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Abstract— Microgrids are power distribution systems in
which generation is located close to loads. These small distribu-
tion networks represent a bottom-up approach for improving
the power security of critical loads that cannot tolerate disrup-
tions in main grid service. Voltage stability becomes a significant
issue in microgrids when the network interconnections are weak.
This paper derives sufficient conditions for voltage stability
of a weak microgrid with inverter connected sources. These
conditions take the form of inequality constraints on various
network parameters, loads and generation setpoints. These
conditions can therefore be easily incorporated into dispatch
optimization problems.

I. INTRODUCTION

Microgrids are small-scale power distribution systems
in which generation sources are located close to loads.
These power networks represent a bottom-up approach to
improve the security of power delivery that focuses on
enhancing generation capacity at the distribution level of a
national power grid. This approach encourages consumption
of locally generated power in a way that reduces peak
loads seen by distribution network operators (DSOs). This
method reduces the demand for extra transmission capacity
and provides a path for greater use of renewable energy
resources. Microgrids can also be operated independently
from the main grid (also known as islanded mode) thereby
making them invaluable for safety-critical loads that cannot
tolerate main grid power outages (e.g. hospitals), that may
be disconnected from the grid unexpectedly (e.g. military
bases), and areas in which a national main grid has yet
to penetrate (e.g. rural electrification). Microgrids therefore
represent an important power distribution technology whose
safe and efficient operation can significantly secure the
delivery of power to millions of users.

As small-scale distribution networks, the links in micro-
grids can be weak. The cables interconnecting the buses often
have higher ratios between their conductance and suscep-
tance, G/B, than those found in transmission networks. A
consequence of this higher ratio is that dynamics governing
voltage and phase are more highly coupled, thereby making
it more difficult to guarantee voltage stability [18].

There has, of course, been a great deal of prior work study-
ing voltage stability in such weak networks [4][12][18][21].
Most of those efforts, however, have studied specific network
interconnect topologies with simplifying assumptions, such
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as parallel [4] or chain [21] structures. Previous research
efforts include both linearization and Lyapunov approaches.
In linearization methods, eigenvalue analysis only applies lo-
cally [2] [11] [20] [12] [16] [18] [21]. In contrast, Lyapunov
methods have been used to assess global stability properties
[3], but the conditions derived are usually hard to check. It
is therefore unclear how thus prior work leads to an analytic
set of constraints whose satisfaction assure stability over a
wide class of weak distribution networks.

The objective of this paper is to develop constraints whose
satisfaction assure voltage stability of CERTS (Consortium
for Electric Reliability Technology Solutions) microgrids.
CERTS microgrids [13] represent an important class of
microgrid that use fast inverters to connect a heterogenous
mixture of generation sources into the network. Earlier work
[11] has studied the stability of relatively strong CERTS mi-
crogrids, but to our best knowledge there has been little work
examining stability conditions for weak networks. Recent
work [7] has attempted to address that issue by viewing the
network as a set of coupled nonlinear oscillators. Building
upon that prior work, this paper derives a set of point-
wise inequality constraints whose satisfaction assures voltage
stability and frequency synchronization in islanded CERTS
microgrids. These stability conditions place constraints on
interconnection weakness, requested power generation, and
reactive loads. When combined with optimal dispatch prob-
lems, these constraints provide a systematic framework for
optimal distributed generation dispatch and demand side
management in this important class of microgrid.

The remainder of this paper is organized as follows.
Section II reviews the power system background and no-
tational conventions used throughout the paper. Section III
presents the weak network model. Section IV presents the
main results of the paper. Section V shows how this paper’s
stability constraints can be directly incorporated into an
optimal dispatch problem. Section VI consists of simulation
examples illustrating the conservativeness of our stability
condition. Section VII provides concluding remarks and
identifies future directions in realizing stable and optimal
power dispatch.

II. BACKGROUND AND NOTATIONS

This section presents basic definitions and notations that
are used throughout this paper. All system states are ex-
pressed with per unit (p.u.) normalization. This paper also
assumes balanced three-phase operations, so that per phase
circuit models are implemented. With per phase circuit



models, the analysis in this paper also applies to single-phase
power networks.

Consider a distribution network consisting of n buses and
let Yn×n be a symmetric complex valued n×n matrix repre-
senting the network’s admittance matrix. The ijth component
of Yn×n may be expressed as

Yij =

{
− 1
Zij

if bus i and j are connect,
0 else,

Yii =

n∑
j=1,j 6=i

−Yij ,

where Zij is the impedance between bus i and j for all
i, j ∈ {1, 2, . . . , n}. Yn×n may also be expressed as Yn×n =
Gn×n+ jBn×n, where Gn×n is the conductance matrix and
Bn×n is the susceptance matrix. For elements of the two
matrices {Gij} and {Bij}, where i, j ∈ {1, 2, . . . , n}: if
j = i, then Gii > 0 and Bii < 0; if j 6= i, there are
Gij = Gji ≤ 0 and Bij = Bji ≥ 0.

