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Abstract This paper examines output feedback control of wireless networked
control systems where there are separate links between the sensor-to-controller
and controller-to-actuator. The proposed triggering events only rely on local
information so that the transmissions from the sensor and controller subsys-
tems are not necessarily synchronized. This represents an advance over recent
work in event-triggered output feedback control where transmission from the
controller subsystem was tightly coupled to the receipt of event-triggered sen-
sor data. The paper presents an upper bound on the optimal cost attained
by the closed-loop system. Simulation results demonstrate that transmissions
between sensors and controller subsystems are not tightly synchronized. These
results are also consistent with derived upper bounds on overall system cost.

Keywords Weakly coupled transmissions · Event triggering · Output
feedback control · Networked control systems

1 Introduction

Large-scale wireless networked control systems (WNCS) are invaluable in many
civil and military applications for monitoring and controlling in complex envi-
ronment. An important issue for large-scale WNCS concerns energy efficiency.
Sensor nodes need to operate on an extremely frugal energy budget, since
they are battery driven and since battery replacement is not an option for
large-scale WNCS with thousands of physically embedded nodes. To conserve
power, it is important to manage wireless communication as such communi-
cation is a major source of power consumption [17]. There has been a great
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deal of prior work seeking to conserve power [19,1] through energy efficient
networking protocols. Another way of conserving power, however, is to make
the application power aware, and attempt to minimize the application’s use of
the communication network, while still maintaining a desired level of control
system performance. One recent method for realizing this goal is known as
event-triggered sampling.

Event triggering can be seen as a communication protocol where infor-
mation is transmitted only if some event occurs. In particular, information is
transmitted when a measure of data ’novelty’ exceeds a specified threshold.
In contrast to more commonly used periodic transmission schemes, event-
triggering tends to generate traffic patterns that are sporadic in nature. Prior
experimental results have demonstrated that event-triggering can use fewer
communication resources than periodic transmission schemes with compara-
ble performance levels [22,10,21,8,14]. The reason for this more efficient use
of communication resources is that event-triggering makes use of on-line infor-
mation in making transmission decisions. This method, therefore, can adapt
its usage of the communication in channel to the importance of the data it
must transmit.

Most prior work in the event triggering literature discusses state feedback
control and state estimation. This work has traditionally assumed a single
feedback link in the system. It has only been very recently that researchers
have turned to study event-triggered output feedback control where there are
separate communication channels from sensor to controller and controller to
actuator. If we design triggering events for both communication channels, an
interesting question to ask is how these two triggering events are coupled with
each other.

Some of the work in event triggered output feedback systems hid this ques-
tion by assuming that only part of the control loop was closed over commu-
nication channel, i.e. either sensor-to-controller link or controller-to-actuator
link is connected directly [11,25,16]. Another work in [6] assumed very strong
coupling between the triggering rules of sensor-to-controller link and controller-
to-actuator link. They required that the transmission in one link triggered the
transmission in the other link, so transmissions in both communication chan-
nels are synchronized.

This synchronization is not necessary. This paper examines a weakly cou-
pled event triggered system. We study the optimal event-triggers to minimize
the mean square cost of the system state discounted by the communication
cost in both links. By realizing that the remote state estimate in controller
is orthogonal to the remote state estimation error, the optimal cost of the
output feedback system turns out to be bounded from above by the sum of
the optimal costs of a state estimation problem and a state feedback problem.
The state estimation problem is to minimize the mean square state estimate
error discounted by the communication cost in the controller-to-actuator link,
and the state feedback problem is to minimize the mean square state estimate
discounted by the communication cost in controller-to-actuator link.
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This paper first gives the optimal event-trigger in the sensor-to-controller
link for a state estimation problem, which is minimizing the mean square state
estimation error discounted by the communication cost in sensor-to-controller
link, and then, based on this optimal event trigger in the sensor-to-controller
link, calculates the optimal event-trigger in the controller-to-actuator link for
a state feedback problem , which is minimizing the mean square state estimate
discounted by the communication cost in controller-to-actuator link. It turns
out that the optimal cost of the output feedback control system is bounded
from above by the sum of the optimal costs of the state estimation problem
and the state feedback problem. Because the optimal event-triggers are more
difficult to calculate as the system state’s dimension increases, this paper then
derives suboptimal event triggers and the upper bound on the cost.

This paper is based on our results in [12] and [13], and is organized as
the following: section 2 gives the problem statement, section 3 states that the
closed loop cost is the sum of a state estimation cost and a state feedback
cost, section 4 and 5 describes how to design the optimal triggering sets and
suboptimal triggering sets, respectively, the simulation results are presented
in section 6, and we conclude this paper in section 7.

2 Problem Statement

Consider a networked control system with its control loop closed all over net-
works. A block diagram of the closed loop system is shown in Figure 1. This
closed loop system consists of four components: a plant subsystem, a sen-
sor subsystem, a controller subsystem and an actuator subsystem. The control
loop, i.e. from sensor subsystem to controller subsystem and from controller
subsystem to actuator subsystem, is closed over a communication network. We
assume there are no delays or dropouts in the networks.

