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Abstract— A resilient control system is one that maintains
state awareness and an accepted level of operational normalcy
in response to unexpected disturbances. There has recently been
great interest in event-triggered control for networked systems.
It is unclear, however, whether event-triggering is appropriate
for resilient control because of the sporadic nature of the
feedback. This paper examines the bit-rates needed to realize
event-triggered controls that are resilient to transient faults.
Using techniques from dynamically quantized control, we derive
sufficient resilient bit-rates nonlinear scalar systems with affine
controls and disturbances. For linear systems, these sufficient
rates can be necessary for resilience. The results in this paper
suggest that, at least for transient faults, resilient control is
indeed achievable using event-triggered feedback.

I. INTRODUCTION

Resilient operation of critical systems is of great societal
importance. Failures of critical civil infrastructure, such
as the power grid or transportation network, will result
in economic losses and societal disruptions. The scale of
these disruptions will be grow larger and larger as more
systems are integrated over public networks. These public
systems also become more vulnerable to malicious attacks as
system size increases. It is therefore crucial that the controls
strategies used for these systems be resilient to these threats.

A resilient control system is one that maintains state
awareness of threats and anomalies [1]. In particular, we
expect such control systems to provide guarantees on a
system’s return to operational normalcy in the presence of
disturbances generated by such threats and anomalies. The
impact of such threats can be modeled as a stop faults
which change the structure of the system [2]. Such threats
may also be modeled as transient faults that result in a
discontinuous step change in the plant’s state. This paper
examines resilience to such transient faults. We consider
a nonlinear scalar system whose operational range can be
partitioned into a safe and unsafe region. The safe operational
region is a neighborhood of the origin (equilibrium point)
over which the controller ensures a pre-specified performance
objective. Disturbances due to threats are impulses of un-
known magnitude that may drive a system into its unsafe
region. Within the unsafe region it is no longer possible to
guarantee system performance levels. One may, however, be
able to use an emergency control action that guarantees the
system’s return to the safe region in finite time. The main
result of this paper characterizes lower bounds on those bit
rates ensuring resilient operation of quantized event-triggered
control systems.
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Event triggered systems have shown their potential to
conserve communication resources while preserving system
performance. In event triggered systems, transmission occurs
when the output of the system exceeds a threshold. Recent
experiments have shown that event triggered systems use
fewer communication resources than time triggered systems
having comparable performance [3], [4], [5], [6]. The key
reason is that event triggering makes use of online informa-
tion to decide transmission time, while time triggering uses a
fixed transmission interval based on the worst case scenario.

Many embedded system engineers, however, favor the use
of time-triggered over event-triggered control architectures.
A major objection to the use of event-triggered control is that
it tends to generate sporadic information streams. In these
sporadic streams, the time between consecutive transmissions
changes in a time-varying manner. This lack of predictability
is seen as an obstacle to resilient operation. This concern
may appear valid on the surface, but in fact event-triggered
systems do provide some degree of predictability in that the
minimum time between successive transmissions is usually
bounded away from zero. In this regard, event-triggering
can be seen as providing a minimum level of feedback
connectivity, with additional information being transmitted
over the channel when the system is driven away from its
equilibrium point. A key question is how small this feedback
information rate can be made while still assuring resilient
operation?

The main results in this paper characterize an upper bound
on the minimum bit-rates required for resilient behavior.
These results are obtained for scalar nonlinear systems whose
control and disturbances enter in an affine manner. The
control input, u, is an impulse train whose impulses are
applied when sensor data is transmitted over a communi-
cation channel to the system’s actuator. Disturbance inputs
are also impulses that force a jump in the plant’s state as the
result of some transient fault. We assume that the magnitude
of these faults is unknown. The occurrence of such fault
forces the system out of its safe operating region and into
an unsafe region. The main result of this paper establishes
upper bounds on the information bit rate between sensor and
actuator required to 1) eventually force an unsafe system
back into its safe operating region and 2) maintain a specified
performance level within the safe performance region.

II. MATHEMATICAL PRELIMINARIES

Let Rn denote the linear space of real n-vectors. Let R+

denote the set of non-negative reals. The infinity norm of a
vector x ∈ Rn will be denoted as |x|. Given the real-valued



Fig. 1. System structure

function x(·) : R+ →Rn, we let x(t) denote the value x takes
at time t ∈ R+.