The complex power injected into bus i is denoted as Si =
Pi + jQi (i = 1, 2, . . . , n), where Pi is real power and Qi
is reactive power. At bus i, Si satisfies

Si = 3ViI
∗
i = 3Vi(

n∑
j=1

YijVj)
∗, (1)

which may be rewritten in matrix-vector form as ~S =
3~V ~I∗ = 3~V (Yn×n~V )∗. ~V , ~I ∈ C are n-dimensional complex
vectors whose ith components are Vi, the voltage at bus
i relative to ground, and Ii, the current entering bus i,
respectively.

iPP iQ

gen,iPP gen,iQ load,iPP
load,iQ
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Fig. 1. Power Balance at Bus i

As demonstrated in Figure 1, positive Pi and Qi inject
power flows into bus i. Pgen,i and Qgen,i describe the real
and reactive power generated at bus i. Pload,i and Qload,i
denote the collection of real and reactive powers absorbed by
all loads at bus i. Constant impedance load values are defined
at the nominal voltage, so that the loads are proportional
to the square of voltage magnitudes {Ei}. Therefore the
injected real and reactive powers into bus i are

Pi = Pgen,i − E2
i Pload,i, (2)

Qi = Qgen,i − E2
iQload,i. (3)

The dependence of Pi and Qi on neighboring buses is
captured by the power balance relations

Pi = 3

n∑
j=1

EiEj(Gij cos(δi − δj) +Bij sin(δi − δj)), (4)

Qi = 3

n∑
j=1

EiEj(Gij sin(δi − δj)−Bij cos(δi − δj)), (5)

where Ei and δi are the voltage magnitude and the phase
angle at bus i. Given the real powers {Pi} and voltage
magnitudes {Ei}, one can use equations (4-5) to solve for the
corresponding reactive powers {Qi} and phase angles {δi}.
Real valued vectors (P,Q, δ, E) are time-variant signals of
system states. Existence and uniqueness of solution to this
power flow analysis rest upon the Lipschitz nature of these
power balance relations [9].

III. PROBLEM STATEMENT

This section presents the CERTS Microgrid system mod-
els. As shown in Figure 2, an islanded microgrid may be
viewed as the interconnection of four subsystems, including
the voltage control block, the frequency synchronization
block, and two power balance blocks. The controller blocks
use droop mechanisms that down-scale conventional grid
control concepts to low voltage power grids [8]. The par-
ticular controller designs are based on the CERTS droop
controllers [13].
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Fig. 2. Complete Model of the Network

The dynamics are generated by those local controllers tied
to each bus, with the power balance relations in equations
(4-5). The associated controller equations are therefore

δ̇i = mP (P ∗i − Pgen,i) + ω0,

= mP (P ∗i − Pi − E2
i Pload,i) + ω0, (6)

Ėi = KQ(E∗i − Ei)−mQQgen,i,

= KQ(E∗i − Ei)−mQ(Qi + E2
iQload,i), (7)

for all i ∈ {1, 2, . . . , n}. Equations (6-7) are the frequency
and voltage controls, respectively, for the ith bus. These
equations describe how the real and reactive powers injected
at bus i are modulated based on the voltage magnitude Ei
and phase angle δi on this bus.

In equations (6-7), P ∗i and E∗i denote the operator’s
commanded real power and voltage levels at the ith bus. The
parameters mP , KQ, and mQ, are droop control parameters,
while ω0 is the desired angular frequency (120π rad · s−1).

Set point (Pset, Qset, δset, Eset, ωset) is an equilibrium
point of the system in equations (4-7), where ωset is the
corresponding system frequency of the set point. Given {P ∗i }
and {E∗i }, the set point is obtained by solving equations (4-
5) for all i ∈ {1, 2, . . . , n} with the help of the following
relationships obtained by zeroing the time derivatives in



equations (6-7)

0 = mP (P ∗i − Pset,i − E2
set,iPload,i) + ω0, (8)

0 = KQ(E∗i − Eset,i)−mQ(Qset,i + E2
set,iQload,i). (9)

The voltage stability of this system is studied using phase
angle, voltage and reactive power errors defined as

δ̃ = δ − δset,Ẽ = E − Eset, Q̃ = Qset −Q.
Based on equation (9), the operator commanded E∗i satisfies

E∗i = Eset,i +
mQ

KQ
(Qset,i + E2

set,iQload,i). (10)

The voltage control block in Figure 2 treats {Qi} as the
input and {Ei} as the output. The associated error equation
therefore take the form of