2.1 Plant subsystem

The plant subsystem consists of two parts: a plant and a sensor. The plant’s
state and sensor’s measured output satisfy the following difference equation

x(k) = Ax(k − 1) +Bua(k − 1) + w(k − 1),

y(k) = Cx(k) + v(k),

for k = 1, 2, · · · . Let Rn indicate the n dimensional real space, and Z+ indicate
the set of all non-negative integers. In the difference equation,

– x : Z+ → Rn is the system state with initial state x(0) being a Gaussian
random variable with mean µ0 and variance Π0.

– w ∈ Rn is a zero mean white Gaussian noise process with variance W .
– v ∈ Rp is another zero mean white Gaussian noise process with variance

V . The initial state x(0), w and v are independent.
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Fig. 1 Structure of the event triggered output feedback control systems

– ua : Z+ → Rm is the actual control input applied to the plant.
– The triplet (A,B,C) is controllable and observable.
– y : Z+ → Rp is the measurement of the plant which is fed into the sensor

subsystem.

2.2 Sensor subsystem

The sensor subsystem uses sensor measurements to decide when to transmit
information to the controller subsystem. The sensor subsystem consists of a
Kalman filter, a remote observer and an event detector in sensor subsystem.

The Kalman filter generates a filtered state xKF : Z+ → Rn that minimizes
the weighted mean square estimation error (MSEE), i.e.

xKF (k) = min
xKF (k)

E
[
∥x(k)− xKF (k)∥2Z | {y(0), y(1), · · · , y(k)}

]
where Z ≥ 0 is a symmetric weighting matrix, and ∥θ∥2Z = θTZθ. For the
process under study the filter equation is

xKF (k) = AxKF (k−1)+Bua(k−1)+L [y(k)− C(AxKF (k − 1) +Bua(k − 1))] ,

where L = AXCT (CXCT + V )−1, and X satisfies the discrete linear Riccati
equation

AXAT −X −AXCT (CXCT + V )−1CXAT +W = 0.

The steady state estimation error eKF (k) = x(k) − xKF (k) is a Gaussian
random variable with zero mean and variance

E(eKF e
T
KF ) = Q = (I − LC)X.
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While the Kalman filter generates the most ‘knowledgable’ state estimate,
the remote observer in sensor subsystem duplicates the remote state estimate
in the controller subsystem. With these two state estimates, we know that
how far away the remote state estimate is from the most ‘knowledgable’ state
estimate xKF . If the remote state estimate is too far away from xKF , then
xKF should be transmitted. To duplicate the remote state estimate, the re-
mote observer in sensor subsystem doesn’t need direct access to the controller
subsystem. Instead, it only needs model information and information trans-
mitted to the controller subsystem to duplicate the remote state estimate. It
is obvious that both information is available to the remote observer in sensor
subsystem. Now, let us see how the remote observer in sensor subsystem work-
s. At step k, before the event detector in sensor subsystem decides whether
to transmit or not, the remote observer in sensor subsystem produces an a
priori remote state estimate x−

RO(k) which will be described in detail when
we introduce the remote observer in controller subsystem. The a priori remote
state estimate x−

RO(k) together with the filtered state xKF (k) is then handed
to the event detector in sensor subsystem to decided whether to transmit the
filtered state xKF (k) or not at step k.

The event detector in the sensor subsystem uses the a priori gap

e−KF,RO(k) = xKF (k)− x−
RO(k), (1)

to decide whether or not to transmit xKF (k) to the controller subsystem. The
event detector in the sensor subsystem compares the a priori gap e−KF,RO(k)
with a triggering set Ss ⊆ Rn. If the gap is inside the triggering set Ss, then
no data is transmitted. Otherwise, the filtered state xKF (k) is sent to the
controller subsystem. The lth transmission time from sensor subsystem to
controller subsystem is denoted as τ ls.

2.3 Controller subsystem

The controller subsystem produces the control input, and decides when to
transmit the current control input to the actuator subsystem based on the
history information received from the sensor subsystem. The controller sub-
system has three components: a remote observer, a controller, and a event
detector in the controller subsystem.

The remote observer generates the remote state estimate xRO(k) to mini-
mize the MSEE based on all the a posteriori history information up to step k.
By ’a posteriori history information’, we mean the history information known
by the controller subsystem after the event detector in sensor subsystem de-
cides whether to transmit at step k. Let l(k) = max

{
l : τ ls ≤ k

}
indicate the

latest transmission time from the sensor subsystem to the controller subsys-
tem. The a posteriori history information H(k) is

H(k) =
{
xKF (τ

1
s ), xKF (τ

2
s ), · · · , xKF (τ

l(k)
s ), ua(0), ua(1), . . . , ua(k − 1)

}
,
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for k = 0, 1, . . .. Correspondingly, we also define the a priori history informa-
tion, the history information know by the controller subsystem before the event
detector in sensor subsystem decides whether to transmit at step k, H−(k) as

H−(k) =
{
xKF (τ

1
s ), xKF (τ

2
s ), · · · , xKF (τ

l(k−1)
s ), ua(0), ua(1), . . . , ua(k − 1)

}
.

for k = 0, 1, . . . with H−(0) = ∅. To minimize the MSEE, the a posteriori
remote state estimate satisfies (see section 3.2.4 in [23])

xRO(k) = E(x(k)|H(k)),

and the a priori remote state estimate x−
RO(k) satisfy

x−
RO(k) = E(x(k)|H−(k)).

