
Polynomial Approximation of Optimal Event Triggers for State Estimation
Problems Using SOSTOOLS

Lichun ‘Luncinda’ Li1 and Michael Lemmon1

Abstract— This paper uses polynomials to approximate the
optimal event triggers in state estimation problems, and ef-
ficiently computes the polynomial approximation with SOS-
TOOLS. From the examples under study, the polynomial
approximation provides a tight lower bound on the optimal cost,
and a tight upper bound on the suboptimal cost for unstable
systems. The cost generated by the polynomial suboptimal event
trigger is very close to the lower bound on the optimal cost.
We also apply this polynomial suboptimal event trigger to an
8 dimensional 3DOF helicopter to demonstrate that one can
efficiently compute the polynomial suboptimal event triggers
for highly nonlinear high dimensional systems. To our best
knowledge, this is the first time the suboptimal trigger has
been applied to a system whose dimension is greater than 2.

I. INTRODUCTION

Event triggering is a sampling or transmission method
different from periodic sampling. With event triggering,
sensors or controllers only transmit information when some
event occurs. In particular, information is transmitted when
a measure of data ‘novelty’ exceeds a specified threshold.
Previous work has demonstrated that event triggering main-
tains system performance while using fewer communication
resources than periodic transmission [1], [2], [3]. The reason
for this greater efficiency is that event triggering makes use of
on-line information in making transmission decisions. This
method, therefore, can adapt its usage of the communication
channel to the importance of the data it must transmit.

Much of the prior work on event-triggered state estimation
has formulated the problem as an optimization problem,
which seeks to minimize the mean square state estimation
error given limited communication. [4], [5] studied how to
schedule a fixed number of transmissions to minimize the
sum mean square state estimation error over a finite horizon.
This is a sum cost optimization problem, and Bellman’s
principle (dynamic programming) was used to solve the
problem. Event triggered transmission was shown to be the
optimal transmission rule in the presence of process noises.
Computing the optimal event trigger, however, is not trivial,
and much of the prior work has been confined to scalar
systems. In [6], quadratic functions were used to approximate
the optimal event trigger over a finite horizon and extended
the prior work to vector cases. For infinite horizon problems,
[7] introduced a communication price which is the cost paid
for every transmission, and studied the optimal transmission
rule that minimizes the average mean square state estimation
error discounted by the communication price. This is an

1The authors are with the Department of Electrical Engineering, Univer-
sity of Notre Dame, Notre Dame, IN 46556, USA. (email: lli3,lemmon at
nd.edu; web: www.nd.edu/∼lli3,lemmon)

average cost optimization problem, and the average cost
optimality equation [8] was used to solve the problem. It
was shown that event triggered transmission is the optimal
transmission rule. Even for this case, the computation of the
optimal event trigger was still proved to be difficult. Thus,
[9] used quadratic functions to approximate the optimal event
trigger for stable systems and proved that the corresponding
suboptimal cost is within 6 times of the optimal cost. For
unstable systems, [10], [11] obtained quadratic approxima-
tion of the optimal event triggers and explicit upper bounds
on the corresponding suboptimal costs, but they could not
characterize how far away the suboptimal costs were from
the optimal costs.

All of this prior work was based on quadratic approxi-
mations of the optimal event trigger. This paper uses higher
order polynomials to approximate the optimal event trigger.
Unlike the prior work, this paper shows that SOSTOOLS
provide a computationally efficient way of calculating the
polynomial approximation, an upper bound on the cost of
the polynomial approximation (suboptimal cost), and a lower
bound on the optimal cost. The difference between the upper
bound on the cost of polynomial approximation and the lower
bound on the optimal cost provides an upper bound on how
far away the suboptimal cost is from the optimal cost. For
the examples under study, with polynomial approximation
and SOSTOOLS, we obtain a tighter lower bound on the
optimal cost than the one provided by [9], achieve a cost
close to the lower bound on the optimal cost (and hence
the optimal cost), and give a tighter upper bound on the
suboptimal cost than the ones given by [10] and [11] for
unstable systems.

This paper applies the polynomial event trigger to a
highly nonlinear 8 dimensional 3DOF (degree of freedom)
helicopter system. To our best knowledge, this is the first
time the suboptimal trigger has been applied to a system
whose dimension is greater than 2.

II. BACKGROUND ON AVERAGE OPTIMALITY FOR
MARKOV CONTROL PROCESSES

This section presents the existing work on average opti-
mality for Markov control processes, since this existing work
is the basis for the main results in this paper.

Given a Markov control process and a policy π, the
expected long-run average cost incurred by π is given by

V (π, x) = lim sup
N→∞

E

[
1

N

N−1∑
t=0

c(x(t), a(t))

]
,

where a(t) is the action taken at step t, and the average
optimal value function V ∗(x) is as follows:

V ∗(x) = inf
π∈Π

V (π, x).

Let X be the state space. We first give the conditions for the
average optimality of a Markov control process.

Assumption 2.1 (Lyapunov-like condition): 1) There
exist constants b > 0 and β ∈ (0, 1), and a
(measurable) function ω(x) ≥ 1 for all x ∈ X such
that for all x ∈ X and for all feasible actions a when
the system is in state x,∫

X

ω(y)Q(dy|x, a) ≤ βω(x) + b,

where Q(D|x(t), a(t)) = P (x(t+ 1) ∈ D|x(t), a(t))
2) There exists a constant M > 0, such that |c(x, a)| ≤

Mω(x) for all x ∈ X and for all feasible actions a
when the system is in state x.

