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Abstract

Event-triggered transmission has been shown to minimize anestimator’s mean square error discounted by the

communication cost. This optimal trigger, however, is difficult to compute, which motivated the use of sub-optimal

quadratic event triggers that are easier to synthesize. This paper introduces algorithms for computing a larger class

of polynomial event-triggers for MMSE state estimators. These algorithms pose the synthesis problem as a semi-

definite program (SDP) that is efficiently solved using computational tools such as SOSTOOLS. The paper derives

upper bounds and lower bounds on the performance achieved bythese polynomial event-triggers and simulation

results show that these polynomial triggers always out-perform the quadratic triggers proposed in earlier works.

Finally, the paper applies these methods to an8 dimensional nonlinear three degree-of-freedom (DOF) helicopter.

The simulation results show that our event-triggered estimator uses fewer communication resources than periodically

triggered estimator while achieving similar performance levels. To our best knowledge, this is the first time this

particular approach to event-trigger synthesis has been applied to systems with dimension greater than2.

I. I NTRODUCTION

Wireless networked control systems are invaluable in many civil and military applications, such as environmental

monitoring, traffic control, smart grid, manufacturing, collecting information on the battlefield, and so on. In most

cases, the sensors are battery driven and the wireless channel has very low bandwidth, which limits the transmission

frequency. Meanwhile, to assure accurate monitoring of thesystem, one wants the sensors to transmit information

as often as possible. This tradeoff between communication usage and the monitoring quality (performance) can be

formulated as an optimization problem that seeks to minimize the average mean square estimation error discounted

by the cost of communication with respect to the transmission rule.

This optimization problem was first studied in [1] where it was shown that the optimal transmission rule was

event triggered transmission. Event triggered transmission is a transmission method in which sensors or controllers

only transmit information when some event occurs. In particular, information is transmitted when a measure of
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data ‘novelty’ exceeds a specified threshold. As early as 1999, it was claimed that event triggering could make

more efficient use of communication resources than periodictransmission schemes [2]. This claim was further

demonstrated experimentally by the fact that event triggering maintains comparable system performance while

using fewer communication resources than periodic transmission [3]–[9]. These experimental results coincide with

the theoretic result given in [1] which said that the optimaltransmission rule that minimizes the average mean

square estimation error discounted by the communication cost is event triggered transmission. This optimal event

trigger, however, is difficult to compute, and the computational complexity for finding the optimal event trigger

grows exponentially with respect to the state dimension.

Based on the sub-optimality bounds in [10], people began to consider suboptimal event triggers, and tried to use the

difference between an upper bound on the suboptimal cost anda lower bound on the minimum cost to characterize

how well the suboptimal event trigger performs. [11] provided a suboptimal event trigger, and guaranteed that the

suboptimal cost is always less than6 times of the minimum cost. This result, however, only holds for stable systems.

Later, [12] and [13] gave suboptimal event triggers for unstable systems and the corresponding upper bounds on

the suboptimal costs, but didn’t provide any measure of how good these suboptimal event triggers were.

This paper proposes an algorithm to compute a polynomial suboptimal event trigger and an upper bound on the

suboptimal cost, and an algorithm to compute a lower bound onthe minimum cost. Both algorithms are based on

semi-definite programs, and hence computationally effective. Both algorithms work for both stable and unstable

systems. In our simulation, when we increase the order of thepolynomial event trigger to10, the ratio of the upper

bounds on the suboptimal costs to the lower bounds on the minimum costs are less than1.4 for both stable and

unstable systems, while [11] only guarantees that this ratio is less than6 for stable systems, and [12], [13] didn’t

provide any result on this ratio.

Later, we apply the polynomial event triggers to an8 dimensional 3 degree-of-freedom (3DOF) helicopter. To

our best knowledge, this is the first time the suboptimal event trigger has been applied to a system whose dimension

is greater than2. Our simulation results show that with polynomial event triggers, the 3DOF helicopter tracked the

reference signal with small overshoot and no steady error. This event triggered helicopter used fewer communication

resources than a periodically triggered helicopter with comparable performance, and tolerated the same amount of

transmission delay as the periodically triggered helicopter while maintaining the system performance.

II. EVENT TRIGGEREDSTATE ESTIMATION PROBLEM

A block diagram of the event triggered state estimation problem is shown in Figure 1. This system consists of

three components: aplant subsystem, a sensor subsystem, and aremote observer.

The plant subsystemconsists of two parts: a plant and a sensor, satisfying the following difference equation

x(k) = Ax(k − 1) + w(k − 1),

y(k) = Cx(k) + v(k),
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Fig. 1: Structure of the event triggered state estimation systems

for k = 1, 2, . . . ,∞. LetRn denote then dimensional real space, andN0 denote the set of all non-negative integers.

In the difference equation,

• x : N0 → R
n is the system state with initial statex(0) being a Gaussian random variable with meanµ0 and

varianceΠ0.

• w is a zero mean white Gaussian noise process with varianceW .

• v is another zero mean white Gaussian noise process with varianceV . The initial statex(0), w and v are

statistically independent.

• The pair(A,C) is observable.