˙̃Ei = Ėi − Ėset,i,
= KQ(E∗i − Ei)−mQ(Qi + E2

iQload,i),

= KQ(Eset,i − Ei) +mQ(Qset,i −Qi)
+mQ(E2

set,i − E2
i )Qload,nom,i,

= mQQ̃i − [KQ +mQ(2Eset,i + Ẽi)Qload,i]Ẽi.(11)

Definition 1: System in equations (6-7) have voltage sta-
bility if: the inputs P , Pload, Q, and Qload are constant,
there are two open subsets of ΩE,1,Ωδ,1 ⊂ Rn containing
the origin such that if Ẽ(0) ∈ ΩE,1 and δ(0) ∈ Ωδ,1 then
Ẽ(t)→ 0 as t→∞.

Lemma 1 and 2 bound the value of Q̃. Proofs of these
lemmas are provided in the Appendix.

Lemma 1: Defined lE and lδ as

lE = 6(max
i

(Eset,i) + |Ẽi|max)(|Gii|max + 2|Bii|max),

lδ = 6(max
i

(Eset,i) + |Ẽi|max)2(|Gii|max + |Bii|max),

|Q̃i| is bounded by

|Q̃i| ≤ lE |Ẽi|max + lδ|δ̃i|max,
≤ lE |Ẽi|max + lδ · 2π. (12)

Lemma 2: Define mE and mδ as

mE = max{
√
λ : λ is an eigenvalue of (

∂Q

∂E
)∗(

∂Q

∂E
)},

mδ = max{
√
λ : λ is an eigenvalue of (

∂Q

∂δ
)∗(

∂Q

∂δ
)},

then ‖Q̃‖2 is bounded by

‖Q̃‖2 ≤ mE‖Ẽ‖2 +
√
nmδ|δ̃i|max. (13)

By inserting the power balance relation (4) into the earlier
droop equation (6), the frequency controller is written as

δ̇i = mP (P ∗i − Pgen,i) + ω0,

= mP (P ∗i − Pi − E2
i Pload,i) + ω0,

= ω0 +mP (P ∗i − E2
iGii − E2

i Pload,i)

−3mP

n∑
j=1
j 6=i

EiEj(Gij cos(δi − δj) +Bij sin(δi − δj)),

= ωi −mP

n∑
j=1
j 6=i

3EiEj |Yij | sin(δi − δj + φij), (14)

where the natural frequency is ωi = ω0+mP (P ∗i −3E2
iGii−

E2
i Pload,i); φij is the phase shift associated with the link

between bus i and j, φij = φji = tan−1(
Gij

Bij
) ∈ [−π2 , 0];

the diagonal terms are |Yii| = 0 and φii = 0.
Buses in a power network are treated as interconnected

nonlinear oscillators [5] [6]. Synchronization of these oscil-
lators corresponds to frequency synchronization of the power
network [1].

Definition 2: System in equations (6-7) have frequency
synchronization: the inputs P , Pload, Q, and Qload are
constant, there are two open subsets of ΩE,2,Ωδ,2 ⊂ Rn
containing the origin such that if Ẽ(0) ∈ ΩE,2 and δ(0) ∈
Ωδ,2 then δ̇(t)→ δ̇∞ = ωset as t→∞.

In conclusion, equations (4-5), (11), and (14) form the set
of state equations for the system being investigated, which
is shown in Figure 2.

IV. MAIN RESULT

This section derives sufficient conditions for voltage stabil-
ity and frequency synchronization in inverter based CERTS
microgrids. The result consists of two steps. This paper first
identifies positively invariant sets for voltage magnitudes
{Ei}, and phase angles, {δi} where i ∈ {1, 2, . . . , n}.
Assuming that the system’s initial states start within these in-
variant sets, we first establish sufficient conditions for phase
synchronization and then establish the network’s voltage
stability.

A. Invariant Sets
The following lemma characterizes a positively invariant

set of voltage magnitudes.
Lemma 3: Consider the system model described by equa-

tions (4-5,11,14), and set |δ̃i| to be the maximum possible
value of 2π for any bus i, given

|Qload,i|max < a, (15)

KQ/mQ > max(b1 + 2
√

(−Qload,i + a)c,

−b2 + 2
√

(Qload,i + a)c), (16)

where

a = (6 + 12π)|Gii|max + (12 + 12π)|Bii|max, (17)
b1 = ((6 + 24π)|Gii|max + (12 + 24π)|Bii|max

−2Qload,i) max
i
{Eset,i}, (18)

b2 = ((6 + 24π)|Gii|max + (12 + 24π)|Bii|max
+2Qload,i) max

i
{Eset,i}, (19)

c = 12π(|Gii|max + |Bii|max)(max
i
{Eset,i})2. (20)

If max
i
Ei ≤ Emax = max

i
(Eset,i) (21)

+
KQ/mQ − b1 +

√
(b1 −KQ/mQ)2 − 4(a−Qload,i)c
2(a−Qload,i)

,

and min
i
Ei ≥ Emin = min

i
(Eset,i) (22)

−
KQ/mQ + b2 +

√
(KQ/mQ + b2)2 − 4(Qload,i + a)c

2(Qload,i + a)
,



then the set IE , defined as

IE = {E ∈ Rn : Emin ≤ Ei ≤ Emax, 0 < Emin < Emax},

is a positively invariant set with respect to the system
equation (11).