Now, let’s examine how the remote state estimate evolves. The initial con-
dition is

x−
RO(0) = E(x(k)|H−(0)) = µ0.

If information is transmitted from sensor to controller at step k, the history
information at step k is H(k) = {H−(k), xKF (k)}, and the a posteriori remote
state estimate is

xRO(k) = E(x(k)|H−(k), xKF (k))

= E(xKF (k) + ēKF (k)|H−(k), xKF (k))

= xKF (k),

where the second equality holds because ēKF (k) is uncorrelated with H(k).

If information is not transmitted from sensor to controller at step k, the
history information at step k is H(k) = H−(k), and the a posteriori remote
state estimate is the same as the a priori remote state estimate, i.e.

xRO(k) = E(x(k)|H(k)) = E(x(k)|H−(k))

= x−
RO(k).

The a priori state estimate evolves as the following:

x−
RO(k) = E(x(k)|H−(k))

= E(Ax(k − 1) +Bua(k − 1) + w(k − 1)|H−(k))

= AE(x(k − 1)|H−(k)) +Bua(k − 1)

= AxRO(k − 1) +Bua(k − 1),

where the third equality holds because w(k − 1) is independent from H−(k).
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To conclude the above discussion about the remote observer, we say that
the minimum mean square remote state estimate based on H(k) takes the
form of

x−
RO(k) =AxRO(k − 1) +Bua(k − 1), with x−(0) = µ0 (2)

xRO(k) =

{
x−
RO(k), if e

−
KF,RO(k) ∈ Ss;

xKF (k), otherwise ,
(3)

where e−KF,RO(k) is the a priori gap between remote state estimate and the
filtered state described in equation (1).

Remark 1 The closed-loop system structure in this paper is similar to that
in [18] except that controller and actuator in this paper are also connected
through a network. These two papers share the same remote observer struc-
ture, and show that the remote observer described by equation (2) and (3)
minimize the MSEE based on the a posteriori history information. The dif-
ference is that we don’t have any assumption of the triggering set while [18]
assumed that the triggering set was symmetric.

Remark 2 If the controller is assumed to know the triggering event in the
sensor subsystem (which is not the case in this paper), both the a priori and a
posteriori history information should include the event triggering information
in the sensor subsystem, and the minimum MSEE won’t be realized by the
form given by (2) and (3). An approximated minimum MSEE assuming that
the controller knows the triggering event in sensor subsystem was presented
in section 2 of [20].

The a posteriori state estimate xRO(k) is, then, fed into the controller. The
controller generates a control input

uc(k) = KxRO(k),

where K is the controller gain. Notice that this control input uc is different
from the actual control input applied to the plant ua.

Both the actual control input ua(k − 1) and the a posteriori remote state
estimate xRO(k) are monitored by the event detector in the controller subsys-
tem. It compares the augmented vector [xRO(k) ua(k− 1)]T with a triggering
set Sc. If the augmented vector [xRO(k) ua(k− 1)]T lies outside the triggering
set Sc ⊆ Rm+n, the current control input uc(k) is transmitted to the actuator
subsystem. Otherwise, no data is transmitted. The jth transmission time from
controller to actuator is denoted by τ jc .

When the event detector in the controller subsystem decides to transmit,
an acknowledgement is transmitted to the sensor subsystem. The main pur-
pose of this acknowledgement is to synchronize the actual control input ua(k)
in both the sensor subsystem and the controller subsystem. Once the sensor
subsystem receives the acknowledgement, it uses the current remote state esti-
mate xRO(k) generated by the remote observer in sensor subsystem to obtain
the new actual control input ua(k). In general the ack message is much shorter
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than the actual measurement data transmitted over the channel. It is therefore
reasonable to assume this ack message as been heavily coded so the probability
of failed reception is nearly zero.

2.4 Actuator subsystem

The actuator subsystem has two parts: a zero order hold and an actuator. Let
ua(k) denote the actual control input applied to the plant. When uc(τ

j
c ) is

transmitted, the actuator subsystem updates ua(k) to be uc(τ
j
c ), and holds

this value until the next transmission occurs. ua(k), therefore, takes the form
of

ua(k) = uc(τ
j
c ), ∀k = τ jc , . . . , τ

j+1
c − 1. (4)

2.5 Average cost criterion

The average cost is defined as

J(Ss, Sc) = lim
N→∞

1

N

N−1∑
k=0

E (c(x(k), Ss, Sc)) ,

where the cost function

c(x(k), Ss, Sc) = ∥x(k)∥2Z + λs1(e
−
KF,RO(k) /∈ Ss) + λc1

([
xRO(k)
ua(k − 1)

]
/∈ Sc

)
,

λs and λc are the communication prices for transmissions over the sensor-to-
controller link and controller-to-actuator link, respectively. 1(·) is the charac-
teristic function satisfying

1(S) =

{
1, if S is true;
0, otherwise.

Our objective is to design the triggering sets Ss and Sc to minimize the
average cost J(Ss, Sc), i.e.

J∗ = min
Ss,Sc

J(Ss, Sc).

3 State estimation cost and control cost

With the problem setup given in the last section, this section shows that the
average cost J can be expressed as the sum of the state estimation cost and
the control cost.