• y : N0 → R
p is the measurement of the plant which is fed into the sensor subsystem.

The sensor subsystemuses sensor measurements to decide when to transmit information to the remote observer.

The sensor subsystem consists of aKalman filter, a remote observer in sensor subsystemand anevent detector.

TheKalman filtergenerates a filtered statexKF : N0 → R
n that minimizes the weighted mean square estimation

error (MSEE), i.e.

xKF (k) = min
xKF (k)

E
[

‖x(k)− xKF (k)‖
2
Z | {y(0), y(1), · · · , y(k)}

]

whereZ ≥ 0 is a symmetric weighting matrix, and‖θ‖2Z = θTZθ. For the process under study the filter equation

is

xKF (k) = AxKF (k − 1) + L [y(k)− CAxKF (k − 1)] , (1)

whereL = AXCT (CXCT + V )−1, andX satisfies the discrete linear Riccati equation

AXAT −X −AXCT (CXCT + V )−1CXAT +W = 0. (2)

The steady state estimation erroreKF (k) = x(k) − xKF (k) is a Gaussian random variable with zero mean and

variance

E(eKF e
T
KF ) = Q = (I − LC)X.

While the Kalman filter generates the most ‘knowledgable’ state estimate, theremote observer in sensor subsystem

duplicates the remote state estimate. With these two state estimates, the event detector knows how far away the
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remote state estimate is from the most ‘knowledgable’ stateestimatexKF . If the remote state estimate is too far

away fromxKF , thenxKF should be transmitted. Now, let us see how the remote observer in sensor subsystem

works. At stepk, before the event detector in sensor subsystem decides whether to transmit, the remote observer

in sensor subsystem produces ana priori remote state estimatex−
RO(k) which will be described in detail when we

introduce the remote observer. Thea priori remote state estimatex−
RO(k) together with the filtered statexKF (k) is

then handed to the event detector in sensor subsystem to decide whether or not to transmit the filtered statexKF (k)

at stepk.

The event detector in the sensor subsystemuses thea priori gap

e−KF,RO(k) = xKF (k)− x−
RO(k), (3)

to decide whether or not to transmitxKF (k) to the remote observer. Leta(k) ∈ {0, 1} be the action the event

detector takes at stepk. We say that

a(k) =











1, if the event detector decides to transmit;

0, otherwise.

Here, we define a large positive constantθ such that

θ ≫ λ > 0, (4)

whereλ is the communication price paid for one transmission. Once‖e−KF,RO(k)‖
2
Z is greater thanθ, xKF (k)

has to be transmitted. Otherwise, the event detector in the sensor subsystem can choose either to transmit or not to

transmit. Thelth transmission time from the sensor subsystem to the remoteobserver is denoted asτ l.

The remote observergenerates the remote state estimatexRO(k) to minimize the MSEE based on all of the

remote observer’s information up to stepk. Let l(k) = max
{

l : τ l ≤ k
}

indicate the latest transmission time

instants from the sensor subsystem to the remote observer. The history informationHRO(k) of the remote observer

at stepk is

HRO(k) =
{

xKF (τ
1), xKF (τ

2), · · · , xKF (τ
l(k)), a(0), a(1), . . . , a(k)

}

,

for k = 0, 1, . . . ,∞ with HRO(−1) = ∅. To minimize the MSEE, thea posteriori remote state estimatexRO(k)

satisfies (see section 3.2.4 in [14])

xRO(k) = E(x(k)|HRO(k)),

and thea priori remote state estimatex−
RO(k) satisfy

x−
RO(k) = E(x(k)|HRO(k − 1)).

It was shown in [15] that the remote state estimate takes the form of

x−
RO(k) =AxRO(k − 1), with x−(0) = µ0 (5)

xRO(k) =a(k)xKF (k) + (1− a(k))x−
RO(k). (6)
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Remark 2.1:If the controller is assumed to know the triggering event in the sensor subsystem (which is not the

case in this paper), the history information of the remote observer should include the event triggering information

in the sensor subsystem, and the minimum MSEE won’t be realized by the form given by equation (5) and (6). An

approximated minimum MSEE assuming that the controller knows the triggering event in sensor subsystem was

presented in section 2 of [16].

Now, let us define the remote state estimation erroreRO(k) as

eRO(k) = x(k)− xRO(k).

The average cost in this event triggered state estimation problem is

J({a(k)}∞k=0) = lim
N→∞

1

N

N−1
∑

k=0

E (c(eRO(k), a(k))) , (7)

where the cost function

c(eRO(k), a(k)) = ‖eRO(k)‖
2
Z + a(k)λ, (8)

andλ is the communication price for one transmission.

Our objective is to find a transmission rule to minimize the average costJ({a(k)}∞k=0), i.e.

J∗ = min
{a(k)}∞

k=0

J({a(k)}∞k=0). (9)

III. T HE OPTIMAL EVENT TRIGGER

This section first transforms the optimal problem describedin (9) to a new optimal problem whose cost function

relies one−KF,RO instead ofeRO, and then provide the optimal event trigger for the new optimal problem.