Assumption 2.2 (Finiteness condition): There are finite
number of feasible actions for all x ∈ X.

Assumption 2.3 (Uniform condition w.r.t. α): There exist
two functions ν1 and ν2, and some state x0 ∈ X, such that

ν1(x) ≤ hα(x) ≤ ν2(x),∀x ∈ X,∀α ∈ (0, 1),

where hα(x) = V ∗
α (x)− V ∗

α (x0), and

V ∗
α (x) = min

a∈A(x)

{
c(x, a) + α

∫
X

V ∗
α (y)Q(dy|x, a)

}
, (1)

for all x ∈ X.
We now give the main results about average optimality.

Please check Theorem 4.1 of [12] for the proofs of Lemma
2.4 and Corollary 2.5 and 2.6.

Lemma 2.4 (Average optimality): Under Assumption 2.1,
2.2, and 2.3, the following assertions hold.

1) There exist a unique constant J∗, two functions h1, h2,
and a deterministic stationary rule f∗, such that for all
x ∈ X the two average cost optimality inequalities
hold.

J∗ + h1(x) ≤min
a

{
c(x, a) +

∫
X

h1(y)Q(dy|x, a)
}

(2)

J∗ + h2(x) ≥min
a

{
c(x, a) +

∫
X

h2(y)Q(dy|x, a)
}

(3)

=c(x, f∗(x)) +

∫
X

h2(x)Q(dy|x, f∗(x)) (4)

2) J∗ = V ∗(x) for all x ∈ X.
3) Any deterministic stationary rule f realizing the minimum

of (3) is average optimal; thus, f∗ in (4) is a deterministic
stationary policy for the average cost problem.

Corollary 2.5 (Lower bound on the optimal cost): Under
Assumption 2.1, 2.2, and 2.3, the following assertions hold.

1) There exist a constant J and a function h1, such that
for all x ∈ X, equation (2) holds.

J + h1(x) ≤ min
a∈A(x)

{
c(x, a) +

∫
X

h1(y)Q(dy|x, a)
}
.

2) J∗ ≥ J .

Corollary 2.6 (Upper bounds on suboptimal costs):
Under Assumption 2.1, 2.2, and 2.3, the following
assertions hold.

1) There exist a constant J , a function h2, and a determin-
istic stationary rule f , such that for all x ∈ X equation
(3) and (4) holds.

J + h2(x) ≥ min
a∈A(x)

{
c(x, a) +

∫
X

h2(x)Q(dy|x, a)
}

=c(x, f(x)) +

∫
X

h2(x)Q(dy|x, f(x)).

2) V (f, x) ≤ J .
Remark 2.7: Similar results to that of Corollary 2.5 and

2.6 can also be found in [13], [14].

III. BACKGROUND ON SOSTOOLS

SOSTOOLS can efficiently solve linear polynomial in-
equalities using SOS technique, and hence is used to compute
the polynomial approximation of the optimal event trigger
in this paper. This section introduces the basic problems that
SOSTOOLS solves.

The basic feasibility problem in SOS programming is
formulated as finding polynomials pi(x) for i = 1, 2, . . . , N ,
such that

a0,j(x) +

N∑
i=1

pi(x)ai,j(x) = 0, for j = 1, 2, . . . , Ĵ (5)

a0,j(x) +
N∑
i=1

pi(x)ai,j(x) ≥ 0, for j = Ĵ + 1, . . . , J , (6)

where ai,j(x) are given scalar constant coefficient polyno-
mials.

SOS programming also solves the problem of optimizing
of an objective function which is linear in the coefficients of
pi(x)’s. This optimization problem is formulated as search-
ing for pi(x) for i = 1, 2, . . . , N that

min
c

wT c (7)

subject to: equation (5) and (6),

where w is a given weight vector, and c is a vector consisting
of the coefficients of pi(x)’s.

To define and solve an SOS programming using SOS-
TOOLS, please check Chapter 2 of [15].

IV. EVENT TRIGGERED STATE ESTIMATION PROBLEM

A block diagram of the event triggered state estimation
problem is shown in Figure 1. This system consists of three
components: a plant subsystem, a sensor subsystem, and a
remote observer.

The plant subsystem consists of two parts: a plant and a
sensor, satisfying the following difference equation

x(k) = Ax(k − 1) + w(k − 1),

y(k) = Cx(k) + v(k),

for k = 1, 2, . . . ,∞. x : Z+ → Rn is the system state
with initial state x(0) being a Gaussian random variable with

Fig. 1. Structure of the event triggered state estimation systems

mean µ0 and variance Π0. w is a zero mean white Gaussian
noise process with variance W . v is another zero mean white
Gaussian noise process with variance V . The initial state
x(0), w and v are independent. The pair (A,C) is observable.
y : Z+ → Rp is the measurement of the plant which is fed
into the sensor subsystem.

The sensor subsystem uses sensor measurements to decide
when to transmit information to the remote observer. The
sensor subsystem consists of a Kalman filter, a remote
observer in sensor subsystem and an event detector.

The Kalman filter generates a filtered state xKF : Z+ →
Rn that minimizes the weighted mean square estimation error
(MSEE), i.e.

xKF (k) = min
xKF (k)

E
[
∥x(k)− xKF (k)∥2Z | {y(0), · · · , y(k)}

]
where Z ≥ 0 is a symmetric weighting matrix, and ∥θ∥2Z =
θTZθ. For the process under study the filter equation is

xKF (k + 1) = AxKF (k) + L [y(k)− CAxKF (k)] , (8)

where L is the steady Kalman gain. The steady state estima-
tion error eKF (k) = x(k) − xKF (k) is a Gaussian random
variable with zero mean and variance Q.