Proof: IE will be an invariant set, if, for arbitrary
i ∈ {1, 2, . . . n}, |Ẽi| is non-increasing on the border of
IE . There are two cases to consider in the analysis, when
Ei = Emax, then Ẽi > 0. Inserting equation (12) into
equation (11) yields

˙̃Ei ≤ −[KQ +mQ(2Eset,i + Ẽi)Qload,i]Ẽi

+6mQ(Eset,i + Ẽi)(|Gii|max + 2|Bii|max)Ẽi

+6mQ(Eset,i + Ẽi)
2(|Gii|max + |Bii|max) · 2π,

= mQ[(−Qload,i + a)Ẽ2
i + (−KQ/mQ + b1)Ẽi + c].

˙̃Ei should be non-positive to make Ẽi > 0 not increasing.
Given the lemma’s hypothesis (16), the equation (−Qload,i+
a)x2 + (−KQ/mQ + b1)x + c = 0 has two real solutions,
at least one of them being positive. If (22) is satisfied, then
Ẽi is non-increasing on the border of Ei = Emax.

The other case occurs when Ei = Emin, then Ẽi < 0

˙̃Ei ≥ −[KQ +mQ(2Eset,i + Ẽi)Qload,i]Ẽi

−6mQ(Eset,i + Ẽi)(|Gii|max + 2|Bii|max)Ẽi

−6mQ(Eset,i + Ẽi)
2(|Gii|max + |Bii|max) · 2π,

= −mQ[(Qload,i + a)Ẽ2
i + (KQ/mQ + b2)Ẽi + c].

˙̃Ei should be non-negative to make Ẽi < 0 not decreasing.
Given the lemma’s hypothesis (16), the equation (Qload,i +
a)x2 + (KQ/mQ + b2)x + c = 0 has two real solutions, at
least one of them being negative. If (23) is satisfied, then Ẽi
is non-decreasing on the border of Ei = Emin.

For any i ∈ {1, 2, . . . , n} when Ei = Emin or Emax, |Ẽi|
does not increase, hence any Ei stays in IE once it starts
between Emin and Emax. Therefore, the two conditions in
(21-22) imply that IE is positively invariant.

Remark 1: Equation (15) restricts the reactive load Qload,i
by a. This requirement relates to the coupling strength of the
network through |Gii|max and |Bii|max.

Remark 2: Equation (16) requires the ratio KQ/mQ to
be large enough, which physically demonstrates the control
force of the inverter. A too large ratio may bring difficulties
to the construction of these inverters.

The following lemma derives a positively invariant set of
phase shifts {δi}. The analysis draws upon techniques used
in [5][7].

Lemma 4: Assume the conditions of lemma 3 are satis-
fied. Define A1 and A2 as

A1 = 3nE2
min min

i6=j
|Bij |,

A2 = max
i6=j

(|Pset,i − Pset,j |+ 3E2
max|Gii −Gjj |)

−6E2
min|Gii|min,

where Emin and Emax are from IE . If

A1 sin(θ) ≥ A2, (23)

then there exists a non-empty set Iθ
Iθ = {δ ∈ Rn : max

i,j
|δi − δj | ≤ θ, θ ∈ [0, π]}, (24)

which is positively invariant with respect to system equations
(4-5,11,14).

Proof: Define a positive function Vδ(δ) : Rn → [0, π]
for the network with n buses as

Vδ(δ) =
1

mP
max
i 6=j
{|δi − δj |} =

1

mP
(δk − δl),

where δk achieves clockwise maximum and δl achieves
the counterclockwise minimum, with k, l ∈ {1, 2, . . . , n}.
Assume that |δi(0)− δj(0)| ≤ θ for any i, j ∈ {1, 2, . . . , n},
where θ is arbitrary and θ ∈ [0, π], such that all angles are
contained in an arc of length θ.