Let eKF,RO(k) = xKF (k) − xRO(k) be thea posteriori gapbetween the filtered state and the remote state

estimate. We find that this gapeKF,RO(k) is orthogonal to the filtered state erroreKF (k). This is stated in the

following lemma. Please see Lemma 2 in [15] for the detailed proof.

Lemma 3.1:The filtered state error,eKF (k) is orthogonal toeKF,RO(k), the gap between filtered state and the

remote state estimate.

SinceeRO = eKF + eKF,RO, according to Lemma 3.1, the expected value of the cost function E(c) satisfies

E(c(eRO(k), a(k))) = trace(QZ) + E(‖eKF,RO‖
2
Z)

= trace(QZ) + E
(

cn(e
−
KF,RO(k), a(k))

)

where

cn(e
−
KF,RO(k), a(k)) = a(k)λ+ (1− a(k))‖e−KF,RO(k)‖

2
Z . (10)

Thus, the average cost is rewritten as

J({a(k)}∞k=0) = trace(QZ) + Jn({a(k)}
∞
k=0), (11)
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where

Jn({a(k)}
∞
k=0) = lim

N→∞

1

N

N−1
∑

k=0

E
(

cn(e
−
KF,RO(k), a(k))

)

, (12)

and the minimum costJ∗ satisfies

J∗ = trace(QZ) + J∗
n, (13)

where

J∗
n = min

{a(k)}∞

k=0

Jn({a(k)}
∞
k=0) (14)

This is an average cost optimal problem in a discrete time Markov control process (MCP) [17], [18]. In this MCP,

e−KF,RO(k) ∈ R
n is the state,a(k) ∈ {0, 1} is the action with feasible action set to be{0, 1} if ‖e−KF,RO(k)‖

2
Z ≤ θ,

{1} otherwise, andcn is the cost function. Sincee−KF,RO(k) is the state in the MCP, we are interested in the dynamic

behavior ofe−KF,RO(k). From equation (1), (5) and (6), we have

e−KF,RO(k + 1) = AeKF,RO(k) + Lỹ(k + 1)

= (1 − a(k))Ae−KF,RO(k) + Lỹ(k + 1) (15)

whereỹ(k+1) = y(k+1)−CAxKF (k) = CAeKF (k)+Cw(k)+v(k+1). It is easy to see that̃y(k+1) is a zero

mean Gaussian random variable with varianceY = CAQATCT + CWCT + V . Thus, the transition probability

of e−KF,RO(k + 1) conditioned one−KF,RO(k) anda(k) is

p
(

e−KF,RO(k + 1)|e−KF,RO(k), a(k)
)

= N
(

(1− a(k))Ae−KF,RO(k), LY LT
)

, (16)

whereN (µ,Π) is the Gaussian probability density function with mean and variance to beµ andΠ, respectively.

Let

Eh(µ) = E (h(s)) ,

wheres is a random variable whose probability density function satisfiesp(s) = N (µ, LY LT ). It is easy to show

that

E
(

h(e−KF,RO(k + 1))|e−KF,RO(k), a(k) = 0
)

= Eh

(

Ae−KF,RO(k)
)

,

E
(

h(e−KF,RO(k + 1))|e−KF,RO(k), a(k) = 1
)

= Eh(0).

With the Markov control process characterized above, with the same technique used in Theorem 1 of [1], we have

the following theorem about the optimal transmission rule and the optimal cost for the optimal problem described

in (14).

Theorem 3.2: 1) There exist a unique constantρ∗ and a functionh∗
1, such that for alle−KF,RO(k) ∈ R

n

ρ∗ + h∗
1(e

−
KF,RO(k)) =min

{

‖e−KF,RO(k)‖
2
Z + Eh∗

1

(

Ae−KF,RO(k)
)

, λ+ Eh∗

1
(0)

}

, (17)

2) The optimal costJ∗ = ρ∗ + trace(QZ).
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3) There exists a deterministic stationary optimal transition rule, i.e.the optimal event trigger, which is

a(k) =











1, if ‖e−KF,RO(k)‖
2
Z + Eh∗

2

(

Ae−KF,RO(k)
)

≥ λ+ Eh∗

2
(0) or ‖eKF,RO‖2Z > θ,

0, otherwise.

Remark 3.3:It is hard to find an analytic solution to equation (17). Although we can iteratively compute the

solution of equation (17) by value iteration [19] or policy iteration [20], [21], the computational complexity increases

exponentially with respect to the state dimension.

IV. A SUBOPTIMAL EVENT TRIGGER AND AN UPPERBOUND ON THE SUBOPTIMAL COST

Because of the difficulty of computing the optimal event trigger, much of the prior work has only solved this

problem for scalar systems. Higher dimensional systems canonly been addressed using quadratic approximations,

but even in these cases the manual computation of these quadratic approximations can be tedious and the bounds

may be poor. This section provides a semi-definite program based algorithm to compute a polynomial suboptimal

event trigger and an upper bound on the suboptimal cost.

The suboptimal event trigger and the upper bound on the corresponding suboptimal cost is computed based on

Theorem 1 in [10]. Here, we state this lemma without proof. The proof can be found in Theorem 1 in [10] or

Theorem 4.1 of [22].