Let Ω be a closed and bounded subset of Rn. We say
f (·) : Ω →Rn is Lipschitz on Ω if for any x,y ∈ Ω, we know
there exists a constant L ≥ 0 such that

| f (x)− f (y)| ≤ L|x− y|,

where L is called the Lipschitz constant.
A function α(·) : R+ →R+ is class K if it is continuous,

strictly increasing and α(0) = 0. A function β : R+×R+ →
R+ is class K L if β (·, t) is class K for each fixed t ≥ 0
and β (r, t) decreases to 0 as t → ∞ for each fixed r ≥ 0.

Let Ωa ⊆ Rn be a compact set containing the origin.
Suppose x(t) ∈ Rn is the state trajectory satisfying

ẋ = f (x).

Let t0 be the time when x(t) first enters Ωa. We say that Ωa
is an absorbing region of f with performance level β (t−t0),
if for all t ≥ t0,

|x(t)| ≤ β (t − t0),

where β (·) is a strictly decreasing function. The magnitude
of a region Ω, denoted by |Ω|, is defined as

|Ω|= max{|x|, for all x ∈ Ω}

III. SYSTEM SETUP

The system structure is shown as in Figure 1. The plant is
a nonlinear scalar system whose state trajectory x : R+ →R
satisfies the following initial value problem,

ẋ(t) = f (x(t))+u(t)+w(t) (1)

for all t ≥ 0 with x(0) = x0. We assume that f (·) : R→R is
a locally Lipschitz about the origin with Lipschitz constant
L with f (0) = 0. The input signal u is a train of control
impulses and the input signal w is a train of exogenous
disturbance impulses generated by transient system faults.

The disturbance signal, w, is an impulse train of the form,

w(t) =
∞

∑
i=1

ωiδ (t −hi)

where hi denotes the ith consecutive fault time and ωi ∈ R
represents the magnitude of the ith fault. The main feature
of this fault model is that ωi is not known or bounded in an
a priori manner.

The control input, u, is generated by the controller shown
in figure 1. In this system, a subsystem called the encoder
samples the plant’s state at discrete time instants si for

i= 1,2, . . . ,∞. The ith consecutive sampled state, x(si), is en-
coded as a codeword qi ∈ {1,2, . . . ,Q}. The event-triggered
encoder then transmits this codeword over the channel at
time si with a delay ∆i ≥ 0. The transmitted codeword is
received at time instant ri = si + ∆i. Upon receiving this
codeword, the decoder generates the control update, x̂i ∈ R.
The controller/actuator then takes this update and applies it
to the plant through an impulse at time ri. The final control
signal input therefore takes the form of an impulse train,

u(t) =−
∞

∑
i=1

x̂iδ (t − ri)

where x̂i is the ith consecutive control command applied at
time instant ri.

It will be convenient to restrict the system function, f , so
that

x f (x)> 0 for all x ∈ R, (2)
f (|x|) and − f (−|x|) are class K (3)

The first assumption follows from our Lipschitz assumption
and the second assumption can be relaxed at the cost of
degrading the bit-rate bounds derived below. Finally, we
assume there exists a real number xa such that for all |x|> xa
we can uniformly bound | f (x)|. In other words, we assume
there exist positive constants L and L̄ such that

| f (x)| ≤
{

L|x| if |x| ≤ xa
L̄ if |x|> xa

(4)

We refer to the set Ωs ≡ {x ∈ R : |x| ≤ xa} as the safe
region and Ωu ≡ {x ∈R : |x|> xa} as the unsafe region. The
motivation for this terminology is as follows. For the safe
region, the Lipschitz constant, L, provides an accurate upper
bound on the system’s rate of growth. In the unsafe region,
however, this Lipschitz approximation is too conservative.
The unsafe region represents that region in which the plant’s
open-loop rate of change begins to saturate due to physical
limitations within the system.

The safe regime is a regime under which a desired level
of performance is guaranteed (as shown in the right part of
figure 2). In this paper, we specify this desired performance
as exponential stability. Let t0 be the initial time when the
system switches to safe regime, and t f be the terminal time
when the system exits safe regime. For all t ∈ [t0, t f ], the
system state x(t) satisfies

|x(t)| ≤ ρxae−α(t−t0), for some α ≥ 0 and ρ ≥ 1 (5)

When the performance in (5) is violated, the system
switches to unsafe regime. Unsafe regime is a regime under
which the desired level of performance is not guaranteed.
Let τ0 and τ f be the initial time and terminal time of the
unsafe regime. There must exist some time t ∈ [τ0,τ f ] such
that

|x(t)|> ρxae−α(t−τ0).

