|x̂i+1|)

= 0. (19)

Therefore, we need to discuss the relation amongµ andφ.
The results are presented as follows:



Proposition 5.2:Under the assumptions of Proposition
4.2, the following statements are true:

1) If µ(s) converges to a positive constanta or infinity
ass goes to 0, i.e.

lim
s→0

µ(s) = a or ∞, (20)

then equation (19) holds.
2) If

lim
s→0

φ (s)

s
= 0, (21)

lim
s→0

φ (s)

µ(s)
= 0, (22)

lim
s→0

µ(s) = 0, (23)

then equation (19) holds.
Proof: Consider Statement 1. Since the system is

asymptotically stable,̂xi → 0 meansx̂i+1 → 0. Therefore,
with equations (20) and (18), it is obvious that equation (19)
holds.

When lims→0 µ(s) = 0, we show an upper bound on
φ(|x̂i|)
µ(|x̂i+1|) that converges to 0 as|x̂i| → 0. Recall that by
the event-trigger,

µ(|x̂i+1|) = |η(x̂i)− η(x̂i+1)|
≥ L|x̂i| − L|x̂i+1|

holds, whereL ∈ R
+ is Lipschitz constant ofη. It means

|x̂i| ≤ |x̂i+1|+
1

L
µ(|x̂i+1|) , ψ(|x̂i+1|). (24)

Applying this inequality into equation (18) implies

φ(|x̂i|)
µ(|x̂i+1|)

≤ φ (ψ(|x̂i+1|))
µ(|x̂i+1|)

. (25)

To complete the proof, we need to show
lim|x̂i|→0

φ(ψ(|x̂i+1|))
µ(|x̂i+1|) = 0, which is equivalent to showing

lim|x̂i+1|→0
φ(ψ(|x̂i+1|))
µ(|x̂i+1|) = 0.

Note that for positive constantss1, s2 in a compact set,
sinceφ ∈ K, there must existb1, b2, b3, b4 ∈ R such that

φ(s1 + s2) ≤ b1φ(b2s1) + b3φ(b4s2).

Therefore, sincêxi+1 in a compact set, lets = |x̂i+1| and

φ (ψ(s)) ≤ b1φ(b2s) + b3φ

(

b4µ(s)

L

)

holds according to the definition ofψ in equation (24), which
means

φ (ψ(s))

µ(s)
≤

b1φ(b2s) + b3φ
(

b4µ(s)
L

)

µ(s)

=
b1φ(b2s)

µ(s)
+
b3φ

(

b4µ(s)
L

)

µ(s)
. (26)

With equations (21) - (23), we knowlims→0+
φ(ψ(s))
µ(s) = 0.

Applying this into equation (25) implies equation (19) holds.

Remark 5.3:Equation (20) implies that the triggering
threshold converges to a positive constant or infinity as the
state approaches the origin. Note that the closerx(t) is to the
origin, the slower the normalized measurement error,η̃(t),
grows and such growth will stop at the origin. Since the
threshold remains at the same level (a or ∞) asx(t) → 0, it
will take more and more time for the error to hit the threshold
µ(|x(t)|), which impliesTi goes to infinity asi increases.

Remark 5.4:By the definition of φ in (15), equation
(21) in fact places a requirement on the system dynamic
f(x, k(x), 0). It means that the order of the function
f(x, k(x), 0) must be higher than linear functions. This result
is consistent with the work in [7] focusing on homogeneous
systems, which is a special case of this work.

Remark 5.5:Equations (22) places the constraints on the
event-trigger, whereµ(x) is the triggering threshold. It means
that the order ofµ must be less than or equal to that ofφ
(or f(x, k(x), 0). Note that the order ofφ is greater than
that of linear function by equation (21)). By the definition
of µ, we know that it provides the balance between the
orders ofγ1 and α(s)

χ(s) . One way of ensuring equation (22)

is to make the order ofγ1 greater than or equal toα(s)
χ(s) .

In this case, the order ofµ will be less than that of linear
functions and therefore less than the order ofφ by equation
(21). Equation (22) therefore establishes the relation between
the ISS dissipative inequality in equation (9) and the events
ensuring minimally attentive behavior.

Remark 5.6:Equation (23) simply means that the order
of α in the ISS dissipative inequality in equation (9) must
be higher thanχ.

Remark 5.7:For polynomial systems, there is a simpler
way to state the results in Proposition 5.2. Assume that the
polynomialf(x, k(x), 0) is bounded by

φ(|x|) =
d

∑

i=0

ai|x|pi

and the event-trigger is

|η̃(t)| = c|x(t)|q .

Then equation (20) impliesq ≤ 0, equation (21) is equiv-
alent to sayingmini∈{0,··· ,d} pi > 1, equation (22) means
mini∈{0,··· ,d} pi > q, and equation (23) impliesq > 0.