While the Kalman filter generates the most ‘knowledgable’
state estimate, the remote observer in the sensor subsystem
duplicates the remote state estimate. With these two state
estimates, the event detector knows how far away the remote
state estimate is from the most ‘knowledgable’ state estimate
xKF . If the remote state estimate is too far away from xKF ,
then xKF should be transmitted. Now, let us see how the
remote observer in the sensor subsystem works. At step k,
before the event detector in the sensor subsystem decides
whether to transmit or not, the remote observer in the sensor
subsystem produces an a priori remote state estimate x−

RO(k)
which will be described in detail when we introduce the
remote observer. The a priori remote state estimate x−

RO(k)
together with the filtered state xKF (k) is then handed to the
event detector in the sensor subsystem to decide whether or
not to transmit the filtered state xKF (k) at step k.

The event detector in the sensor subsystem uses the a
priori gap e−KF,RO(k) = xKF (k) − x−

RO(k) to decide
whether or not to transmit xKF (k) to the remote observer.
Let a(k) ∈ {0, 1} be the action the event detector takes at
step k. We say that

a(k) =

{
1, if the event detector decides to transmit;
0, otherwise.

Here, we define a large positive constant θ such that θ ≫
λ > 0, where λ is the communication price paid for

one transmission. Once ∥e−KF,RO(k)∥2Z is greater than θ,
xKF (k) has to be transmitted. Otherwise, the event detector
in the sensor subsystem can choose either to transmit or
not to transmit. The lth transmission time from the sensor
subsystem to the remote observer is denoted as τ l.

The remote observer generates the remote state estimate
xRO(k) to minimize the MSEE based on all the history
information of the remote observer up to step k. Let l(k) =
max

{
l : τ l ≤ k

}
indicate the latest transmission time in-

stants from the sensor subsystem to the remote observer. The
history information HRO(k) of the remote observer at step
k is

HRO(k) =
{
xKF (τ

1), . . . , xKF (τ
l(k)), a(0), . . . , a(k)

}
,

for k = 0, 1, . . . with HRO(−1) = ∅. To minimize the
MSEE, the a posteriori remote state estimate xRO(k) sat-
isfies xRO(k) = E(x(k)|HRO(k)), and the a priori remote
state estimate x−

RO(k) satisfies x−
RO(k) = E(x(k)|HRO(k−

1)). It was shown in [16] that the remote state estimate takes
the form of

x−
RO(k) =AxRO(k − 1), with x−(0) = µ0 (9)

xRO(k) =a(k)xKF (k) + (1− a(k))x−
RO(k). (10)

Now, let us define the remote state estimation error eRO(k)
as eRO(k) = x(k)− xRO(k). The average cost in this event
triggered state estimation problem is

J({a(k)}∞k=0) = lim
N→∞

1

N

N−1∑
k=0

E (c(eRO(k), a(k))) ,

where the cost function

c(eRO(k), a(k)) = ∥eRO(k)∥2Z + a(k)λ. (11)

Our objective is to find a transmission rule to minimize
the average cost J({a(k)}∞k=0), i.e.

J∗ = min
{a(k)}∞

k=0

J({a(k)}∞k=0). (12)

V. THE OPTIMAL EVENT TRIGGER

Before talking about the optimal strategy of the original
problem in (12), let us simplify it first. Let eKF,RO(k) =
xKF (k)−xRO(k) be the posteriori gap between the filtered
state and the remote state estimate. We find that this gap
eKF,RO(k) is orthogonal to the filtered state error eKF (k).
This is stated in the following lemma. Please check Lemma
2 in [16] for the detailed proof.

Lemma 5.1: The filtered state error, eKF (k) is orthogonal
to eKF,RO(k), the gap between filtered state and the remote
state estimate.

Since eRO = eKF + eKF,RO, according to Lemma 5.1,
the expected value of the cost function E(c) satisfies

E(c(eRO(k), a(k))) =trace(QZ) + E(∥eKF,RO(k)∥2Z)

=trace(QZ) + E
(
cs(e

−
KF,RO(k), a(k))

)
where

cs(s, a(k)) = a(k)λ+ (1− a(k))∥s∥2Z . (13)

Thus, our optimal problem turns to be

J∗ = min
{a(k)}∞

k=0

lim
N→∞

1

N

N−1∑
k=0

E
(
cs(e

−
KF,RO(k), a(k))

)
+ trace(QZ). (14)

This is an average cost optimal problem in a Markov
control process with the state to be e−KF,RO(k). Let us
analyze the dynamic behavior of e−KF,RO(k). From equation
(8), (9) and (10), we have

e−KF,RO(k + 1) = AeKF,RO(k) + Lỹ(k + 1)

= (1− a(k))Ae−KF,RO(k) + Lỹ(k + 1)

where ỹ(k + 1) = y(k + 1)− CAxKF (k) = CAeKF (k) +
Cw(k)+v(k+1). It is easy to see that ỹ(k+1) is a zero mean
Gaussian random variable with variance Y = CAQATCT +
CWCT + V . Let Eh(µ) = E (h(s)), where s is a Gaussian
random variable with mean µ and covariance LY LT . It is
easy to show that

E
(
h(e−KF,RO(k + 1))|e−KF,RO(k), a(k)

)
=(1− a(k))Eh

(
Ae−KF,RO(k)

)
+ a(k)Eh(0).

According to Lemma 2.4, we have the following theorem
about the optimal transmission rule and the optimal cost for
the optimal problem described in (14).