To be resilient, we require that the system is able to come
back to the safe regime from unsafe regime in finite time.



Fig. 2. Safe regime, unsafe regime and resilience

To be more specific, we define the resilience of a system as
below.

Definition 3.1: A system is resilient if for all state x(τ0)
satisfying |x(τ0)| ∈ (xa,∞), there is a finite time τ f ∈ (0,∞)
such that

|x(τ f )| ≤ xa. (6)
We use the term resilience to refer to a system’s ability to

return to the safe region in finite time. What makes resilience
distinct from robustness is that the transient faults have
an arbitrarily large magnitude, rather than just a bounded
magnitude. Because the magnitude of the fault can be
arbitrarily large, the controller/actuator doesn’t know exactly
what control is needed to return the state to the origin. So
we propose having the controller apply an emergency or
safe control step. The main result of this paper characterizes
the rate at which this emergency control must be applied to
assure that the system is resilient; i.e. that it returns to its
safe region in finite time.

IV. NECESSARY BIT-RATE AND SUFFICIENT
BIT-RATE IN SAFE REGIME

A. Necessary Bit-Rate in Safe Regime

Let’s assume that at time t0, the system enters the safe
regime. Define ϕ(x0, t − t0) as the zero-input behavior of
plant (1), where x0 and t0 are the initial state and initial time.
With the assumptions in (2) and (3), the zero-input behavior
of plant (1) has some nice properties which are given in the
following lemma.

Lemma 4.1: If equation (2) and (3) hold, then for some
small enough time interval ε > 0, we have

ϕ(−x,ε) =−ϕ(x,ε), (7)
ϕ(x1,ε)≥ ϕ(x2,ε), if x1 ≥ x2 ≥ 0. (8)

Now, let’s give the necessary bit-rate to maintain exponen-
tial stability in safe regime in the next theorem. The basic
idea is similar to the idea used in dynamic quantization area
[7], [8].

Theorem 4.2: Let t0 be the initial time when the system
switch to safe regime, and β (t) = ρxae−α(t−t0). If the per-
formance level in equation (5) is guaranteed for all t ≥ t0,
then the instantaneous bit-rate r(t) at time t satisfies

r(t)≥ rs(t) = max
{

1
ln2

(
f (β (t))

β (t)
+α

)
,0
}
. (9)

rs is called the necessary stabilizing bit-rate in safe regime.
Proof: Since performance level (5) is guaranteed for

any t ≥ t0, we know that for any t, x(t) is within interval
[−β (t),β (t)]. From Lemma 4.1, we know that after a small
enough time interval ε , x(t+ε) should lie in another interval
R = [−ϕ(β (t),ε)+ µ ,ϕ(β (t),ε)+ µ ], where µ is the total
amount of control input applied during interval [t, t + ε]. So
the volume of R is

V (R) = 2ϕ(β (t),ε). (10)

We divide the interval R into N parts, and let L j indicate
the jth part. so the total volume of these parts satisfies

N

∑
j=1

V (L j) =V (R). (11)

Since the performance level (5) is guaranteed for all t ≥ t0,
we know that

V (L j)≤ 2β (t + ε). (12)

Therefore, from equation (11), (12) and (13), we arrive at
the inequality that

N ≥ ϕ(β (t),ε)
β (t + ε)

.

It means that I need at least ϕ(β (t),ε)
β (t+ε) symbols to characterize

the interval R. With 1 bit, we can characterize at most two
symbols which are ’0’ and ’1’. With 2 bits, we can character-
ize at most four symbols, which are ’00’,’01’,’10’,’11’. So,
with B bits, we can characterize at most 2B symbols. Since
there are N symbols, we need at least log2 N bits to charac-
terize all of them. As N ≥ ϕ(β (t),ε)

β (t+ε) , at least log2

(
ϕ(β (t),ε)
β (t+ε)

)
bits are needed, and the average bit-rate during this interval
is

r(t, t + ε)≥
log2

(
ϕ(β (t),ε)
β (t+ε)

)
ε

.

To pursue the instantaneous bit-rate at time t, we let ε to be
infinitely close to 0, i.e.

r(t) = lim
ε→0

r(t, t + ε)≥ 1
ln2

(
f (β (t))

β (t)
+α

)
.