Lemma 4.1:Suppose in a Markov control process,s(k) ∈ S is the state whereS is the state space,a(k) ∈ A

is the action whereA is the action set,c is the cost function, andQ is the transition probability ofs(k + 1)

conditioned ons(k) anda(k). If there exist a constantJ , a functionh2 bounded from below, and a deterministic

stationary rulef , such that for alls ∈ S

J + h2(s(k)) ≥min
a∈A

{

c(s(k), a(k)) +

∫

S

h2(s(k + 1))Q(s(k + 1)|s(k), a(k))

}

=c(s(k), f(s(k))) +

∫

S

h2(s(k + 1))Q(s(k + 1)|s(k), f(s(k))),

then the average costJ({a(k)}∞k=0) = J(f) = lim
N→∞

1

N

N−1
∑

k=0

E (c(s(k), a(k))) = lim
N→∞

1

N

N−1
∑

k=0

E (c(s(k), f))

satisfies

J(f) ≤ J.

According to Lemma 4.1, we have the following theorem.

Theorem 4.2:If there exist a constantρ2 and a functionh2, such that for alle−KF,RO(k) ∈ R
n,

ρ2 + h2(e
−
KF,RO(k)) ≥min

{

‖e−KF,RO(k)‖
2
Z + Eh2

(

Ae−KF,RO(k)
)

, λ+ Eh2
(0)

}

, (18)

and

a(k) =











1, if ‖e−KF,RO(k)‖
2
Z + Eh2

(

Ae−KF,RO(k)
)

≥ λ+ Eh2
(0) or ‖e−KF,RO(k)‖

2
Z > θ;

0, otherwise,
(19)
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then the average costJ({a(k)}∞k=0) defined in equation (7) satisfies

J({a(k)}∞k=0) ≤ J = ρ2 + trace(QZ).

Proof: Consider the average costJn described in (12). The corresponding Markov process involves the state

e−KF,RO, the actiona, the cost functioncn, and the transition probabilityp described in (16). According to Lemma

4.1, if there exists a constantρ2, a functionh2, and a deterministic stationary rulef such that for alle−KF,RO(k) ∈

R
n,

ρ2 + h2(e
−
KF,RO(k)) ≥ min

a∈{0,1}

{

cn(e
−
KF,RO(k), a(k)) + E

(

h2(e
−
KF,RO(k + 1)|e−KF,RO(k), a(k))

)}

(20)

=cn(e
−
KF,RO(k), f) + E

(

h2(e
−
KF,RO(k + 1)|e−KF,RO(k), f)

)

, (21)

thenJn(f) ≤ ρ2, and from equation (11), we haveJ(f) ≤ ρ2 + trace(QZ).

From the dynamic behavior ofe−KF,RO described in (15) and the new cost functioncn in (10), the right hand

side of (20) is rewritten as

min
{

‖e−KF,RO(k)‖
2
Z + Eh2

(

Ae−KF,RO(k)
)

, λ+ Eh2
(0)

}

=cn(e
−
KF,RO(k), f) + E

(

h2(e
−
KF,RO(k + 1)|e−KF,RO(k), f)

)

.

The equality holds if

a(k) = f(e−KF,RO(k)) =











1, if ‖e−KF,RO(k)‖
2
Z + Eh2

(

Ae−KF,RO(k)
)

≥ λ+ Eh2
(0) or ‖e−KF,RO(k)‖

2
Z > θ;

0, otherwise.

Next, we want to effectively search forρ2 and h2 such that equation (18) is satisfied. The basic idea behind

equation (18) is thatρ2 + h2(e
−
KF,RO(k)) is greater than‖e−KF,RO(k)‖

2
Z + Eh2

(

Ae−KF,RO(k)
)

if e−KF,RO(k) is

in a neighborhood of the origin,λ+ Eh2
(0) otherwise. Based on this idea, we have the following corollary.

Corollary 4.3: Given positive constantsd, d1, d2 and positive integersφ, δ1 ≤ φ andδ2. If there exist a constant

ρ2, and a positive definite polynomial functionh2 such that the following inequalities hold for alle−KF,RO(k) ∈ R
n,

ρ2 + h2(e
−
KF,RO(k)) ≥‖e−KF,RO(k)‖

2
Z + Eh2

(

Ae−KF,RO(k)
)

−
(

‖e−KF,RO(k)‖
2
Z + Eh2

(

Ae−KF,RO(k)
)) ‖e−KF,RO(k)

φ‖2Z − d

d1 + ‖e−KF,RO(k)
φ−δ1‖2Z

, (22)

ρ2 + h2(e
−
KF,RO(k)) ≥λ+ Eh2

(0) + (λ+ Eh2
(0))

‖e−KF,RO(k)
φ‖2Z − d

d2 + ‖e−KF,RO(k)
φ+δ2‖2Z

. (23)

wheresφ = [sφ1 sφ2 . . . sφn]
T , anda(k) satisfies equation (19), then

J({a(k)}∞k=0) ≤ J = ρ2 + trace(QZ).
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Proof: If ‖e−KF,RO(k)
φ‖2Z − d ≤ 0, from equation (22), we have

ρ2 + h2(e
−
KF,RO(k)) ≥‖e−KF,RO(k)‖

2
Z + Eh2

(

Ae−KF,RO(k)
)

≥min
{

‖e−KF,RO(k)‖
2
Z + Eh2

(

Ae−KF,RO(k)
)

, λ+ Eh2
(0)

}

.