Theorem 5.2: 1) There exist a unique constant ρ∗, two
functions h∗

1, h∗
2, such that for all s ∈ Rn the following

two average cost optimality inequalities hold.

ρ∗ + h∗
1(s) ≤min

{
∥s∥2Z + Eh∗

1
(As) , λ+ Eh∗

1
(0)
}
, (15)

ρ∗ + h∗
2(s) ≥min

{
∥s∥2Z + Eh∗

2
(As) , λ+ Eh∗

2
(0)
}
. (16)

2) The optimal cost J∗ = ρ∗ + trace(QZ).
3) There exists a deterministic stationary optimal transi-

tion rule, i.e. the optimal event trigger, which is

a(k) =

{
1, if ε∗(e−KF,RO(k)) > 0,
0, otherwise,

where ε∗(s) = max{∥s∥2Z + Eh∗
2
(As) − λ −

Eh∗
2
(0) , ∥s∥2Z − θ}.

Proof: According to Lemma 2.4, if we show that
Assumption 2.1, 2.2 and 2.3 hold, then this theorem is true.

To check Assumption 2.1, we choose ω(e−KF,RO(k)) = θ,
β = 0.5, b = θ, and M = 1. It is easy to see that for any
(x, a) ∈ K,∫

ω(y)Q(dy|x, a) = θ ≤ 0.5θ + θ = βω(x) + b,

which demonstrates part 1) of Assumption 2.1. For part 2) of
Assumption 2.1, if ∥e−KF,RO(k)∥2Z ≤ θ, the feasible action
set is {0, 1}, and

|cs(e−KF,RO(k), a(k))| ≤ θ = Mω(e−KF,RO(k)),∀a ∈ {0, 1}.

Otherwise, the feasible action set is {1}, and it is easy to
see that cs(e−KF,RO(k), 1) = λ < θ = Mω(e−KF,RO(k)).

It is obvious that there are only finite actions for all
e−KF,RO(k) ∈ Rn. So Assumption 2.2 holds.

Now, let us look at assumption 2.3. Note that V ∗
α (x)

satisfies equation (1). In our case, equation (1) takes the form
of V ∗

α (s) = min
{
∥s∥2Z + αEV ∗

α
(As) , λ+ αEV ∗

α
(0)
}

. Let
hα(s) = V ∗

α (s)− V ∗
α (0). we have

hα(s) ≤λ+ αEV ∗
α
(0)−min

{
αEV ∗

α
(0) , λ+ αEV ∗

α
(0)
}

=λ.

Meanwhile, hα(s) > −αEV ∗
α
(0). Thus, assumption 2.3 also

holds, and theorem 5.2 is true.
Remark 5.3: 1) The average cost optimality inequali-

ties (2) and (3) are more general sufficient conditions
than the average cost optimality equation derived in
[7] for the optimal event trigger, since the average
cost optimality equation in [7] is a special case of
the average cost optimality inequalities (2) and (3)
when h∗

1 = h∗
2. Besides, by using the existing results

on average optimality, this paper provides clearer and
more straightforward proof than [7].

2) It is hard to find an analytic solution to equation (15)
and (16). Although we can iteratively compute the
solution of equation (15) and (16) by value iteration
[17] or policy iteration [18], the computational com-
plexity increases dramatically with respect to the state
dimension.

VI. POLYNOMIAL APPROXIMATION OF THE OPTIMAL
EVENT TRIGGER

Since it is intractable to compute the optimal event trigger
for multi-dimensional systems, an alternative is to use an
approximation of the optimal event trigger. This approxi-
mation should be easy to compute, and the corresponding
cost should be close to the optimal cost. This section uses a
polynomial function to approximate the optimal event trigger,
and gives an explicit SOSTOOLS algorithm to compute the
polynomial approximation and an upper bound on the cost
of this polynomial approximation. To characterize how good
the polynomial approximation is, this section also provides
a lower bound on the optimal cost and the corresponding
SOSTOOLS algorithm to compute the lower bound.

A. Computing a polynomial approximation and an upper
bound on its cost

In the proof of Theorem 5.2, we have shown that assump-
tion (2.1), (2.2) and (2.3) all hold. According to Corollary
2.6, there always exist an approximation of the optimal event
trigger, and an upper bound on the cost of the approxiamtion.

Theorem 6.1: 1) There exist a constant ρ2 and a func-
tion h2, such that for all s ∈ Rn,

ρ2 + h2(s) ≥min
{
∥s∥2Z + Eh2 (As) , λ+ Eh2 (0)

}
. (17)

2) The following deterministic stationary transmission
rule realizing the minimum of equation (17).

a(k) =

{
1, if ε(e−KF,RO(k)) ≥ 0;
0, otherwise.

(18)

where ε(s) = max{∥s∥2Z + Eh2 (As) − λ −
Eh2

(0), ∥s∥2Z − θ}.

3) With the strategy a(k) defined in equation (18), the
average cost J({a(k)}∞k=0) satisfies

J({a(k)}∞k=0) < ρ2 + trace(QZ).
Now, we need to find a way to solve the inequality

(17). The basic idea of inequality (17) is that when s
is in a neighborhood of the origin, the first term in the
minimum equation dominates. Otherwise, the second term in
the minimum equation dominates. Based on this idea, using
the indicator function 1Ω, we have

ρ2 + h2(s)

≥∥s∥2Z + Eh2 (As)−
(
∥s∥2Z + Eh2 (As)

) (
1− 1∥s∥2

Z≤d

)
,

ρ2 + h2(s) ≥ λ+ Eh2(0)− (λ+ Eh2(0)) 1∥s∥2
Z≤d.