Taking the upper Dini derivative of Vδ , D+Vδ is

δ̇k − δ̇l
= (Pset,k − Pset,l)− 3(E2

kGkk − E2
l Gll)

− 3[

n∑
j=1
j 6=k

EkEj(Gkj cos(δk − δj) +Bkj sin(δk − δj))

−
n∑
j=1
j 6=l

ElEj(Glj cos(δl − δj) +Blj sin(δl − δj))]

= (Pset,k − Pset,l)− 3(E2
kGkk − E2

l Gll)

− 3[

n∑
j=1
j 6=k

EkEjBkj sin(δk − δj)−
n∑
j=1
j 6=l

ElEjBlj sin(δl − δj)]

− 3[

n∑
j=1
j 6=k

EkEjGkj cos(δk − δj)−
n∑
j=1
j 6=l

ElEjGlj cos(δl − δj)].

From V (δ) ≤ θ, there are (δk − δj) ∈ [0, θ] and (δj − δl) ∈
[0, θ], so that sin(δk−δj) ≥ 0 and sin(δj−δl) ≥ 0. Moreover,
the following inequality holds,

sin(δk − δj) + sin(δj − δl)

= 2 sin(
δk − δl

2
) cos(

δk + δl
2

− δj)

≥ 2 sin
θ

2
cos

θ

2
= sin θ.

Replacing the sum of sinusoidal functions with its lower
bound sin θ, there is

D+Vθ = (P ∗k − P ∗l )− (Pk − Pl)
≤ (Pset,k − Pset,l)− 3(E2

kGkk − E2
l Gll)

−3E2
minnmin

i 6=j
Bij sin θ

−6E2
min|Gii|min

≤ max
i6=j

[|Pset,i − Pset,j |+ 3E2
max|Gii −Gjj |]

−3E2
min min

i 6=j
nBij sin(θ)− 6E2

min|Gii|min.

Under the lemma’s condition, A1 sin θ ≥ A2. It should be
clear that D+Vθ ≤ 0 and therefore Vθ is non-increasing. As
a result, Iθ is a positively invariant set.



Remark 3: Condition A1 sin(θ) ≥ A2 will be satisfied if
|Bij | is sufficiently greater than |Gij |. This is, essentially a
limit on network weakness.

B. Asymptotic Stability

The following theorem establishes sufficient conditions for
frequency synchronization.

Theorem 3: Under conditions in lemma 3 and 4, if

A1 sin(π/2− αmax) ≥ A2, (25)

where αmax = maxij tan−1(−Gij/Bij), then frequency
δ̇i(t)→ δ̇∞ = ωset as t→∞, for all i ∈ {1, 2, . . . , n}.

Proof: Define αij = −φij = tan−1(−Gij

Bij
) ∈ [0, π2 ].

Take bus voltages as inputs, derivatives of equation (11) is

d

dt
δ̇i = −3

n∑
j=1
j 6=i

EiEj |Yij | cos(δi − δj − αij)(δ̇i − δ̇j),

rewritten in a vector form,
d

dt
δ̇ = ~F (t)δ̇,

where F (t) is a time-varying matrix whose components are

Fii = −3mP

n∑
j=1
j 6=i

EiEj |Yij | cos(δi − δj − αij),

Fij = 3mPEiEj |Yij | cos(δi − δj − αij).

By lemma 4, for all δi, δj ∈ Iθ where i, j ∈ {1, 2, . . . , n},
there is |δi − δj | < π/2 − αmax, where αmax =
maxij tan−1(−Gij/Bij). The inequality above means that
cos(δi − δj − αij) > 0. The system matrix ~F (t) therefore
satisfies: (a) its off-diagonal elements are nonnegative and (b)
its row sums are zero. As a result, ~F (t) is a Metzler matrix
with zero row sums for every time instant t. All components
of ~F are bounded as follows,

|Fii| ≤ 3mP

n∑
j=1
j 6=i

EiEj |Yij | ≤ 3mPE
2
max

n∑
j=1
j 6=i

|Yij |,

|Fij | = 3mPEiEj |Yij | ≤ 3mPE
2
max|Yij |.

Under the bound given above and the fact that ~F (t) is
Metzler with zero row sums, one can use Theorem 1 in
[15] to conclude uniform exponential stability such that
all frequencies {δ̇i} exponentially converge to a common
frequency δ̇∞ = ωset.

The following theorem establishes the asymptotic voltage
stability.

Theorem 4: Assume that conditions in lemma 3 and 4 as
well as theorem 2 hold. Define B1 and B2 as

B1 =
KQ

mQ
+ 2 min

i
((Eset,i + Ei)Qload,i),

B2 = mE ,

where n the number of buses in the network. If

B1 > B2, (26)

then all voltage magnitudes {Ei} asymptotically converge to
{Eset,i}.

Proof: Taking the derivative of VE =
∑n
i=1

1
2mQ

Ẽ2
i ,

we obtain,

V̇E =

n∑
i=1

1

mQ
Ẽi

˙̃Ei,

=

n∑
i=1

{−[
KQ

mQ
+ (2Eset,i + Ẽi)Qload,i]Ẽi

2

+Q̃iẼi},

= −ẼTDiag(
KQ

mQ
+ (2Eset,i + Ẽi)Qload,i)Ẽ + Q̃TẼ.