If ‖e−KF,RO(k)
φ‖2Z − d > 0, from equation (23), we have

ρ2 + h2(e
−
KF,RO(k)) ≥λ+ Eh2

(0)

≥min
{

‖e−KF,RO(k)‖
2
Z + Eh2

(

Ae−KF,RO(k)
)

, λ+ Eh2
(0)

}

.

Therefore, equation (22) and (23) guarantee equation (18) for all e−KF,RO(k) ∈ R
n. According to Theorem 4.2,

we haveJ({a(k)}∞k=0) ≤ J = ρ2 + trace(QZ).

Remark 4.4:Equation (22) and (23) can be transformed to a semi-definite program, and hence efficiently solved

by the SDP solvers (SeDumi or SDPT3).

Equation (22) and (23) can be transformed to the following two inequalities (which will be shown to be

polynomial).
(

ρ2 + h2(e
−
KF,RO(k))− ‖e−KF,RO(k)‖

2
Z − Eh2

(

Ae−KF,RO(k)
))(

d2 + ‖e−KF,RO(k)
φ−1‖2Z

)

+
(

‖e−KF,RO(k)‖
2
Z + Eh2

(

Ae−KF,RO(k)
))(

‖e−KF,RO(k)
φ‖2Z − d1

)

≥ 0 (24)
(

ρ2 + h2(e
−
KF,RO(k))− λ− Eh2

(0)
)(

d3 + ‖e−KF,RO(k)
φ+1‖2Z

)

+(λ+ Eh2
(0))

(

d1 − ‖e−KF,RO(k)
φ‖2Z

)

≥ 0, (25)

Sinceh2 is a polynomial, according to the Isserlis’ theorem1 [23], Eh2

(

Ae−KF,RO(k)
)

is also a polynomial, and

the corresponding coefficients are linear combinations of the coefficients ofh2. So, the two inequalities (24) and

(25) are polynomial inequalities whose coefficients are linear combinations of the coefficients ofh2.

With the sum of squares (SOS) decomposition of multi-variable polynomials, the two polynomial inequalities

(24) and (25) can be transformed to a semi-definite program. Let h2(s) =
∑N

i=1 ais
αi , whereai ∈ R, s ∈ R

n,

αi ∈ N
n andsαi = s

αi,1

1 · . . . · s
αi,n

n . Both (24) and (25) can be expressed as

g(s) =

M
∑

i=1

cis
βi ≥ 0,

where ci is a linear combination of{ai}Ni=1, and βi ∈ N
n. g(s) ≥ 0 is guaranteed, if there exist polynomials

f1(s), . . . , fm(s) such that

g(s) =

m
∑

i=1

f2
i (s).

1[Isserlis’ theorem:] If(x1, . . . , x2n) is a zero mean multivariate normal random vector, then

E(x1x2 · · · , x2n) =
∑∏

E(xixj),

E(x1x2 · · · , x2n−1) =0,

where the notation
∑∏

means summing over all distinct ways of partitioningx1, . . . , x2n into pairs.
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This SOS condition is equivalent to the existence of a positive semi-definite matrixG such that

g(s) = s
TGs,

wheres is some properly chosen vector of monomials withsi = s
γi whereγi ∈ N

n [24]–[26]. At this point, the

SOS decomposition of the polynomialg(s) is the same as finding a symmetric matrixG such that

∑

γi+γj=βk

Gi,j = ck, for all k = 1, . . . ,M ,

G ≥ 0.

This is a semi-definite programm, and can be efficiently solved by SeDumi or SDPT3. SOSTOOLS provides a

convenient tool which automatically converts polynomial inequalities to SDP, calls the SDP solver (SeDumi or

SDPT3), and converts the SDP solution back to the solution ofthe original polynomial inequalities. For detail

about SOSTOOLS, please check [27].

Remark 4.5:There are6 parameters to be chosen in equation (22) and (23). Accordingto our experience, Larger

φ, δ1 and δ2 provide smallerρ2, but consumes more computation effort. So,φ, δ1 and δ2 can be chosen to be

large enough such that the computation time is not too long.d1 andd2 can be chosen such thatd1 = 500d and

d2 = d. At this point, the only undetermined parameter isd, and we will use DIRECT optimization algorithm [28]

to searches for thed which provides the smallestρ2.

The DIRECT optimization algorithm is an algorithm based on Lipschitzian optimization without knowing the

Lipschitz constant [29]. The DIRECT optimization algorithm can solve global optimization problems with bound

constraints and a real valued objective function without the knowledge of the objective function gradient. The

accompanying MATLAB program, directc.m, can be found in [28].