We know that for some big enough positive constant ϕ,

1∥s∥2
Z≤d ≈ 1

1 +
(

∥s∥2
Z

d

)ϕ .
Meanwhile, to make sure equation (17) holds, we have

ρ2 + h2(s) ≥ ∥s∥2Z + Eh2 (As) (19)

−
(
∥s∥2Z + Eh2 (As)

)1− 1

1 +
(

∥s∥2
Z

d

)ϕ
(∥s∥2Z − d

)
,

ρ2 + h2(s) ≥ λ+ Eh2(0) (20)

− (λ+ Eh2(0))
1

1 +
(

∥s∥2
Z

d

)ϕ (d− ∥s∥2Z
)
.

It is easy to verify that equation (19) and (20) imply equation
(17).

To conclude the above discussion, we have the following
corollary.

Corollary 6.2: Given a positive constant d and a positive
integer ϕ. If there exist a constant ρ2, and a polynomial
function h2 such that equation (19) and (20) hold for all
s ∈ Rn, then assertion 2) and 3) in Theorem 6.1 are true.

Equation (19) and (20) can be solved efficiently by SOS-
TOOLS. Here, we give an explicit SOS algorithm to compute
ρ2 and h2, and hence the polynomial event trigger and the
upper bound on the cost of the polynomial event trigger.

Algorithm 6.3 (Compute polynomial approximation I):
Find a polynomial h2 such that ρ2 is minimized subject to(

ρ2 + h2(s)− ∥s∥2Z − Eh2 (As)
)(

1 +

(
∥s∥2Z
d

)ϕ
)

+
(
∥s∥2Z + Eh2 (As)

)(∥s∥2Z
d

)ϕ (
∥s∥2Z − d

)
≥ 0

(ρ2 + h2(s)− λ− Eh2(0))

(
1 +

(
∥s∥2Z
d

)ϕ
)

+(λ+ Eh2(0))
(
d− ∥s∥2Z

)
≥ 0

Remark 6.4: We need adjust ϕ and d such that SOS-
TOOLS can provide as small as possible ρ2. Larger ϕ

provides smaller ρ2, but consumes more computation effort.
So, ϕ can be chosen to be large enough such that the
computation time is not too long. d can be adjusted using
bisection method. According to our experience, there exists
a d∗ such that SOSTOOLS provides the smallest ρ2. We can
use bisection method to find d∗ very quickly.

Notice that
(

∥s∥2
Z

d

)ϕ
in equation (19) and (20) adds extra

terms in the polynomial inequalities, and hence increases
the computational complexity. Especially when the state
dimension is higher than 4, the computation time increases
dramatically. So, we need another set of inequalities to com-
pute the suboptimal strategy for high dimensional system.
This set of inequalities should have fewer terms, and hence
lower computational complexity than inequality (19) and
(20). Thus, we have the following corollary.

Corollary 6.5: Given positive constants d1, d2, d3 and
positive integers ϕ and δ, where δ < 2ϕ. If there exist a
constant ρ2, and a polynomial function h2 such that

ρ2 + h2(s) ≥∥s∥2Z + Eh2 (As) (21)

+
(
∥s∥2Z + Eh2

(As)
) 0.5− ∑n

i=1 s2ϕi
d3

1 +
∑n

i=1 s2ϕ−δ
i

d1

,

ρ2 + h2(s) ≥λ+ Eh2(0) + (λ+ Eh2(0))

∑n
i=1 s2ϕi
d3

− 0.5

1 +
∑n

i=1 s2ϕ+δ
i

d1

,

(22)

hold for all s ∈ Rn, then assertion 2) and 3) in Theorem 6.1
are true.
Equation (21) and (22) can be solved using the following
SOS algorithm.

Algorithm 6.6 (Compute polynomial approximation II):
Find a polynomial h2 such that ρ2 is minimized subject to

(
ρ2 + h2(s)− ∥s∥2Z − Eh2 (As)

)(
1 +

∑n
i=1 s

2ϕ−δ
i

d1

)

+
(
∥s∥2Z + Eh2 (As)

)(
0.5−

∑n
i=1 s

2ϕ
i

d3

)
≥ 0

(ρ2 + h2(s)− λ− Eh2
(0))

(
1 +

∑n
i=1 s

2ϕ+δ
i

d1

)

+(λ+ Eh2(0))

(∑n
i=1 s

2ϕ
i

d3
− 0.5

)
≥ 0

This is an optimization problem in SOSTOOLS described in
(7), and we can use SOSTOOLS to solve it.

Now, we know how to calculate the suboptimal strategy
and the associated upper bound on the average cost. We
would like to know how good this suboptimal strategy is.
We can use the difference between the upper bound on the
suboptimal cost and the lower bound on the optimal cost
to characterize how good the suboptimal strategy is. The
next subsection will talk about how to use SOSTOOLS to
compute the lower bound on the optimal cost.

B. Computing a lower bound on the optimal cost

Since Assumption 2.1, 2.2 and 2.3 are all true (shown in
the proof of Theorem 5.2), according to corollary 2.5, we
have the following theorem.

Theorem 6.7: 1) There exists a constant ρ1 and a poly-
nomial function h1, such that for all s ∈ Rn

ρ1 + h1(s) ≤min
{
∥s∥2Z + Eh1 (As) , λ+ Eh1(0)

}
.

2) J∗ ≥ ρ1 + trace(QZ).
The lower bound on the optimal cost can be computed using
SOSTOOLS, and the SOSTOOLS algorithm is given below.