Let eRO(k) = x(k) − xRO(k) be the remote state estimation error. The
key point for rewriting the average cost as the sum of the state estimation
cost and the control cost is that the remote state estimation error eRO(k) is
orthogonal to the remote state estimate xRO(k). This property is stated in the
next lemma.
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Lemma 1 eRO(k) is orthogonal to the remote state estimate xRO(k) for all
k ∈ Z+.

Proof Since xRO(k) is a minimum mean square estimate of the system state
x(k) (as shown in Section 2.3), according to Theorem 3.1 of [23], the estimation
error eRO(k) is orthogonal to xRO(k). �

Based on the Lemma 1, it is easy to show that the average cost is the sum
of state estimation cost and the control cost.

Theorem 1 The average cost

J(Ss, Sc) = Js(Ss, {eRO(k)}∞k=0) + Jc(Sc, {xRO(k)}∞k=0),

where

Js(Ss, {eRO(k)}∞k=0) = lim
M→∞

1

M

M−1∑
k=0

E
[
∥eRO(k)∥2Z + λs1(e

−
KF,RO(k) /∈ Ss)

]
,

Jc(Sc, {xRO(k)}∞k=0) = lim
M→∞

1

M

M−1∑
k=0

E

[
∥xRO(k)∥2Z + λc1

([
xRO(k)
ua(k)

]
/∈ Sc

)]
.

Proof According to Lemma 1, the average cost J(Ss, Sc) is rewritten as

J(Ss, Sc) = lim
M→∞

1

M

M−1∑
k=0

E
(
∥eRO(k)∥2Z + λs1(e

−
KF,RO(k))

+∥xRO(k)∥2Z + λc1

([
xRO(k)
ua(k − 1)

]
/∈ Sc

))
=Js(Ss, {eRO(k)}∞k=0) + Jc(Sc, {xRO(k)}∞k=0).

�

Js(Ss, {eRO(k)}∞k=0) relies on the remote state estimation error and the
communication price between sensor and controller, and hence is called the
state estimation cost. Jc(Sc, {xRO(k)}∞k=0) relies on the remote state estimate
and the communication price between controller and actuator, and hence is
called the control cost.

Remark 3 Both the state estimation cost and the control cost depend on the
triggering set in sensor subsystem Ss. It is easy to see that the state estima-
tion cost Js relies on Ss. The control cost Jc also relies on Ss, because Jc
must be computed with respect to the probability distribution of the remote
state estimate, xRO(k). From equation (3), we can see that the distribution
of xRO(k) is a function of Ss, the triggering set in sensor subsystem. Thereby,
the control cost Jc(Sc, {xRO(k)}∞k=0) relies on Ss, and hence is coupled with
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Js(Ss, {eRO(k)}∞k=0). To emphasize the dependence between the state estima-
tion cost and the control cost on the triggering set in sensor subsystem Ss, we
rewrite the state estimation cost and the control cost as

Js(Ss) = Js(Ss, {eRO(k)}∞k=0),

Jc(Sc, Ss) = Jc(Sc, {xRO(k)}∞k=0),

respectively.

Let S†
s be the optimal sensor triggering set that minimizes Js, and the

corresponding optimal cost is J†
s . Let S†

c be the controller’s event-triggering
strategy that minimizes the controller cost Jc assuming the sensor uses the
event-trigger S†

s , and the corresponding controller’s cost becomes J†
c (S

†
s). Since

Js and Jc are coupled, we can see that the minimum cost J∗ is bounded above
by

J∗ ≤ J(S†
s , S

†
c) = J†

s + J†
c (S

†
s). (5)

Therefore, our design approach is to calculate the optimal triggering set in
sensor subsystem S†

s first, and then to compute the optimal triggering set in
controller subsystem S†

c based on the optimal triggering set in sensor subsys-
tem S†

s . This approach is described in section 4. There are, however, no closed
form solutions for the optimal triggering sets, and numerically computing the
optimal triggering set becomes very difficult as state dimension increases. Due
to these difficulties, we then show how to efficiently compute suboptimal trig-
gering sets in both sensor and controller subsystems. The design of suboptimal
triggering sets are given in section 5.

4 The Optimal Triggering Sets

This section first provides the optimal triggering set S†
s in sensor subsystem,

then gives the optimal triggering set S†
c in controller subsystem based on S†

s .
This section concludes with a theorem stating that the overall cost induced by
S†
s and S†

c is bounded from above by a explicit upper bound that experiments
in later section suggest are relatively tight.

4.1 Optimal triggering set in sensor subsystem

Before talking about the optimal triggering set for the sensor subsystem, let
us first analyze the remote state estimation error eRO to simplify the optimal
problem to minimize Js(Ss) with respect to Ss. Let eKF,RO(k) = xKF (k) −
xRO(k) be the gap between filtered state and the remote state estimate. We
notice that

eRO(k) = eKF (k) + eKF,RO(k), (6)
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and the filtered state error eKF (k) is orthogonal to the gap between filtered
state and the remote state estimate eKF,RO(k). This property is stated and
proved in the following lemma.

Lemma 2 The filtered state error, eKF (k) is orthogonal to eKF,RO(k), the
gap between filtered state and the remote state estimate.