Since the bit-rate is always non-negative, we have equation
(10).

Remark 4.3: The term f (β (t))
β (t) in equation (10) indicates

that the fastest increasing speed of the system. Our necessary
stabilizing bit-rate is proportional to this speed, because
we have to use the upper bound of the state to do the
quantization.

Theorem 4.2 is then applied to linear systems, and we
have the following corollary.

Corollary 4.4: If the plant (1) is linear, then the necessary
bit-rate rs to maintain the performance level (5) in safe
regime is L+α

ln2 , i.e.

rs =
L+α
ln2

. (13)



Remark 4.5: The necessary bit-rate of continuous system
given by Hespanha et.al in [9] is recovered by our result
in equation (14) with α = 0, since Hespanha et.al only
considered uniform boundness.

After talking about the necessary bit-rate in safe regime,
we will construct an event triggered encoding and decod-
ing algorithm to provide a sufficient bit-rate. The goal is
to achieve the necessary bit-rates after the initial pack-
et(indicating regime changing) is transmitted, at least, for
linear systems.

B. Sufficient Bit-Rate in Safe Regime

Let’s first propose an event triggered encoding and decod-
ing algorithm in safe regime, and then analyze the bit-rate
of this algorithm. Finally, we would like to discuss how to
choose the parameters to achieve the necessary bit-rates in
finite time for linear systems.

Before giving the algorithm, we would like to introduce
some variables to make the algorithm easy to read. Let Me
and Md , stored in encoder and decoder respectively, indicate
which regime the system is running in. To be more specific,

Me,Md =

{
0, in safe regime;
1, in unsafe regime,

The basic idea of the following algorithm is that since both
encoder and decoder agree with a triggering event. So, once
transmission occurs, the magnitude of the state is fixed. So
we only need 1 bit to indicate the state is positive or negative.
The details of this algorithm are given below.

Algorithm 4.6: Event triggered encoding and decoding
in safe regime.
Encoder algorithm
If system enters safe regime, i.e. Me ̸= 0 and |x(t)| ≤ xa, then

1) Initialization
• Update system regime to be safe, i.e. Me = 0.
• Reset timer to 0, and start the timer.
• Quantize the state x(0) by setting

q =

{
00, if x(0)≥ 0;
01, if x(0)< 0.

• Send q0 to decoder.
• Wait for the acknowledgement (with neglectable

delay) from decoder or a state jump of − xa
2 if q =

00, or xa
2 if q = 01.

• Record the delay of q0 as ∆0.
2) If |x(t)|= θ(xa, t −∆0), where

θ(xa, t −∆0) = xae−α(t−∆0),

then
• Quantize the state x(t) as

q =

{
0, if x(t)≥ 0;
1, if x(t)< 0.

• Send q to decoder.
3) If system enters unsafe regime, go to encoder algorithm

in unsafe regime. Otherwise, go to step 2).

Fig. 3. State trajectory in safe region

Decoder algorithm
If system enters safe regime, i.e. q = 00 or 01, then

1) Initialization
• Update system regime to be safe, i.e. Md = 0.
• Reset timer to be 0, and start the timer.
• Initialize state estimate as

x̂(0) =
{ xa

2 , if q = 00;
− xa

2 , if q = 01.

• Send an acknowledgement to encoder.
2) Wait for the quantized data from encoder.
3) If system enters unsafe regime, i.e. q = 10 or 11, then

go to decoder algorithm in unsafe regime. Otherwise,
go to step 3).

4) Update state estimate as

x̂(t) =
{

θ(xa, t), if q = 0;
−θ(xa, t), if q = 1.

5) Go to step 2).
Given the encoding and decoding algorithm, now let’s

analyze the sufficient bit-rate to guarantee that the system
performance is preserved. Since the number of bits transmit-
ted at each time is fixed (2 bits for regime changing and 1
bit if regime doesn’t change), to analyze the bit-rate is the
same to analyze the acceptable delay of each packet.

Figure 3 shows a typical behavior of the system in safe
regime. Basically, the safe regime can be divided into 2 time
horizons. The first time horizon [0,∆0) is the one during
which the ‘regime changing’ packet is transmitted. The
second time horizon [∆0, t f ), where t f indicates the terminal
time of this safe regime, is the time horizon when we use
threshold function θ to trigger transmission. Now, let’s study
the acceptable delay in each time horizon, and then further
discuss how to chose parameter ρ in performance level (5).
By ’acceptable delay’, we mean that with ’acceptable delay’,
the system still satisfies the performance level (5).