Algorithm 6.8 (Lower bound on optimal cost): Find a
polynomial h1 to minimize the constant −ρ1 subject to

−ρ1 − h1(s) + ∥s∥2Z + Eh1 (As) ≥ 0

−ρ1 − h1(s) + λ+ Eh1(0) ≥ 0

VII. MATHEMATICAL EXAMPLES

This section uses two examples to test how SOSTOOLS
works for obtaining the suboptimal strategy described in
Corollary 6.2. We are interested in the elapsed real time
for computing the suboptimal strategy T , the upper bound
on the cost of the suboptimal strategy J , the actual cost of
the suboptimal triggering set J , and the lower bound on the
optimal cost J . We would also like to compare these results
with the existing literature. The two examples were run on
a Microsoft Windows XP system with 2.99 GHz CPU and
3.37GB of RAM.

Consider a marginally stable system as below

x(k + 1) =

[
1 0
0 1

]
x(k) + w(k)

y(k) =x(k),

with covariance matrix W =

[
0.03 −0.02
−0.02 0.04

]
, the

weight matrix Z =

[
2 1
1 2

]
, and the communication price

λ = 20. This is the same example used in [9], and we would
like to compare the results in this paper with the results in
[9] and [10].

Let ϕ = 10 and d = 2.9. We first produce a symmetric
polynomial h2(x) which contains all possible monomials
whose degrees are even and no greater than a positive
integer D2, and then calculate Eh2(Ax) and Eh2(0). With
h2(x), Eh2(Ax) and Eh2(0), we use SOSTOOLS to solve
the problem described in Algorithm 6.3, and obtain the
polynomial approximation and the upper bound J on the
cost. The elapsed real time for computing the polynomial
approximation is indicated by T2. After obtaining the polyno-
mial approximation, we apply the polynomial event trigger to
the state estimation system, and run the system for 3000 step
to get the actual cost J . Finally, we generate a polynomial
h1(x) which contains all possible monomials whose degrees
are no greater than a given positive integer D1, and use
Algorithm 6.8 to compute the lower bound J on the optimal
cost. The elapsed real time for computing the lower bound
on the optimal cost is indicated by T1. The results are given

D2 J T2 J D1 J T1

SOS 2 4.52 3.48s 1.37 3 0 0.14s
SOS 4 4.52 5.34s 1.38 5 1.35 0.094s
SOS 6 × × × 8 1.35 0.375s
[10] 2 3.78 × 1.38 × × ×
[9] 2 2.74 × 1.53 2 0.46 ×

TABLE I
RESULTS OF THE STABLE SYSTEM.

in Table I, where × indicates no feasible solution or the
information is not available in the prior work.

From Table I, we can see that as the highest degree
in h2 increases, the upper bound J on the cost of the
polynomial approximation remains the same. Compared with
the methods in [10] and [9], the upper bound J on the
cost calculated from SOSTOOLS is the highest one, i.e.
the least tightest one, and [9] provides the tightest upper
bound. The actual costs J of the polynomial approximations
with different highest degree D2 are similar, and are similar
to the actual cost of the quadratic approximation in [10].
The quadratic approximation in [9] gives the highest actual
cost. The SOSTOOLS algorithm obtains the highest lower
bound on the optimal cost when the highest degree in h1 is
larger than 3. This lower bound calculated by SOSTOOLS
is close to the actual cost, which means that the polynomial
approximation is close to the optimal cost and the lower
bound on the optimal cost is tight.

Next, we consider an unstable system.

x(k + 1) =

[
0.95 1
0 1.01

]
x(k) + w(k)

y(k) =
[
0.1 1

]
x(k) + v,

with the covariance matrix W =

[
0.2 0
0 0.2

]
and V = 0.3,

the weight matrix Z =

[
1 0
0 1

]
, and the communication

price λ = 5. We would like to compare the results in this
paper with the results in [10] and [11].

Let ϕ = 10 and d = 1.25. The polynomial approximation,
its upper bound and the lower bound on the optimal cost can
be calculated using SOSTOOLS following the same steps
provided for the marginally stable system. We then apply
the polynomial approximation in the state estimation system,
and obtain the actual cost of the polynomial approximation.
Table II provides the relative results. × indicates no feasible
solution or the information is not available in the prior work.

From Table II, we find that with SOSTOOLS algorithm,
as we increase the highest degree of h2, the upper bound on
the cost of the polynomial approximation decreases, and the
elapsed real time for computing the upper bound increases.
When D2 is 12, the upper bound on the cost of the polyno-
mial approximation decreases to 3.49, and the elapsed real
time for computing the polynomial approximation is 25.7s.
Compared with the work in [10] and [11], the SOSTOOLS
algorithm proposed in this paper provides the tightest upper
bound. The actual costs of the polynomial approximations

D2 J T2 J D1 J T1

SOS 2 5.76 2.7s 3.31 3 1.82 0.17s
SOS 4 5.74 4.5s 3.28 5 2.7 0.39s
SOS 6 3.83 7.7s 3.36 7 2.72 0.56s
SOS 8 3.74 12.7s 3.5 9 × 0.75s
SOS 10 3.51 20.5s 3.5 11 × 0.56s
SOS 12 3.49 25.7s 3.37 13 3.23 0.78s
[10] 2 5.57 × 3.32 × × ×
[11] 2 7.69 × 4.39 × × ×

TABLE II
RESULTS OF THE UNSTABLE SYSTEM.