Proof Since Kalman filter is the minimum mean square estimate of the s-
tate based on all history measurements {y(0), . . . , y(k)}, the estimation error
eKF (k) is orthogonal to any function of the history measurements {y(0), . . . , y(k)}.
Since both xKF (k) and xRO(k) (see equation (2) and (3)) are functions of his-
tory measurements {y(0), . . . , y(k)}, eKF (k) is orthogonal to xKF (k)−xRO(k),
i.e. eKF,RO(k). �

From equation (6) and lemma 2, the state estimation cost Js(Ss) takes
another form which is stated in the next lemma.

Lemma 3

Js(Ss) = tr(QZ) + Ĵs(Ss), (7)

where

Ĵs(Ss) = lim
M→∞

1

M

M−1∑
k=0

E
[
cs(e

−
KF,RO(k), Ss)

]
,

and

cs(e
−
KF,RO(k), Ss) = ∥eKF,RO(k)∥2Z + λs1(e

−
KF,RO(k) /∈ Ss)

= ∥e−KF,RO(k)∥
2
Z1(e

−
KF,RO(k) ∈ Ss) + λs1(e

−
KF,RO(k) /∈ Ss).

It is easy to see that the optimal triggering set S†
s that minimizes Ĵs(Ss) also

minimizes the state estimation cost Js(Ss).
Now, we are ready to analyze the optimal triggering set S†

s in sensor sub-
system. This optimal problem is an average cost optimal problem of a discrete-
time Markov control process. According to Theorem 5.5.4 of [9], we have the
following lemma.

Lemma 4 If there exists a bounded function hs : Rn → R and a finite number
J ′
s such that

J ′
s + hs(e

−
KF,RO(k)) = Gs

(
e−KF,RO(k)

)
(8)

where

Gs (θ) =min
Ss

{
E(hs(e

−
KF,RO(k + 1))|e−KF,RO(k) = θ) + cs(θ, Ss)

}
,

then the optimal average cost of remote state estimation is

J†
s = J ′

s + tr(QZ), (9)
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and the optimal triggering set in sensor subsystem

S†
s =

{
θ : E(hs(e

−
KF,RO(k + 1))|eKF,RO(k) = θ) + ∥θ∥2Z

≤ λs + E(hs(e
−
KF,RO(k + 1))|eKF,RO(k) = 0)

}
. (10)

Remark 4 [24] studied the same optimal problem assuming that the system
state was directly measured. Their triggering event is similar to ours. The dif-
ference is that in [24], besides the triggering event e−KF,RO /∈ S†

s , the transmis-
sion between the sensor subsystem and controller subsystem is also triggered
by ∥e−KF,RO∥ > c for some big enough positive constant c.

4.2 Optimal triggering set in controller subsystem

Using the same technique, we derive the optimal triggering set in the controller
subsystem assuming that S†

s is used as the triggering set in sensor subsystem.

Lemma 5 Define Cc as

Cc (xRO(k), ua(k − 1), Sc) = ∥xRO(k)∥2Z + λc1

([
xRO(k)
ua(k)

]
/∈ Sc

)
.

Given S†
s , if there exists a bounded function hc : Rn×Rm → R, and a bounded

function J ′
c : Sn → R (Sn indicates the collection of all subsets of Rn) such

that

J ′
c(S

†
s) + hc(xRO(k), ua(k − 1)) = min

Sc

{Cc(xRO(k), ua(k − 1), Sc)

+E (hc(xRO(k + 1), ua(k))|xRO(k), ua(k − 1), Sc)} , (11)

then

J†
c (S

†
s) = J ′

c(S
†
s), (12)

and the optimal triggering set in controller subsystem is

S†
c =

{[
θ
η

]
: E

[
hc

([
xRO(k + 1)

ua(k)

])∣∣∣∣ [ xRO(k)
ua(k − 1)

]
=

[
θ
η

]]
≤

E

[
hc

([
xRO(k + 1)

ua(k)

])∣∣∣∣ [ xRO(k)
ua(k − 1)

]
=

[
θ
Kθ

]]
+ λc

}
.

4.3 Upper bound on the cost of the optimal triggering sets

From the results in equation (5), Lemma 4 and 5, we obtain the optimal
triggering sets in sensor and controller subsystems, and an upper bound on
the optimal cost.
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Theorem 2 The optimal triggering set in sensor subsystem S†
s defined in

theorem 4 minimizes Js(Ss), and the optimal triggering set in controller sub-
system S†

c defined in theorem 5 minimizes Jc(Sc, S
†
s).

The optimal cost of the closed loop system J∗ satisfies

J∗ ≤ J†
s + J†

c (S
†
s),

where J†
s and J†

c (S
†
s) are described in equation (9) and (12), respectively.

Remark 5 Although the equations (9) and (12) can be solved iteratively by
value iteration [7] or algorithm iteration [15], computing the optimal policy
still becomes prohibitive as the dimension of the system state increases.

With the concern about the computational complexity of the optimal trig-
gering sets, we turn to a more computationally tractable approach for deter-
mining approximations to the optimal event triggers in the next section.

5 Suboptimal Triggering Sets

In this section, computationally tractable methods for computing suboptimal
triggering sets of both sensor and controller subsystems are derived, and an
upper bound on the overall cost achieved by the suboptimal triggering sets is
provided.