For time horizon [0,∆0], we need to guarantee that the
performance level (5) is satisfied and the state trajectory
comes back to the absorbing region after q0 is received and
the control is applied, i.e. |x(∆0)| ≤ xa. The next lemma gives
an upper bound on the initial delay ∆0.

Lemma 4.7: If

∆0 ≤ min

{
ln
( 3

2

)
L

,
lnρ

L+α

}
, (14)



then |x(∆0)| ≤ xa.
Proof: Let x0 = x(0) indicate the initial state when the

state enters the safe regime. Since the plant (1) is locally
Lipschitz with Lipschitz constant L, we have

|x(∆0)|=
∣∣∣|ϕ(x0,∆0)|−

xa

2

∣∣∣
≤
∣∣∣|x0|eL∆0 − xa

2

∣∣∣
To make sure |x(∆0)| ≤ xa, we force∣∣∣|x0|eL∆0 − xa

2

∣∣∣≤ xa.

The solution of the inequality above is

∆0 ≤
ln
(

3xa
2|x0|

)
L

.

We require that the inequality holds for any x0 ∈ [−xa,xa],
so we have the first term of equation (15).

Besides, we also need to guarantee that the performance
level is satisfied, i.e. |x(t)| ≤ ρxae−αt for all t ∈ [0,∆0]. To
guarantee this, we force

|x0|eL∆0 ≤ ρxae−α∆0 .

The solution of the equation above is

∆0 ≤
ln
(

ρxa
|x0|

)
L+α

.

We require that the inequality holds for any |x0| ≤ xa, so we
have the second term of equation (15).

With the upper bound on the initial delay given by Lemma
4.7, we assure that the system state is bounded by the
threshold θ at time ∆0. Suppose the transmission occurs
during the second time horizon, i.e. [∆0, t f ). We require not
only that the state is bounded by the threshold function
after packet is received and the control input is applied, i.e.
|x(ri)| ≤ θ(xa,ri −∆0), but also that the performance level
indicated by equation (5) is guaranteed, i.e |x(t)| ≤ β (xa, t)
for all t ∈ [si,ri]. To do that, we provide an upper bound on
the delay ∆i in the next lemma.

Lemma 4.8: Suppose the ith transmission occurs during
the time interval [∆0, t f ), i.e. |x(si)|= xae−α(t−∆0). If

∆i ≤ min
{

ln2
L+α

,
ln(ρe−α∆0)

L+α

}
, (15)

where ρ is chosen such that ρe−α∆0 > 1 for any ∆0 satisfies
(15), then |x(ri)| ≤ θ(xa,ri −∆0) and |x(t)| ≤ β (xa, t) for all
t ∈ [si,ri].

Proof: Use the same technique as in the proof of
Lemma 4.7, we have

|x(ri)| ≤ |x(si)|eL∆i − xae−α(si−∆0+∆i).

To make sure |x(ri)| ≤ θ(xa,ri −∆0), we force

|x(si)|eL∆i − xae−α(si−∆0+∆i) ≤ xae−α(si−∆0+∆i).

Realizing that |x(si)|= xae−α(si−∆0), we get

∆i ≤
ln2

L+α
.

To guarantee |x(t)| ≤ ρxae−αt for all t ∈ [si,ri], we first
notice that |x(t)| ≤ |x(si)|eL∆i for all t ∈ [si,ri]. If

|x(si)|eL∆i ≤ ρxae−α(si+∆i),

then |x(t)| ≤ β (xa, t). Solving the equation above with
|x(si)|= xae−α(si−∆0), we have

∆i ≤
ln(ρe−α∆0)

L+α
.

Remark 4.9: The requirement in ρ , i.e. ρe−α∆0 > 1 in-
dicates that after time ∆0, the threshold function is always
below the performance level.

From Lemma 4.8, we see that if we properly choose
parameter ρ , we can achieve the maximum of the upper
bound on delay in the second time horizon.