Because lemma 4 and theorem 3 imply convergence of {δi}
to {δset,i}, for any εδ there is a time T such that when t > T
there is |δ̃i|max < εδ . Due to lemma 2, ‖Q̃‖2 is bounded
above by mE‖Ẽ‖2 +

√
nmδεδ . As a result, the derivative of

VE is bounded as,

V̇E ≤ mEẼ
T Ẽ +

√
nmδεδ

n∑
i=1

|Ẽi|

−ẼTDiag(
KQ

mQ
+ (2Eset,i + Ẽi)Qload,i)Ẽ,

= ẼTDiag(mE −
KQ

mQ
− (2Eset,i + Ẽi)Qload,i)Ẽ

+
√
nmδεδ

n∑
i=1

|Ẽi|.

There is a subset of Ẽ(t) satisfying |Ẽi| < 2Eset,i +
|mE − KQ/mQ +

√
nmδεδ|/|Qload,i| for an arbitrary εδ .

Once Ẽ(t) enters the subset at t = T , it stays in the set
thereafter, i.e. the system is uniformly ultimately bounded.
As εδ goes to zero, T increases and the size of the ultimate
bound asymptotically goes to zero. This is sufficient to imply
asymptotic convergence of Ẽ to zero, which implies voltage
stability. As a result, the voltage control block ensures the
asymptotic convergence of voltage magnitudes {Ei} to the
set point {Eset,i}.

Remark 4: For voltage magnitude convergence, the ratio
KQ/mQ must be large enough to compensate for the reactive
loads {Qload,i}.

Remark 5: The reactive loads {Qload,i} are important for
network stability. The allowable disturbance of Qload,i at bus
i is restricted by both mE and KQ/mQ.

V. OPTIMAL DISPATCH

The objective of an optimal dispatch problem is to
minimize the instantaneous operation cost throughout the
network. It is solved by microgrid controllers to minimize
the generation cost, subject to power balance relations,
constraints on generation capacities, cable power flow limits,
voltage and frequency regulation rules, also considering sta-
bility constraints. Solutions to this optimization problem are
{P ∗} and {E∗}, which are fed to CERTS droop controllers.

Given an islanded microgrid with n buses and m links
connecting them, with cost functions CP (·) for real power



generation and CQ(·) for reactive power generation, respec-
tively, this optimal dispatch problem is expressed as

min CP

(
n∑
i=1

Pgen,i

)
+ CQ

(
n∑
i=1

Qgen,i

)
,

w.r.t. E∗i P ∗i (i = 1, 2, . . . , n),

sub. to:for all i ∈ {1, 2, . . . , n}) and j ∈ {1, 2, . . . ,m}
Generation Capacity Limits (P gen, P gen, Qgen, Qgen),

P gen,i ≤ Pgen,i ≤ P gen,i, Qgen,i ≤ Qgen,i ≤ Qgen,i,

Power Flow Constraints (P ln, P ln, Qln, Qln),

P ln,j ≤ Pln,j ≤ P ln,j , Qln,i ≤ Qln,i ≤ Qln,i,

Voltage and Frequency Regulation Rule (E,E, ω, ω),

Ei ≤ Ei ≤ Ei, ω ≤ ωset ≤ ω,
Power Balance Relationship (4-5),
Stability Constraints (21-22, 23, 25-26).

An example will be provided in Section VI showing that
constraints in equations (21-22, 23, 25-26) ensure stability
and the system may be unstable without these constraints.

VI. SIMULATION EXPERIMENTS

The schematic diagram of the simulation model is shown
in Figure 3. This is an islanded microgrid with three
buses, where ideal voltage sources are connected through
droop controllers. According to rural electrification scenar-
ios, power generation and load levels are below 10kVA
and the voltage level is 480V. Network links are AWG 6
cables, with an impedance of (2.5 + 0.185j) Ω/mile and a
length of one mile. Base values for p.u. normalization are
Sbase = 10kVA and Vbase = 480V.

1E 1δ

2E 2δ 3E 3δ

1PP 1Q

2PP 2Q 3PP 3Q

Bus 1

Bus 2 Bus 3
0~8 kW
-5~5 kvar

0~10 kW
-5~5 kvar

0~10 kW
-5~5 kvar

8 kW
1 kvar

8 kW
1 kvar

8 kW
1 kvar

AWG6 Wires
2.5+0.185j Ω/mile

1 mile 1 mile

1 mile

Fig. 3. Simulation Model of an Islanded Microgrid

In this section, a load variation and the response of the
controller are simulated. The procedure is as following: the
simulation starts from zero initial conditions, known as a
“black start”; an equilibrium is reached where each generator
supplies its local load, so that no power is injected at bus i,
i.e. Pi = Qi = 0; two seconds into the simulation, the load
on bus 1 increases by 2kW, while the controller increase the
injected power from the other two buses to meet the load.