5.1 Suboptimal triggering set in sensor subsystem

To find the suboptimal triggering set in the sensor subsystem, we first give
the following lemma which works as the basis of searching for the suboptimal
triggering set in the sensor subsystem and an upper bound on its cost. This is
a direct results from Theorem 1 of [4] and Lemma 1 of [3].

Lemma 6 Given the triggering set Ss, if there exists a bounded function fs :
Rn → R and a finite constant Js such that for any θ ∈ Rn,

Js + fs(θ) ≥ E
(
fs(e

−
KF,RO(k + 1))|e−KF,RO(k) = θ, Ss

)
+ cs (θ, Ss) (13)

then

Ĵs(Ss) ≤ Js. (14)

Based on lemma 6, we can identify a suboptimal triggering set which is in
quadratic form. Moreover, the upper bound on this suboptimal triggering set
is also given.

Lemma 7 Given a quadratic triggering set

Ss = {e−KF,RO(k) : ∥e
−
KF,RO(k)∥

2
Hs

≤ λs − ζs}, (15)
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where the n× n matrix Hs ≥ 0 satisfies the Lyapunov inequality

ATHsA

1 + δ2s
−Hs +

Z

1 + δ2s
≤ 0, (16)

for some δ2s ≥ 0, and ζs =
δ2sλs+tr(HsR)

1+δ2s
, where

R = L(CAQATCT + CWCT + V )LT ,

then Js(Ss) is bounded from above by

Js(Ss) ≤ min{tr(HsR) + ζs, λs}+ tr(QZ) (17)

Proof To find an upper bound on the cost of triggering set defined in equation
(15), we need to find a bounded function fs and a finite constant Js such that
equation (13) is satisfied. With lemma 6 and 3, we can derive that Js(Ss) ≤
Js + tr(QZ).

Now, let’s define fs as

fs(e
−
KF,RO(k)) = min{∥e−KF,RO(k)∥

2
Hs

+ ζs, λs},

and Js as

Js = E(fs(e
−
KF,RO(k + 1))|eKF,RO(k) = 0). (18)

In the case of ∥e−KF,RO(k)∥2Hs
≤ λs − ζs, no transmission occurs at step k,

so the right hand side of equation (13) satisfies the following equations.

E
(
fs(e

−
KF,RO(k + 1))|e−KF,RO(k), Ss

)
+ cs

(
e−KF,RO, Ss

)
=E

(
fs(e

−
KF,RO(k + 1))|eKF,RO(k) = e−KF,RO(k)

)
+ ∥e−KF,RO∥

2
Z

≤∥e−KF,RO∥
2
ATHsA

+ tr(HsR) + ζs + ∥e−KF,RO∥
2
Z

≤∥e−KF,RO(k)∥
2
Hs

+ ∥e−KF,RO(k)∥
2
ATHsA−Hs+Z + ζs + tr(HsR)

≤∥e−KF,RO(k)∥
2
Hs

+ ζs + δ2s(λs − ζs) + tr(HsR)

=fs(e
−
KF,RO(k)) + ζs

≤fs(e
−
KF,RO(k)) + Js.

The second step is taken by the fact that E(min(f, g)) ≤ min(E(f), E(g)), the
fourth step is derived from equation (16) and the fact that ∥e−KF,RO(k)∥2Hs

≤
λs − ζs, and the fifth step is derived from how we define the ζs.

In the case of ∥e−KF,RO(k)∥2Hs
> λs − ζs, transmission occurs. The right

side of inequality (13) satisfies

E
(
fs(e

−
KF,RO(k + 1))|e−KF,RO(k), Ss

)
+ cs

(
e−KF,RO, Ss

)
=E

(
fs(e

−
KF,RO(k + 1))|eKF,RO(k) = 0

)
+ λs

=Js + fs(e
−
KF,RO(k))
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Since the inequality (13) holds in any condition, from Lemma 6, we know
that Ĵs(Ss) is bounded from above by Js defined in (18), i.e.

Ĵs(Ss) ≤ Js.

From the fact that E(min(f, g)) ≤ min(E(f), E(g)), it’s easy to show that

Js ≤ min{tr(HsR) + ζs, λs}.

From lemma 3, we have

Js(Ss) = Ĵs(Ss) + tr(QZ) ≤ min{tr(HsR) + ζs, λs}+ tr(QZ).

�

Remark 6 (i) For any A and Z, there must exist a positive definite matrix
Hs and a constant δs such that equation (16) holds. It is easy to see that
we can always choose δ2s big enough (e.g square of the largest singular
value of A) so that A√

1+δ2s
is stable, and hence for any positive definite Z,

there is a positive definite matrix Hs satisfying equation (16) (Theorem
10.12 of [2]).

(ii) Computing Hs, and hence the suboptimal triggering set Ss in (15), is
easy, since Equation (16) is a linear matrix inequality with respect to
matrix Hs when we fix constant δs.

(iii) According to our experience, to obtain as small as possible upper bound
on the suboptimal cost, δs should be chosen as small as possible while
equation (16) is feasible.