Corollary 4.10: Suppose the ith transmission occurs dur-
ing the time interval [T, t f ). If we choose ρ such that

ρ ≤ 2
α+L

L ,

then as long as the delay satisfies

∆i ≤
ln2

L+α
,

|x(ri)| ≤ θ(xa,ri −∆0) and |x(t)| ≤ β (xa, t) for all t ∈ [si,ri].
Proof: If the following inequality holds, then this

corollary is true.

ln2
L+α

≤ ln(ρe−α∆0)

L+α
.

Solve the equation above we have

∆0 ≤
ln ρ

2
α

.

To make sure that the initial delay in (15) still works, we
force

ln ρ
2

α
≥ lnρ

L+α
.

Solve this equation, we have ρ ≤ 2
α+L

L .
To conclude Lemma 4.7 and corollary 4.10, we have the

theorem about the sufficient bit-rate in safe regime.
Theorem 4.11: In safe regime, if q0 is transmitted with

bit-rate r(0) satisfying

r(0)≥ r̄s(0) =
2

min
{

ln( 3
2 )

L , lnρ
L+α

} ,

and qi for i = 1,2, · · · is transmitted with bit-rate r(i) satis-
fying

r(i)≥ r̄s(i) =
L+α
ln2

,

then the performance level (5) can be guaranteed with ρ ≥
2

α+L
L .
Remark 4.12: If the system is nonlinear, it’s easy to verify

that rs ≤ r̄s. If the system is linear, the equality holds, i.e.
rs = r̄s. Therefore, for linear system, we can say that after
the initial delay, the performance level (5) is guaranteed with
the necessary stabilizing bit-rate in safe regime.



V. SUFFICIENT BIT-RATE IN UNSAFE REGIME

In this section, we first propose an algorithm for unsafe
regime to assure the resilience, and then analyze the bit-rate
of this algorithm.

The basic idea of our algorithm in unsafe regime is very
simple. For each transmission, the encoder asks the decoder
to move towards the origin by 2xa, since this is the maximum
amount that the controller can apply. Once upon the packet is
received and the control input is applied, the encoder checks
the state again. If the state is still out of the absorbing region,
i.e. |x(t)| ≥ xa, the encoder asks the decoder to move towards
the origin by 2xa again. Otherwise, the system enters the safe
regime, and uses the algorithm in safe regime instead.

Algorithm 5.1: Event triggered encoding and decoding
in unsafe regime
Encoder algorithm
If system enters unsafe regime, then

1) Initialization
• Update system regime to be unsafe, i.e. Me = 1.
• If |x(t)| ≤ xa, go to encoder algorithm in safe

regime.
• Reset time to be 0.
• Quantize the state x(0) as

q =

{
10, if x(0)≥ 0;
11, if x(0)< 0.

• Send q to decoder.
2) Wait for the acknowledgement from decoder or a jump

of magnitude 2xa towards the origin.
3) If |x(t)| ≤ xa, go to encoder algorithm in safe regime.
4) Quantize the state x(t) as

q =

{
0, if x(0)≥ 0;
1, if x(0)< 0.

5) Send q to decoder.
6) Go to step 2).

Decoder algorithm
If the system enters the unsafe regime, i.e. q= 10 or 11, then

1) Initialization.
• Update system regime to be unsafe, i.e. Md = 1.
• Estimate state as

x̂(0) =
{

2xa, if q = 10;
−2xa, if q = 11.

• Send an acknowledgement to encoder.
2) Wait for quantized data from encoder.
3) If system enters safe regime, go to decoder algorithm

in safe regime.
4) Estimate state as

x̂(t) =
{

2xa, if q = 0;
−2xa, if q = 1.

5) Send an acknowledgement to encoder.
6) Go to step 2).
Remark 5.2: Under unsafe regime, Brockett and Liber-

zon’s zoom out idea in [10] can also be applied. However,

in this zoom out strategy, the controller is assumed to have
unlimited power to drive the system state back to the neigh-
borhood. This is not practical in most cases. Considering this
limitation, we propose algorithm 5.1. With this algorithm, for
each time, only 2xa amount of control is applied for each
time, which is more practical to do.

Given the algorithm above, since the number of bits is
fixed in each packet. To analyze the sufficient bit-rate of this
algorithm is the same to analyze the upper bound on the
delay of each packet which assures resilience.