Next, we provide an algorithm to compute the suboptimal event trigger and the upper bound on the suboptimal

cost.

Algorithm 4.6 (Compute the suboptimal event trigger and the upper bound on the suboptimal cost):

1) Initialization

a) Provide system parameters:A, C, W , V , L, Q, Z, andλ.

b) Provide parameters in equation (22) and (23):φ, δ1, andδ2.

c) Initialize an SOS program asprog using toolbox ‘SOSTOOLS’.

• Declare scalar decision variables:ρ2, s1, . . . , sn (s = [s1, . . . , sn]
T denotese−KF,RO(k) in equation

(22) and (23).

• Declare a polynomial variable:h2.

• ComputeEh2
(0) andEh2

(As) using the Isserlis’ theorem.

2) Use DIRECT optimization algorithm to search ford∗ which provides the smallestρ2.

a) Fix the initial searching interval to be[0, 10λ]. Let bound = 10λ.
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b) Call functionsolve poly inequality to computeρ2 andh2 at the pointd = 10λ. If there is no feasible

solution, then use the bisection method to find the largestd ∈ [0, 10λ] which provides a feasible solution.

Let bound be this largestd providing a feasible solution.

c) Search ford∗ usingdirect function (given in [28]) with the function handle to besolve poly inequality

and the searching interval to be[0, bound].

3) Call functionsolve poly inequality to computeρ2 and h2 at the pointd∗. Compute the suboptimal event

trigger: sTZs+Eh2
(As)− λ−Eh2

(0) > 0, and the upper bound on the suboptimal cost:ρ2 + trace(QZ).

4) Return.

solve poly inequality function:

[ρ̄2, h̄2] = function solve poly inequality(d, λ, φ, δ1, δ2, prog, ρ2, s, h2, Eh2
(0), Eh2

(As))

1) Initialize parameters in equation (22) and (23):d1 = 500d andd2 = d.

2) Solve the following problem using the toolbox ‘SOSTOOLS’.

min ρ2 (26)

subject to: (24) and (25).

3) Get solutions from the SOS programprog. If problem (26) is feasible, then assign the value ofρ2 andh2 to

ρ̄2 and h̄2, respectively. Otherwise, Let̄ρ2 = λ and h̄2 = 0.

4) Return[ρ̄2, h̄2].

At this point, we can effectively compute the suboptimal event trigger and the upper bound on the suboptimal

cost. A natural question is how good this suboptimal event trigger is. This can be characterized by the difference

between the upper bound on the suboptimal cost and the lower bound on the optimal cost. The next section will

provide an algorithm to compute a lower bound on the optimal cost.

V. COMPUTE A LOWER BOUND ON THE MINIMUM COST

This section first states an existing result about a lower bound on the minimum cost for a general Markov control

process, then provides the main theorem about the lower bound on the minimum cost for the state estimation

problem described in Section II, and finally gives an algorithm to compute the lower bound on the minimum cost.

Lemma 3 of [10] provides a lower bound on the minimum cost for ageneral Markov control process, here we

state this lemma without proof.

Lemma 5.1:Suppose in a Markov control process,s(k) ∈ S is the state whereS is the state space,a(k) ∈ A is

a static state-feedback action whereA is the action set,c is the cost function, andQ is the transition probability

of s(k+1) conditioned ons(k) anda(k). If there exists a constantJ and a functionh1, such that for alls(k) ∈ S

J + h1(s(k)) ≤ min
a(k)∈A

{

c(s(k), a(k)) +

∫

S

h1(s(k + 1))Q(s(k + 1)|s(k), a(k))ds(k + 1)

}

,

then the minimum costJ∗ = min{a(k)}∞

k=0
limN→∞

1
N

∑N−1
k=0 E (c(s(k), a(k))) satisfies

J∗ ≥ J.
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Based on Lemma 5.1, we have the following theorem.

Theorem 5.2:If there exists a constantρ1 and a polynomial functionh1, such that for alle−KF,RO(k) ∈ R
n

ρ1 + h1(e
−
KF,RO(k)) ≤‖e−KF,RO(k)‖

2
Z + Eh1

(

Ae−KF,RO(k)
)

, (27)

ρ1 + h1(e
−
KF,RO(k)) ≤λ+ Eh1

(0), (28)

thenJ∗ ≥ J∗ = ρ1 + trace(QZ).

Proof: According to Lemma 5.1, for the optimal problem described inequation (14), if there exists a constant

ρ1 and a functionh1, such that for alle−KF,RO(k) ∈ R
n

ρ1 + h1(e
−
KF,RO(k)) ≤ min

a(k)∈{0,1}

{

cn(e
−
KF,RO(k), a(k)) + E(h1(e

−
KF,RO(k + 1))|e−KF,RO(k), a(k))

}

,

thenJ∗
n ≥ ρ1. From equation (13), we haveJ∗ ≥ ρ1 + trace(QZ).