Fig. 2. Schematic of the 3DOF helicopter. ϵ: elevation, ρ: pitch, γ: travel.

with different highest degree are similar, and are similar to
the actual cost given by [10]. [11] gives the highest actual
cost. For unstable systems, only this paper talks about how to
calculate a lower bound on the optimal cost. The lower bound
on the optimal cost calculated using SOSTOOLS algorithm
increases as the highest degree in h1 increases. When D1

is 13, the lower bound on the optimal cost is 3.23 which is
close to the actual cost 3.37 and the upper bound on the cost
3.49 when D2 = 12. This fact means that the polynomial
approximation is close to the optimal event trigger, and both
the upper bound on the actual cost and the lower bound on
the optimal cost are tight.

From the two examples, we have the following conclu-
sion. For both stable and unstable systems, the SOSTOOLS
algorithm provides a tight lower bound on the optimal
cost when the highest degree of each term in h1 is larage
enough. For both stable and unstable systems, the polynomial
approximation calculated by the SOSTOOLS algorithm is
close to the optimal strategy. For unstable systems, the upper
bound on the suboptimal cost calculated using SOS program
is tight when the highest degree of h2 is large enough. But
for stable systems, [14] gives a tighter upper bound on the
suboptimal cost than the SOSTOOLS algorithm proposed in
this paper.

VIII. APPLICATION IN A 3DOF HELICOPTER

Besides the mathematical examples in section VII, we are
also interested in applying the polynomial approximation of
optimal event trigger proposed in this paper to a non-trivial
system, and take the 3 DOF helicopter as a study case. This
experiment is done on a computer with 2.99 GHz CPU and
3.37GB of RAM.

la 0.67 m ϵ0 -0.136 rad
lh 0.177 m cϵ 0.18 kg.m2/s
lw 0.48 m cρ 0.003 kg.m2/s
d 0.04 m cγ 0.25 kg.m2/s
M 1.4611 kg cγρ 0.003 kg.m2/s
m 2 kg Jϵ 3.5 kg.m2

Mbf 0.29 kg Jρ 0.01 kg.m2

g 9.8 m/s2 Jγ 4 kg.m2

TABLE III
3DOF HELICOPTER PARAMETER VALUES

Figure 2 gives the basic schematic of the 3DOF helicopter.
The 3DOF helicopter consists of three subsystems: elevation
(ϵ), pitch (ρ) and travel (γ). Elevation is the angle between
the main beam and the horizontal axis, pitch is the angle that
the motor beam moves around the main beam, and travel is
the angle that the main beam moves around the vertical axis.
Tf and Tb are the front and back thrust generated by the DC
motors. Our objective is to control the 3DOF helicopter to
follow a commanded elevation and a commanded travel rate.

The system dynamic is described by the following equa-
tions

Jϵϵ̈m =−
√
((mlw −Mla)g)2 + ((m+M)gd)2 sin(ϵm)

+ Tcol cos(ρ)(la + d tan(ϵm + ϵ0))− cϵϵ̇m,

Jρρ̈ =Tcyclh −Mbfgd sin(ρ)− cρρ̇+ cγργ̇,

Jγ γ̈ =− laTcol sin ρ cos ϵ− cγ γ̇,

The parameter values are given in Table III.
Neglecting the non-dominant terms and under the assump-

tion that sin(ρ) ≈ ρ and sin(ϵm) ≈ ϵm, the model of 3DOF
helicopter can be simplified as

Jϵϵ̈m =−
√
((mlw −Mla)g)2 + ((m+M)gd)2ϵm

+ cϵϵ̇m + lauϵ (23)
Jρρ̈ =−Mbfgdρ− cρρ̇− cγργ̇ + lhuρ (24)
Jγ γ̈ =− cγ γ̇ − lauγ , (25)

where uϵ = Tcol cos(ρ), uρ = Tcyc, and uγ =
Tcol sin(ρ) cos(ϵ). ϵm, ρ and γ are measurements with mea-
surement noise variances to be 1.857e − 6, 1.857e − 6,
and 1.857e− 8, respectively. uϵ and uρ are PID controllers
with the PID gains to be

[
44 7 68

]
and

[
30 3 11

]
,

respectively. uγ is a PI controller with the PI gain to be[
22 14

]
. All the controllers only use remote state estimates

to calculate the control inputs.
From equation (23), (24) and (25), we can see that the

helicopter system is decomposed into 2 decoupled subsys-
tems: elevation subsystem and pitch-travel subsystems. We
will compute a polynomial event trigger for each subsystem.

The elevation subsystem is a 3 dimensional system with
its state xϵ(t) = [

∫ t

s=0
ϵm(s)ds ϵm(t) ϵ̇m(t)]T . We assume

that both
∫ t

s=0
ϵm(s)ds and ϵm(t) are measurable. The

communication price λ for elevation subsystem is 0.1. Let
d = 0.05, ϕ = 2, weight matrix Z = diag([2 7 1]), and
the highest degree of h2 be 6. Using the Algorithm 6.3, we
obtain a polynomial approximation within 5 seconds.

0 10 20 30 40 50 60 70 80 90
−0.1

0

0.1

0.2

0.3

0.4
elevation

time:s

commanded elevation
polynomial event trigger
periodic trigger

0 10 20 30 40 50 60 70 80 90
−0.4

−0.2

0

0.2

0.4
travel rate

time:s

commanded travel rate
polynomial event trigger
periodic trigger

0 10 20 30 40 50 60 70 80 90
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
pitch

time:s

polynomial event trigger
periodic trigger

Fig. 3. The elevation, travel rate and pitch performance of the 3DOF
helicopter with the remote state estimate system.