Lemma 5.3: In unsafe region, if the delay of the jth
transmission, ∆ j, satisfies

∆ j <
2xa

L̄
(16)

then there exist a pair of encoder and decoder to guarantee
that the system is resilient, i.e. for any |x(0)| > xa, there
exists a finite time τ f such that

|x(τ f )| ≤ xa.
Proof: If for every transmission, the magnitude of the

state is decreased, i.e.

|x(s j+1)|< |x(s j)|,∀ j = 0,1,2, · · · (17)

then there must exist a constant σ j ∈ (0,1) such that

|x(s j+1)| ≤ σ j|x(s j)|.∀ j = 0,1,2, · · · .

Hence, we have

|x(sN)|=
N−1

∏
j=0

σ j|x(0)| ≤ (σ∗)N |x(0)|,

where σ∗ = max j=0,1,··· ,N−1 σ j. Since σ j ∈ (0,1) for all j =
0,1, · · · ,N, σ∗ ∈ (0,1). So, for any x(0) and xa, I can always
find a finite integer N such that

|x(sN)| ≤ (σ∗)N |x(0)| ≤ xa.

In other words, the system is resilient.
To make sure (18) holds, we first derive an upper bound

on |x(s j+1)|, and then let this upper bound less than |x(s j)|
to get the longest acceptable delay.

We know that during interval [s j,s j+1), the derivative of
|x| satisfies

d|x|
dt

≤
∣∣∣∣dx

dt

∣∣∣∣= | f (x)|.

Because it is assumed that the increasing speed of the state
satisfies equation (4), we have

d|x|
dt

≤ L̄.

Therefore,

|x(s j+1)| ≤ |x(s j)|+ L̄∆ j −2xa.

To make sure that (18) is true, we let

|x(s j)|+ L̄∆ j −2xa < |x(s j)|,

which is the same to say that ∆ j <
2xa
L̄ .



With Lemma 5.3, we give the sufficient bit-rate to guar-
antee resilience in unsafe regime in the next theorem.

Theorem 5.4: In unsafe regime, if q0 is transmitted with
bit-rate

r(0)> r̄u(0) =
L̄
xa
,

and the bit-rate of the jth transmission for j = 1,2, · · · ,N,
r( j), satisfies

r( j)> r̄u( j) =
L̄

2xa
,

where N indicates the last transmission index in unsafe
regime, then there exists a pair of encoder and decoder to
guarantee that the system is resilient, i.e. for any |x(0)|> xa,
there exists a finite time τ f such that

|x(τ f )| ≤ xa.

r̄u is called the sufficient resilience bit-rate.
Remark 5.5: Notice that the sufficient resilience bit-rate

r̄u is independent with the initial state x(0). It means that no
matter how far away the system state is from the origin, the
state can always be pushed back into the absorbing region
with the same bit-rate.

VI. SIMULATION RESULTS

In this section, we first use a nonlinear case to demonstrate
theorem 5.4 which says that the system is resilient against
any state jump with a bit-rate that is only a little higher than
the sufficient resilience bit-rate. Besides, we also show that
a certain performance level is guaranteed under safe regime.
A linear case is then presented to show that the system is
still resilient and only necessary stabilizing bit-rate is used
to guarantee performance level under safe regime.

Consider the following nonlinear system:

ẋ =
{

|x|sin(x)+u+w, if |x| ≤ ρxa;
arctan(x)+u+w, if |x|> ρxa.

with −0.9xa as the initial state. xa = 0.5 is the magnitude
of absorbing region. We choose our performance level to
be β (t) = ρxae−0.2(t−t0) with ρ = 2

0.2+L
L , where L = 1 is the

Lipschitz constant under safe regime. L̄ = π/2 is the uniform
bound of | f (x) when |x| > ρxa. When the system is under
unsafe regime, we choose the maximum delay to be 0.99∗
2∗ xs/L̄.

The system is run for 75 seconds with maximum de-
lay, and two impulsive disturbances hit the system with
magnitude 5xa and 15xa at time 10s and 30s, respectively.
The system performance is given in figure 4 with x-axis
and y-axis indicating time and state, respectively. At time
8s and 50s, the state (solid line) jumps to 2.5 and 7.8,
respectively. With the same maximum delay which is 0.99
of the maximum acceptable delay, we see from the plot that
the system state comes back to the absorbing region in 5
seconds for the first attack and 34 seconds for the second
attack, which shows that as long as the bit-rate is higher
than the sufficient resilience bit-rate, no matter how far away
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Fig. 4. System performance for the nonlinear system

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

time(sec)

B
it 

ra
te

(b
its

/s
ec

)

 

 

regime changing bit rate
sufficient bit rate
necessary bit rate (safe regime)

Fig. 5. Necessary and sufficient bit-rates for the nonlinear system
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Fig. 6. Inter-sampling interval for the nonlinear system
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Fig. 7. System performance for nonlinear system with 0.9 of sufficient
resilience bit-rate
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the state is, the system is resilient, i.e. comes back to the
absorbing region in finite time. After the system comes back
to the absorbing region, which are the time intervals [0,8],
[42,50] and [58,75], the performance level (dot dashed line)
is guaranteed.