From the dynamic behavior ofe−KF,RO described in (15) and the new cost functioncn in (10), the right hand

side of (20) is rewritten as

ρ1 + h1(e
−
KF,RO(k)) ≤ min

{

‖e−KF,RO(k)‖
2
Z + Eh2

(

Ae−KF,RO(k)
)

, λ+ Eh2
(0)

}

⇔











ρ1 + h1(e
−
KF,RO(k)) ≤ ‖e−KF,RO(k)‖

2
Z + Eh1

(

Ae−KF,RO(k)
)

,

ρ1 + h1(e
−
KF,RO(k)) ≤ λ+ Eh1

(0).

So, we have Theorem 5.2.

Remark 5.3:With the same argument in Remark 4.4, we can see that equation(27) and (28) can be transformed

to a semi-definite program, and hence efficiently solved. Next, we will give an algorithm to search forρ1 andh1.

Algorithm 5.4 (Compute a lower bound on the minimum cost):

1) Initialization

a) Provide system parameters:A, C, W , V , L, Q, Z, andλ.

b) Initialize an SOS program asprog using toolbox ‘SOSTOOLS’.

• Declare scalar decision variables:ρ1, s1, . . . , sn (s = [s1, . . . , sn]
T denotese−KF,RO(k) in equation

(27) and (28).

• Declare a polynomial variable:h1.

• ComputeEh1
(0) andEh1

(As) using the Isserlis’ theorem.

2) Solve the following problem using the toolbox ‘SOSTOOLS’.

min−ρ1

subject to: (27) and (28)

3) Get solutions ofρ1 andh1 from the SOS programprog, and compute the lower boundJ on the minimum

cost asJ∗ = ρ1 + traceQZ.

4) Return.
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computation method degree
1

elapsed time lower boundJ∗

Algorithm 5.4

3 0.14s 0

5 0.094s 1.35

8 0.375s 1.35

[11] 2 × 0.46

[13] 2 × ×

TABLE I: The lower bounds on the optimal cost of the stable system. × indicates no feasible solution or not

available in the prior work.

VI. M ATHEMATICAL EXAMPLES

This section uses Algorithm 4.6 and 5.4 to search for a suboptimal event trigger, an upper bound on the

corresponding suboptimal cost, and a lower bound on the optimal cost for two linear time invariant (LTI) systems.

The first LTI system is a marginally stable system, and the second LTI system is an unstable system. We would

like to compare the upper bound on the suboptimal cost and thelower bound on the optimal cost computed

from our algorithms with those computed based on the prior work [11]–[13]. The two examples were run on a

Microsoft Windows XP system with2.99 GHz CPU and3.37GB of RAM. All of the source files are available at

www.nd.edu/∼lli3/projects.html.

A. Stable system

Consider a marginally stable system as below

x(k + 1) =







1 0

0 1






x(k) + w(k)

y(k) =x(k),

with covariance matrixW =







0.03 −0.02

−0.02 0.04






, the weight matrixZ =







2 1

1 2






, and the communication price

λ = 20. This is the same example used in [11], and we would like to compare the results in this paper with the

results in [11] and [13].

Algorithm 5.4 was first used to compute a lower boundJ on the minimum cost. In this algorithm,h1 was set to

be a polynomial which contained all possible monomials whose degrees were no greater thandegree1. We varied

degree1 to see how the lower boundJ on the minimum cost changes with respect to the degree ofh1. The results

are shown in Table I.

Algorithm 4.6 was then used to compute the suboptimal event trigger and the upper boundJ on the suboptimal

cost withφ = 6 and δ1 = δ2 = 4. In this algorithm,h2 was set to be a polynomial which contained all possible

monomials whose degrees were even and no greater thandegree2. We varieddegree2 to see how the upper boundJ
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computation method degree
2

elapsed time for

operating

solve poly inequality

function

solve poly inequality

function evaluation

times

upper boundJ difference

betweenJ and

the largestJ∗

Actual cost

Algorithm 4.6

2 1.2s 13 6.75 5.40 ≈ 5.1

4 1.7s 13 6.07 4.72 ≈ 1.86

6 2.8s 13 2.14 0.79 ≈ 1.70

8 4.4s 13 1.85 0.5 ≈ 1.56

10 7.3s 15 1.79 0.44 ≈ 1.56

[11] 2 × 1 2.74 2.28 ≈ 1.56

[13] 2 × 1 3.78 × ≈ 1.4

TABLE II: The upper bounds on the suboptimal cost of the stable system.× indicates no feasible solution or not

available in the prior work.

on the suboptimal cost changes with respect to the degree ofh2. Moreover, to characterize how good the suboptimal

event trigger is, we computed the difference between the upper boundJ on the suboptimal cost and the largest

lower boundJ computed from Algorithm 5.4, and compared this difference with the prior work [11] and [13]. The

results are given in Table II. From the fourth column of TableI, we see that as the degree ofh1 increases, the

lower boundJ∗ on the minimum cost increases. When the degree ofh1 is 5, the lower boundJ∗ on the minimum

cost increases to1.35, which is about3 times of the lower bound on the minimum cost given by [11].