(iv) Compared with the work in [5], our suboptimal triggering set in sensor
subsystem can be applied to unstable systems while [5] required that
the matrix A was Hurwitz. But we only provide an upper bound on
Js(Ss) while [5] provided both an upper bound on Js(Ss) and a lower
bound on the optimal cost J∗

s , and hence characterized how far away the
suboptimal cost was from the optimal cost.

5.2 Suboptimal triggering set in controller subsystem

Similar to the derivation of the suboptimal triggering set in sensor subsystem,
we first give a lemma working as the basis of finding an upper bound on the
suboptimal triggering set in the controller subsystem.

Lemma 8 Given any Sc, if there exists a function fc : Rn×Rm → R bounded

from below and a finite constant J
′
c such that

J
′
c + fc (xRO(k), ua(k − 1)) ≥ Cc (xRO(k), ua(k − 1), Sc)

+ E [fc (xRO(k + 1), ua(k)) |xRO(k), ua(k − 1) , Sc] , (19)

then Jc(Sc) ≤ J
′
c.
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Now, let us give the suboptimal triggering set in controller subsystem and
its upper bound in the following Lemma.

Lemma 9 Let Ss in Equation (15) be the triggering set in sensor subsystem.

Au =

[
A B
0 I

]
, Ac =

[
A+BK 0

K 0

]
, Za =

[
Z 0
0 0

]
, and Hs = PT

HsPHs. Given a

quadratic triggering set of controller subsystem

Sc =

{[
xRO(k)
ua(k − 1)

]
:

∥∥∥∥[ xRO(k)
ua(k − 1)

]∥∥∥∥2
Hc

+ ζc ≤ ∥xRO(k)∥2Z + λc

}
, (20)

where Hc ≥ Za and controller gain K satisfy

AT
uHcAu + (1 + δ2c )(Za −Hc) ≤0, (21)

AT
c HcAc + (1− ρ2c)(Za −Hc) ≤0, (22)

for some constant δ2c ≥ 0 and 0 ≤ ρ2c ≤ 1, and

ζc =
δ2c + ρ2c − 1

δ2c + ρ2c
λc, (23)

the controller cost satisfies

Jc(Ss, Sc) ≤ Jc(Sc, Ss) =
δ2c

δ2c + ρ2c
λc + σ((PT

Hs)
−1Hc,luP

−1
Hs )(λs − ζs), (24)

where σ(·) indicates the greatest singular value, and Hc,lu is the left upper n×n
sub-matrix of Hc.

Proof According to Lemma 8, as long as we can find a function fc bounded

from below such that the inequality (19) is satisfied with J
′
c = Jc, Lemma 9

is true.
Let’s define fc as

fc (xRO(k), ua(k − 1)) =

∥∥∥∥[ xRO(k)
ua(k − 1)

]∥∥∥∥2
Hc

+ ζc.

First, we consider the case when

∥∥∥∥[ xRO(k)
ua(k − 1)

]∥∥∥∥2
Hc

+ ζc ≤ ∥xRO(k)∥2Z +λc.

In this case, the controller subsystem doesn’t transmit. The right hand side of
equation (19) is

≤
[

xRO(k)
ua(k − 1)

]T
AT

uHcAu

[
xRO(k)
ua(k − 1)

]
+ σ((PT

Hs)
−1Hc,luP

−1
Hs )(λs − ζs) + ζc

+

[
xRO(k)
ua(k − 1)

]T
Za

[
xRO(k)
ua(k − 1)

]
≤Jc + fc

([
xRO(k)
ua(k − 1)

])
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The first inequality is from equation (15), and the second inequality is from
equation (21) and (23).

The second case is when

∥∥∥∥[ xRO(k)
ua(k − 1)

]∥∥∥∥2
Hc

+ ζc > ∥xRO(k)∥2Z + λc. In this

case, the controller subsystem transmits information. So the right hand side
of equation (19) is

≤
[

xRO(k)
ua(k − 1)

]T
AT

c HcAc

[
xRO(k)
ua(k − 1)

]
+ σ((PT

Hs)
−1Hc,luP

−1
Hs )(λs − ζs) + ζc

+

[
xRO(k)
ua(k − 1)

]T
Za

[
xRO(k)
ua(k − 1)

]
+ λc

≤Jc + f

([
xRO(k)
ua(k − 1)

])
.

The first inequality is from Equation (15), and the second inequality is from
Equation (22) and (23).

Since in both cases, equation (19) holds, we conclude that the control cost of
the suboptimal triggering set Jc(Sc, Ss) is bounded from above by Jc(Sc, Ss).
�

5.3 Upper bound on the cost of suboptimal triggering sets

From the results in Lemma 1, 7 and 9, we have the following theorem.

Theorem 3 Given the triggering set in sensor subsystem Ss defined in equa-
tion (15) and the triggering set in controller subsystem Sc defined in equation
(20), the average cost J(Ss, Sc) given by the two weakly coupled triggering sets
satisfies

J(Ss, Sc) ≤ Js(Ss) + Jc(Sc, Ss),

where Js(Ss) and Jc(Sc, Ss) are defined in equation (17) and (24), respectively.