Figure 5 gives the bit-rates of the system. x-axis is time,
and y-axis is bit-rate. Since the regime changing packet has
2 bits, the corresponding bit-rate (stars) is higher than the
other packets. We also notice that there is a gap between
the the necessary stabilizing bit-rates (dashed line) and the
sufficient stabilizing bit-rates (solid line) under safe regimes
(intervals [0,8], [42,50] and [58,75]). That is because our
sufficient stabilizing bit-rates are calculated from a global
Lipschitz constant. This global Lipschitz constant becomes
more conservative as the state goes to 0.

The inter-sampling interval si+1 − si is given in figure
6 with x-axis indicating time and y axis indicating inter-
sampling interval. In unsafe regimes, the inter-sampling
intervals are constant since we always set out delay to be
the maximum delay. In safe regimes, we can see that the
inter-sampling intervals are increasing with respect to time,
or in other words, increasing as x goes to the origin, which
implies that our system is efficient attentive [11].

To test how tight our sufficient resilience bit-rate is, we
use 0.9 of the sufficient resilience bit-rate to run the system
when the system is under unsafe regime. Figure 7 gives the
system performance with the same disturbances that we use
in figure 4. We can see that for the first disturbance with
magnitude of 5xa, the system is still resilient, but for the
second disturbance with magnitude of 15xa, the system can’t
come back to the absorbing region again. That’s because that
when x= 5xa, L̄ doesn’t bound | f (x)| tight enough, but when
x = 15xa, L̄ is a very close upper bound on | f (x)|.

To test whether our necessary stabilizing bit-rate is true,
we use 0.9 of this bit-rate to run the system under safe
regime. Figure 8 gives the system performance with initial
state to be xa. we see that the state trajectory (solid line)
becomes unbounded. That’s because the delay is so long that
after the control input is applied, the state is still above the
threshold (dashed line), the event |x(t)|= θ(xa, t) will never
occur, and there is no transmission anymore.

Now, let’s consider a linear system as below.

ẋ =
{

2x+u+w, if |x| ≤ ρxa;
4arctan(x)+u+w, if |x|> ρxa,

with initial state to be 2. The magnitude of absorbing region
xa is 3, and the performance level is chosen to be β (t) =
ρxae−α with ρ = 2

1+2
2 . When |x|> ρxa, the uniform bound

on | f (x)| is L̄ = π/2. The maximum delay under unsafe
regime is chosen to be 0.1 2xa

L̄ .
We ran the system for 15 seconds. Figure 9 shows the

performance of the system. x-axis indicates time, and y-
axis indicates state. The system is attacked at time 5s
with the state (solid line) jumping to 30. We can see that
the state comes back to the absorbing region in about 2
seconds, which demonstrates that our system is resilient.
Under safe regimes, which are intervals [0,5] and [7,15],
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Fig. 9. System performance for the linear system
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Fig. 10. Necessary and sufficient bit-rates for the linear system

the performance level (dashed line) is always guaranteed.
The necessary and sufficient bit-rates are shown in figure 10
with x-axis to be the time, and y-axis indicating bit-rate. We
notice that under safe regimes, the gap between the sufficient
stabilizing bit-rate (stars) and the necessary bit-rate (dashed
line) is 0 (except the first packet indicating ’regime change’).
It demonstrates our assertion that for linear systems, we
can use only necessary stabilizing bit-rate to guarantee the
performance level.

VII. CONCLUSIONS AND FUTURE WORKS

This paper studies the resilience of event triggered systems
against impulsive disturbances with unknown magnitude. An
even triggered strategy is provided to achieve the resilience,
and the sufficient resilience bit-rate is derived. This sufficient
resilience bit-rate is independent with the initial state, which
means that no matter how far away the system state is driven
to, we can always use the same bit-rate to move the state back
to the absorbing region.
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