The pitch-travel subsystem is a 5 dimensional system with
its state xργ(t) = [

∫ t

s=0
ρ(s)ds ρ(t) ρ̇(t) γ(t) γ̇(t)]T , where∫ t

s=0
ρ(s)ds, ρ(t) and γ(t) are measurable. The communi-

cation price λ for the pitch-travel subsystem is 0.1, and the
weight matrix is Z = diag([1 40 1 1 20]). We first use
Algorithm 6.3 to calculate the polynomial approximation,
but it takes too long to obtain a feasible solution (more
than 15 minutes). So we turn to using Algorithm 6.6 with
d1 = 0.025, d2 = 0.025, d3 = 0.06, ϕ = 1, δ = 1 and the
highest degree in h2 be 4. It takes 526 seconds to calculate
a polynomial approximation.

We apply the remote state estimate system to the 3DOF
helicopter, and run the system for 89 seconds. The elevation
subsystem transmits 901 times and the pitch-travel subsystem
transmits 1077 times. We, then, use the average period as the
period for periodic transmission, and run the system again.
The elevation, travel rate and pitch performances for both
polynomial event trigger and periodic trigger are shown in
Figure 3.

The top two plots of Figure 3 show the elevation and travel
rate, respectively. The x-axis indicates the time, and the y-
axis indicate the angle measured in rad. we can see that both
the polynomial event trigger (dotted line) and the periodic
trigger (solid line) track the commanded signals (dashed line)
with small overshoot and 0 steady error, and provides similar
performances. The bottom plot shows the pitch angle of
the 3DOF helicopter with x-axis indicating time and y-axis
indicating pitch angle. At time instants 22s, 44s, and 62s,
polynomial event trigger provides smaller overshoot than the
periodic trigger. From 20s to 30s, polynomial event trigger
gives smaller oscillation than the periodic trigger. Thus, we
say that polynomial event trigger provides better transient
performance than the periodic trigger.

REFERENCES

[1] K. Astrom and B. Bernhardsson, “Comparison of Riemann and
Lebesgue sampling for first order stochastic systems,” in Decision and
Control, 2002, Proceedings of the 41st IEEE Conference on, vol. 2.
IEEE, 2002, pp. 2011–2016.

[2] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” in Automatic Control, IEEE Transactions on, vol. 52, no. 9.
IEEE, 2007, pp. 1680–1685.

[3] X. Wang and M. Lemmon, “Self-Triggered Feedback Control Systems
With Finite-Gain L2 Stability,” in Automatic Control, IEEE Transac-
tions on, vol. 54, no. 3. IEEE, 2009, pp. 452–467.

[4] O. Imer, “Optimal estimation and control under communication net-
work constraints,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 2006.

[5] M. Rabi, K. Johansson, and M. Johansson, “Optimal stopping for
event-triggered sensing and actuation,” in Decision and Control, 2008.
CDC 2008. 47th IEEE Conference on. IEEE, 2008, pp. 3607–3612.

[6] L. Li, M. Lemmon, and X. Wang, “Event-triggered state estimation
in vector linear processes,” in American Control Conference (ACC),
2010. IEEE, 2010, pp. 2138–2143.

[7] Y. Xu and J. Hespanha, “Optimal communication logics in networked
control systems,” in Proceedings of the IEEE Conference on Decision
and Control, vol. 4, Nassau, Bahamas, 2004, pp. 3527–3532.

[8] A. Arapostathis, V. Borkar, E. Fernández-Gaucherand, M. Ghosh, and
S. Marcus, “Discrete-time controlled Markov processes with average
cost criterion: a survey.” ISR; TR 1991-109, 1991.

[9] R. Cogill, S. Lall, and J. Hespanha, “A constant factor approximation
algorithm for event-based sampling,” in American Control Conference,
2007. ACC’07. IEEE, 2007, pp. 305–311.

[10] L. Li and M. Lemmon, “Performance and average sampling period
of sub-optimal triggering event in event triggered state estimation,” in
conference of decision and control. IEEE, 2011.

[11] R. Cogill, “Event-based control using quadratic approximate value
functions,” in Decision and Control, 2009 held jointly with the 2009
28th Chinese Control Conference. CDC/CCC 2009. Proceedings of
the 48th IEEE Conference on. IEEE, 2009, pp. 5883–5888.

[12] X. Guo and Q. Zhu, “Average optimality for markov decision processes
in borel spaces: a new condition and approach,” Journal of Applied
Probability, vol. 43, no. 2, pp. 318–334, 2006.

[13] R. Cogill and S. Lall, “Suboptimality bounds in stochastic control: A
queueing example,” in American Control Conference, 2006. IEEE,
2006, pp. 1642–1647.

[14] R. Cogill, S. Lall, and J. Hespanha, “A constant factor approximation
algorithm for event-based sampling.” Springer, 2010, pp. 51–60.

[15] S. Prajna, A. Papachristodoulou, P. Seiler, and P. Parrilo, “Sostools:
Sum of squares optimization toolbox for matlab,” Users guide, 2004.

[16] L. L. Li and M. Lemmon, “Weakly coupled transmissions in networked
event triggered output feedback systems,” submitted to Discrete Event
Dynamic systems, 2012.

[17] E. Gordienko and O. Hernández-Lerma, “Average cost markov control
processes with weighted norms: value iteration,” Appl. Math, vol. 23,
pp. 219–237, 1995.

[18] S. Meyn, “The policy iteration algorithm for average reward markov
decision processes with general state space,” Automatic Control, IEEE
Transactions on, vol. 42, no. 12, pp. 1663–1680, 1997.