6 Simulation Results

This section uses an example to demonstrate theorem 3. We first calculate
the triggering sets Ss and Sc according to equation (15) and (20), and search
for the controller gain K such that inequality (22) is satisfied. The system,
then, is run using three different transmission rules: weakly coupled event
triggered transmission, synchronized event triggered transmission and periodic
transmission. The average costs are compared. We also show that the number
of transmission times in sensor subsystem, the number of transmission times in
controller subsystem, and the number of times when both sensor and controller
transmit (concurrent transmission times) to illustrate that the transmission
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in the sensor subsystem doesn’t necessarily trigger the transmission in the
controller subsystem, or vice versa.

Let’s consider the following system

x(k) =

[
0.4 0
0 1.01

]
x(k − 1) +

[
1
1

]
ua(k − 1) + w(k − 1)

y(k) =
[
0.1 1

]
x(k) + v(k).

The variances of the system noises are W =

[
0.2 0.1
0.1 0.2

]
, and V = 0.3. The

weight matrix Z is chosen to be an identity matrix.
Given δ2s = 1.5, λs = 3, δ2c = 1.02 and ρc = 0.3, we can obtain the triggering

set in sensor subsystem Ss as

Ss =

{
e−KF,RO : e−T

KF,RO

[
2.5641 0

0 4.0543

]
e−KF,RO ≤ 0.8414

}
, (25)

and the triggering set in controller subsystem Sc as

Sc =


[

xRO(k)
ua(k − 1)

]
:

[
xRO(k)
ua(k − 1)

]T  1.3315 −0.2836 −0.3512
−0.2836 3.6377 2.6808
−0.3512 2.6808 13.7606

[
xRO(k)
ua(k − 1)

]
≤ 0.9008λc} , (26)

and the controller gain K = [−0.1967 − 0.3133].
The closed loop system was run for 3000 steps using different transmis-

sion rules with the communication price from controller to actuator varying
from 0 to 200. When we run the system, there was one step delay in the com-
munication network. We first run the system with triggering sets Ss and Sc

defined in (25) and (26). After that, the system was run using a synchronized
transmission rule, with which the transmissions from sensor to controller were
only triggered by e−KF,RO(k) /∈ Ss, and the transmissions from controller to

actuator were triggered by either [xRO(k) ua(k − 1)]T /∈ Sc or transmissions
from sensor to controller. Finally, we used the average periods in weakly cou-
pled event triggered transmission experiment as the periods to run the system
using periodic transmission. The average costs are given in Figure 2.

Figure 2 describes the average costs with respect to λc, the communica-
tion price from controller to actuator. Stars indicate the average cost using
weakly coupled transmission rule which gives the least average cost during the
costs using different triggering rules. Squares denote the average cost using
synchronized transmission rule which gives the second least average cost, and
its difference from the average cost of weakly coupled transmission increases as
λc increases. That’s because when λc is small, the transmission time instants
from controller to actuator incurred by [xRO(k) ua(k − 1)]T /∈ Sc (weakly
coupled transmission) and the transmission time instants from controller to
actuator incurred by either [xRO(k) ua(k − 1)]T /∈ Sc or transmissions from
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Fig. 2 Average costs using weakly coupled transmission, synchronized transmission and
periodic transmission which different communication price from controller to actuator

sensor to controller (synchronized transmission) are very similar to each oth-
er. An extreme case is when λc = 0. As λc increases, the transmission time
instants from controller to actuator using weakly coupled transmission rule
become more and more different from the transmission time instants from
controller to actuator using synchronized transmission rule, and hence the dif-
ference between the average costs using weakly coupled transmission rule and
synchronized transmission rule also increases. Circles indicate the average cost
using periodic transmission. Figure 2 shows that the average cost using peri-
odic transmission is always greater than the average cost using event triggered
transmission no matter whether the transmission is weakly coupled (stars) or
synchronized (squares). Crosses are the upper bounds on the average cost of
weakly coupled transmission calculated according to Theorem 3. These cross-
es are always above the average cost of weakly coupled transmission (stars),
which demonstrates Theorem 3. We also notice that both the upper bound
(crosses) and the actual cost (stars) increases linearly with respect to λc, and
the ratio of the upper bound (crosses) to the actual cost (stars) is about 3.

Figure 3 shows that the transmission in the sensor subsystem doesn’t al-
ways trigger the transmission in controller subsystem, or vice versa. The x-axis
of this plot is the communication price from controller to actuator λc, and the
y-axis indicates the transmission times. We can see that the number of concur-
rent transmission times (circles) is always less or equal to both the numbers
of transmission times in sensor subsystem (stars) and controller subsystem
(crosses), which indicates that the transmission in sensor subsystem doesn’t
always trigger the transmission in controller subsystem, or vice versa.
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Fig. 3 Transmission times in sensor subsystem, controller subsystem and the concurrent
transmission times using weakly coupled transmission rule

7 Conclusion

This paper presents weakly coupled triggering events in event triggered output
feedback system with the whole control loop closed over wireless network.
By ’weakly coupled’, we mean that the triggering events in both sensor and
controller only use local information to decide when to transmit data, and the
transmission in one link doesn’t necessarily trigger the transmission in other
link. We also show that with the triggering events and controller we designed,
the cost of the closed loop system is bounded from above, and an explicit upper
bound on the cost is obtained. Our simulation results show that the proposed
triggering events are weakly coupled and the upper bound on the cost of the
closed loop system is relatively tight when the communication price λs from
the sensor subsystem to the controller subsystem is low.
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