Simulation tests intend show three aspects: (a) constraints
derived in this paper ensure stability and not including

them in optimal dispatch problem leads to unstable systems;
(b) the constraints are conservative, because of sufficient
stability conditions are obtained in this paper; (c) the stability
constraints in equations (21-22, 23, 25-26) make it possible
to control extremely weak networks.

Based on equation (16), there must be KQ/mQ > 3061.2.
By selecting KQ = 160 with mQ = 0.05, the condition is
satisfied. The system is stable and its response on bus 1 is
demonstrated in Figure 4.
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Fig. 4. Simulation Result with KQ/mQ = 3200

By examining the top plot in Figure 4, one sees that the
voltage just prior to t=2 sec is a constant 0.95 p.u.. After the
load change, the voltage exhibits a temporary increase of
less than 0.0002p.u., which corresponds to a 0.02% voltage
ripple. The bottom plot shows the frequency in the network.
Within 0.15 sec after the load change, the network frequency
changes by a maximum of 0.05Hz. Thereafter, the frequency
converges to the desired value 60Hz.

To demonstrate that the stability constraints are essential
to ensure system stability, a dispatch problem without those
constraints is solved. The controller parameter KQ is chosen
to be one, with mQ = 0.05, the ratio KQ/mQ = 20. As
shown in Figure 5, the system shows instabilities in both
voltage and frequency signals.
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Fig. 5. Simulation Result with KQ/mQ = 20

Figure 5 shows that even before the load changes, the
system is unstable. In the top plot, one sees that the voltage
deviate from the nominal value by more than 50%. In the
bottom plot, the network frequency decreases below 20Hz.
Even though the signals are bounded, they are deemed
as unstable in a power network. As a result, the stability



constraints are critical to ensure stability in the optimal
dispatch problems.

The ratio KQ/mQ demonstrates the control force of the
inverter, physically. Reducing this ratio may bring benefits
when these inverters are actually built. It is shown in
this simulation that, with a reduced KQ/mQ, the system
still has voltage stability and frequency synchronization. As
demonstrated in Figure 6, simulations are conducted with
KQ/mQ = 300(left) and 200(right), respectively.
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Fig. 6. Simulation Results with KQ/mQ = 300(left) and 200(right)

Figure 6 shows that when the ratio KQ/mQ is reduced
to about 1/10 (when KQ/mQ = 300) of the limit given
in equation (16), the system still has voltage stability and
frequency synchronization. However, the voltage magnitude
at bus 1 has a ripple of 0.05% and the system frequency sees
a ripple of 0.01Hz. Further reduce the ratio to 200, as shown
in the right plots of Figure 6, the amplitudes of the ripples
in voltage magnitude and the system frequency are basically
the same. The difference is that, with a smaller control
force, the signals converge slower in this case. Because the
constraints derived in this paper are only sufficient conditions
of system stability, the conservativeness demonstrated here
is predictable.

Although AWG 6 cables (4.11mm in diameter) is small
for low-voltage distribution networks, even thinner cables
may be applied in rural electrification projects, such as
AWG 16 cables (1.29mm in diameter) used to connect solar
panels. These cables are assumed to have roughly ten times
of resistance and the same reactance as AWG 6 cables,
i.e. (25 + 0.185j) Ω/mile. Based on equation (16), there
must be KQ/mQ > 292.5. By selecting KQ = 15 with
mQ = 0.05, the condition is satisfied. The system is stable
and its response on bus 1 is demonstrated in Figure 7.
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Fig. 7. Weaker Network Simulation with KQ/mQ = 300

By examining the top plot in Figure 7, one sees that the
voltage just prior to t=2 sec is a constant 0.95 p.u.. After
the load change, the voltage exhibits a temporary increase
of less than 0.0001p.u., which corresponds to a 0.01%
voltage ripple. The bottom plot shows the frequency in the
network. Within 0.1 sec after the load change, the network
frequency changes by a maximum of 0.04Hz. Thereafter, the
frequency converges to the desired value 60Hz. As a result,
the stability constraints make it possible to control extremely
weak networks.

In this section, simulation tests are conducted to the
islanded microgrid model. Based on the simulation results,
we can conclude that constraints derive in this paper ensures
stability and not including them in optimal dispatch problems
leads to unstable systems. Because the stability conditions in
this paper are only sufficient ones, the constraints derived are
somewhat conservative, which means a system not satisfying
these constraints may still be stable. Furthermore, it is shown
that the stability constraints in equations (21-22, 23, 25-
26) make it possible to control extremely weak networks,
this property is especially valuable for rural electrification
projects.