VI. CONTROLLER DESIGN

This section studies the construction of the feedback lawk
to guarantee the conditions for minimally attentive behavior.
The key is to ensure inequality (9) with some specifiedα,
χ, γ1. We provide a method to constructk. The idea takes
advantage of the universal formula in [9]. One thing worth
mentioning is that the proposed feedback law is not the only
law for minimum attention property. Our discussion focuses
on control-affine systems:

ẋ = f(x,w) + g(x)u. (27)



Given a tuple of(α, χ, γ1), assume that there is a CLF
V (x) such that

α1(|x|) ≤ V (x) ≤ α2(|x|)

inf
u

{

∂V

∂x
f(x,w) +

∂V

∂x
g(x)(u + ũ)

}

≤ −3α(|x|) + χ(|x|)γ1(|ũ|) + γ2(w)

with ũ ∈ R and someα1, α2, γ2 ∈ K∞. Let

a(x,w) =
∂V

∂x
f(x,w)

b(x) =
∂V

∂x
g(x).

Define

c(x) = max
ũ,w

{a(x,w) + b(x)ũ − χ(|x|)γ1(|ũ|)− γ2(w)} .
(28)

To ensure thatc(x) is well defined, it is sufficient to demand:
(1) γ2(w) grows faster thana(x,w) at infinity for fixed x;
(2) γ1 grows faster than any linear functions at infinity, or
γ1 is linear and|b(x)| − χ(|x|) ≤ 0.

As it is in [9], choosēc(x) such that

c(x) + α(|x|) ≤ c̄(x) ≤ c(x) + 2α(x) (29)

holds for anyx ∈ R
n.

The feedback control lawk(x) is defined by

k(x) =

{

− c̄(x)+
√
c̄(x)2+|b(x)|4
|b(x)|2 b⊤(x), b(x) 6= 0

0, b(x) = 0
(30)

Note that this feedback law is almost smooth. With this law,
we can verify that inequality (9) is satisfied with the pre-
specified(α, χ, γ1) as follows:

V̇ = a(x,w) + b(x)k(x) + b(x)ũ

≤ c(x) + b(x)k(x) + χ(|x|)γ1(|ũ|) + γ2(w)

whereũ = k(x)− k(x̂). With inequality (29),

V̇ ≤ c̄(x)−α(|x|)+b(x)k(x)+χ(|x|)γ1(|ũ|)+γ2(w) (31)

It follows from the result in [11] that

c̄(x)− b(x)k(x) ≤ 0.

Therefore, inequality (31) implies

V̇ ≤ −α(|x|) + χ(|x|)γ1(|ũ|) + γ2(w).

Note that in this formulation,η(·) ≡ k(·) and the choice
of γ3 is independent of this feedback law. One thing worth
mentioning is that when̄w = 0 and the pre-specifiedα,
χ satisfies α(|x|)

χ(|x|) → 0 as |x| → 0, we have to resort to
the second statement in Proposition 5.2 to guarantee the
minimally attentive behavior. In that case, we still need to
check if the feedback law in (30) ensures equations (21) and
(22).
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Fig. 1. States and periods in an event-triggered system withdisturbances
and the feedback law in (30)

VII. S IMULATIONS

This section provides simulation results that illustrate
minimally attentive behavior in event-triggered feedback
systems. The system under consideration is

ẏ1 = −2y31 + y32 +
w

√

(2y1 + y2)2 + 1

ẏ2 = g(y)(5ey1 − 5 + u)− 2y32 + y31

where y = (y⊤1 , y
⊤
2 )

⊤ and g : R
2 → R is a continuous

function to be determined. The initial condition satisfies
|y(0)|∞ ≤ 5.

ConsiderV (y) = y21 + y1y2 + y22 :

V̇ = −3y41 +
(2y1 + y2)w

√

(2y1 + y2)2 + 1

+g(y)(2y2 + y1)(5e
y1 − 5 + u)− 3y42

We first setg(y) = y1 and

γ1(|ũ|) = |ũ|, γ2(|w|) = |w|,
χ(|y|) =

√
5|y|2, α(|y|) = |y|4.

Then we can verifyc(y) in equation (28) is well defined and

c(y) = −3y41 − 3y42 + y1(2y2 + y1)(5e
y1 − 5).

With c̄(y) = c(y)+1.5α(|y|), we have the feedback lawk(·).
The disturbancew satisfies|w|L∞

≤ 20 andγ3(s) = s
20 . We

run the system with the event-trigger in equation (6), where
σ = 0.8 and η ≡ k. Figure 1 shows the simulation results.
The top plot shows the state trajectories of the system, which
oscillate around the origin. The bottom plot is the periods
generated by the event-triggering scheme. We can see that
although the period is not converging to infinity, it remains
bounded from below, which is consistent with our theoretic
results.

The feedback law proposed in Section VI is not the unique
solution to the minimum attention property. A much simpler
controller law is

u = −5eŷ1 + 5, (32)
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Fig. 2. States and periods in an event-triggered system withdisturbances
and the feedback law in (32)

which implies |f(y, k(y), 0)| ≤ φ(|y|) = a|y|3 with some
positive constanta.