VII. SUMMARY AND FUTURE WORK

Microgrids represent a bottom-up approach for improving
the power security of critical loads that cannot tolerate
disruptions in main grid service. Voltage stability becomes
a significant issue in microgrids when the network intercon-
nections are weak. This paper derives sufficient conditions
for voltage stability of a weak microgrid with inverter
connected sources. These conditions take the form of in-
equality constraints on various network parameters, loads and
generation setpoints. These conditions can therefore be easily
incorporated into dispatch optimization problems.

Future research will focus on the optimal control of an
islanded microgrid or coupled microgrids, where stability
constraints (21-22, 23, 25-26) have been added to the
constrained optimal dispatch problem in Section V. This
represents a point wise constraint that could be viewed as
a model predictive control (MPC) scheme with a horizon
length of zero [17]. Results in this paper will be extended
to a true MPC controller similar to that used in [10] and
these MPC problems can be solved in a distributed manner,
similar to our earlier work in [19].

APPENDIX

Proof: With the help of its Jacobian ∂Q
∂E and ∂Q

∂δ , Q̃
is bounded by a function of Ẽ and δ̃. With infinite vector
norm and its induced infinite matrix norm, the linearization
induces

Q−Qset =
∂Q

∂E
|set(E − Eset) +

∂Q

∂δ
|set(δ − δset).

Taking infinite vector norms on both sides, there is

‖Q−Qset‖∞ ≤
∥∥∥∥∂Q∂E (E − Eset) +

∂Q

∂δ
(δ − δset)

∥∥∥∥
∞
.



Taking infinite vector norms on both sides, there is

‖Q̃‖∞ ≤
∥∥∥∥∂Q∂E Ẽ +

∂Q

∂δ
δ̃

∥∥∥∥
∞
,

≤
∥∥∥∥∂Q∂E Ẽ

∥∥∥∥
∞

+

∥∥∥∥∂Q∂δ δ̃
∥∥∥∥
∞
,

≤
∥∥∥∥∂Q∂E

∥∥∥∥
∞

∥∥∥Ẽ∥∥∥
∞

+

∥∥∥∥∂Q∂δ
∥∥∥∥
∞

∥∥∥δ̃∥∥∥
∞
,

|Q̃i|max ≤
∥∥∥∥∂Q∂E

∥∥∥∥
∞
|Ẽi|max +

∥∥∥∥∂Q∂δ
∥∥∥∥
∞
|δ̃i|max,

where ‖∂Q∂E ‖∞ and ‖∂Q∂δ ‖∞ are bounded as following

‖∂Q
∂E
‖∞ = 3

∑
j=1
j 6=i

|Ei(Gij sin(δi − δj)−Bij cos(δi − δj))|

+ |3
∑
j=1
j 6=i

Ei(Gij sin(δi − δj)−Bij cos(δi − δj))− 6EiBii|,

≤ |6EiBii|+ 6
∑
j=1
j 6=i

|Ei(Gij sin(δi − δj)−Bij cos(δi − δj))|,

≤ 6|Ei|max|Bii|max + 6|Ei|max max
i

(
∑
j=1
j 6=i

(|Gij |+ |Bij |)),

≤ 6(max
i
Eset,i + |Ẽi|max)(|Gii|max + 2|Bii|max) = lE ,

‖∂Q
∂δ
‖∞

= |3
∑
j=1
j 6=i

EiEj(Gij cos(δi − δj) +Bij sin(δi − δj))|

+ 3
∑
j=1
j 6=i

|EiEj(Gij cos(δi − δj) +Bij sin(δi − δj))|,

≤ 6
∑
j=1
j 6=i

|EiEj(Gij cos(δi − δj) +Bij sin(δi − δj))|,

≤ 6|Ei|2max max
i

(
∑
j=1
j 6=i

(|Gij |+ |Bij |)),

≤ 6(max
i
Eset,i + |Ẽi|max)2(|Gii|max + |Bii|max) = lδ.

Proof: If system frequency synchronizes and phase
shifts are within the invariant set Iθ, then for any i, j ∈
{1, 2, . . . , n} there is |δi − δj | ≤ αmax. Within the invariant
set IE , applying vector two-norm and its induced matrix
two-norm, there is

‖Q̃‖2 = ‖∂Q
∂E

Ẽ +
∂Q

∂δ
δ̃‖2,

≤ ‖∂Q
∂E

Ẽ‖2 + ‖∂Q
∂δ

δ̃‖2,

≤ ‖∂Q
∂E
‖2‖Ẽ‖2 + ‖∂Q

∂δ
‖2
√
n|δ̃i|max,

≤ mE‖Ẽ‖2 +
√
nmδ|δ̃i|max.
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