ConsiderV (y) = y21 + y1y2 + y22 :

V̇ = −3y41 +
(2y1 + y2)w

√

(2y1 + y2)2 + 1

+5g(y)(2y2 + y1)(e
y1 − eŷ1)− 3y42

≤ −1.5|y|4 + 5
√
5|y||g(y)||ey1 − eŷ1 |+ |w| (33)

Then we know that

α(s) = 1.5s4, χ(s) = 5
√
5s2

η(y) = ey1 , γ1(s) = γ2(s) = s.

Still, the disturbancew satisfies|w|L∞
≤ 20, γ3(s) = s

20 ,
andσ = 0.8. The event-trigger is then

|ey1 − eŷ1 | = 1.2|y|4 + 1

5
√
5|y|2

.

The simulation result is plotted in Figure 2. The results look
very similar to the first simulation.

The third simulation considers the case wherew ≡ 0.
Thenµ(s) = 1.2

5
√
5
s2. It is easy to verify that the assumptions

in Statement 2 of Proposition 5.2 hold. Withσ = 0.8, the
event-trigger is

|ey1 − eŷ1 | = 1.2|y|2
5
√
5
. (34)

The simulation result is plotted in Figure 3. Obviously, the
states converge to the origin and the periods go to infinity,
which implies the strictly minimally attentive behavior.

We then change the event-trigger to be

|ey1 − eŷ1 | = 1.2|y|3
5
√
5
. (35)

In this case, the threshold has the same order asφ. Figure
4 shows that the strictly minimally attentive behavior cannot
be preserved any more.
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Fig. 3. States and periods in an event-triggered system without distur-
bances,g(y) = y1, event-trigger in (34)
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Fig. 4. States and periods in an event-triggered system without distur-
bances,g(y) = y1, event-trigger in (35)
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Fig. 5. States and periods in an event-triggered system without distur-
bances,g(y) = y1, event-trigger in (36)



In the next simulation, we construct another event, which
can also ensure strictly minimally attentive behavior with
w ≡ 0. Let us define a compact set{|y| ∈ R

2 | |yi| ≤ 5}.
Then forx(t) inside this set,V̇ satisfies

V̇ ≤ −1.5|y|4 + 5
√
5|y|2 max{|ey1 |, |eŷ1 |}(e|y1−ŷ1| − 1)

≤ −1.5|y|4 + 1659.3|y|2(e|y1−ŷ1| − 1).

Then

α(s) = 1.5s4, χ(s) = 1659.3s2

η(y) = y1, γ1(s) = es − 1

µ(s) = ln

(

1 +
1.2s2

1659.3

)

, γ2(s) = s.

Still, the assumptions in Statement 2 of Proposition 5.2 can
be verified. The event-trigger is

|y1 − ŷ1| = ln

(

1 +
1.2|y|2
1659.3

)

. (36)

From Figure 5, we can see that although the periods still
go to infinity, but the growth is very slow. It is because the
event-trigger is chosen in a very conservative way. It shows
that there may be multiple ways to design event for minimum
attention property. The challenge is how to make the event
less conservative.

Finally, we setg(y) = |y|3.1 and still w ≡ 0. Then V̇
satisfies

V̇ ≤ −1.5|y|4 + 5
√
5|y|4.1|ey1 − eŷ1|,

which meansµ(s) = 1.2
5
√
5|y|0.1 with σ = 0.8. Therefore

the assumptions in Statement 1 of Proposition 5.2 hold. The
event-trigger is

|ey1 − eŷ1 | = 1.2

5
√
5|y|0.1

. (37)

Whenu = 0, the system is unstable. With the controller in
(32) and the event above, the system is asymptotically stable
and strictly minimally attentive, as shown in Figure 6.

VIII. C ONCLUSIONS

This paper studies the event-triggered feedback systems
possessing the minimum attention property. We develop
event-triggering rules that assure ISS or iISS of a nonlinear
system and establish sufficient conditions that ensure the
minimum attention property. A universal construction for ISS
(iISS) controllers is to develop minimum attention event-
triggered controllers.

There are still several open problems. For example, when
constructing the controller using the method in Section VI
for asymptotic stability (̄w = 0), if α(|x|)

χ(|x|) → 0 as |x| → 0,
we have to resort to the second statement in Proposition 5.2
for the minimally attentive behavior. That means we have to
go back and check if the constructed feedback law ensures
equations (21) and (22). One question, therefore, is how to
construct a feedback law such that even iflim|x|→0

α(|x|)
χ(|x|) →

0, equations (21) and (22) can be automatically satisfied. A
further question is that “is it possible to relax the assumptions
in equations (21) and (22)?” These issues will be addressed
in the future.
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Fig. 6. States and periods in an event-triggered system without distur-
bances,g(y) = |y|3.1, event-trigger in (37)
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