From the fourth column of Table II, we see that as the degree ofh2 increases, the upper boundJ on the suboptimal

cost decreases. As the degree ofh2 increases to10, the upper bound on the suboptimal cost decreases to1.79,

which is the smallest among all the upper bounds on suboptimal costs provided by this paper, [11] and [13]. When

the degrees ofh1 andh2 are5 and10, respectively, the difference between the upper bound on the suboptimal cost

and the lower bound on the optimal cost is only0.44 , which is about1/5 of the difference provided by [11].

After obtaining a suboptimal event trigger, we applied the event trigger to the marginal stable system, ran the

system for3000 steps, and computed the actual average costJ . The results are given in the last column of Table

II. We find that as the degree ofh2 increases from4 to 10, the actual cost only decreases by the amount of0.3, but

the computational effort to evaluate the suboptimal event trigger increases a lot. So, when applying a polynomial

event trigger to a control system, we should use the polynomial event trigger with lowest degree while providing

acceptable upper bound on the suboptimal cost.
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computation method degree
1

elapsed time lower boundJ∗

Algorithm 5.4

3 0.17s 1.82

5 0.39s 2.7

7 0.56s 2.72

9 × ×

13 0.78s 3.23

[13] 2 × ×

[12] 2 × ×

TABLE III: The lower bounds on the optimal cost of the unstable system.× indicates no feasible solution or not

available in the prior work.

B. Unstable system

Next, we consider an unstable system.

x(k + 1) =







0.95 1

0 1.01






x(k) + w(k)

y(k) =

[

0.1 1

]

x(k) + v,

with the covariance matrixW =







0.2 0

0 0.2






and V = 0.3, the weight matrixZ =







1 0

0 1






, and the

communication priceλ = 5.

With the same steps as we did for the stable system, we computed the lower boundJ∗ on the minimum cost

while varying the degree ofh1 (see Table III), the upper boundJ on the suboptimal cost while varying the degree

of h2 (see Table IV), and the difference betweenJ and the largestJ∗ (see Table IV). These results were compared

with the results given by [12] and [13].

From Table III, we see that among all the existing work, only this paper provides a way to compute the lower

bound on the minimum cost for unstable systems, and this lower boundJ∗ increases as the degree ofh1 increases.

When the degree ofh1 increases to13, the lower bound on the minimum cost increases to3.23.

From Table IV, we see that the upper boundJ on the suboptimal cost decreases as we increase the degree of

h2. When the degree ofh2 increases to10, J decreases to3.79 which is about0.7 and0.5 times of theJ provided

by [13] and [12], respectively. When the degrees ofh1 andh2 are13 and10, respectively, the difference between

the upper boundJ on the suboptimal cost and the lower boundJ∗ on the minimum cost is0.56 which is about

0.17 of J∗.

After obtaining a suboptimal event trigger, we applied the event trigger to the unstable system, ran the system

for 3000 steps, and computed the actual average costJ which is given in the last column of Table IV. We find

that as the degree ofh2 increases from4 to 8, the actual cost remains almost the same. When the degree ofh2
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computation method degree2 elapsed time for

operating

solve poly inequality

function

solve poly inequality

function evaluation

times

upper boundJ difference

betweenJ and

the largestJ∗

actual cost

Algorithm 4.6

2 1.2s 15 6.83 3.60 ≈ 3.73

4 3.4s 13 6.70 3.47 ≈ 3.30

6 5.5s 13 4.40 1.17 ≈ 3.30

8 7.1s 11 4.34 1.11 ≈ 3.29

10 8.5s 15 3.79 0.56 ≈ 3.47

[13] 2 × 1 5.57 × ≈ 3.24

[12] 2 × 1 7.69 × ≈ 5.4

TABLE IV: The upper bounds on the suboptimal cost of the unstable system.× indicates not available in the prior

work.

increases from8 to 10, the actual cost even increases by the amount of0.18. So, when applying a polynomial event

trigger to this control system, the polynomial event trigger should be chosen such that it has the lowest degree with

acceptable upper bound on the suboptimal cost.

VII. A PPLICATION IN A QUANSER c© 3DOF HELICOPTER

This section applies the suboptimal event trigger computedfrom Algorithm 4.6 to a8 dimensional nonlinear

3DOF helicopter. Subsection VII-A introduces the nonlinear model of the 3DOF helicopter, linearization of this

nonlinear model and the controllers we will use for the 3DOF helicopter. Subsection VII-B explains how we design

the suboptimal event triggers for this 3DOF helicopter. Theexperiment results are given in subsection VII-C.

A. QUANSER c© 3DOF Helicopter

Fig. 2: Schematic of the 3DOF helicopter.

la 0.67 m ǫ0 -0.136 rad

lh 0.177 m cǫ 0.18kg.m2/s

lw 0.48 m cρ 0.003kg.m2/s

d 0.04 m cγ 0.25kg.m2/s

M 1.4611 kg cγρ 0.003kg.m2/s

m 2 kg Jǫ 3.5 kg.m2

Mbf 0.29 kg Jρ 0.01kg.m2

g 9.8 m/s2 Jγ 4 kg.m2

TABLE V: 3DOF helicopter parameter values
Figure 2 gives the basic schematic of the 3DOF helicopter. The 3DOF helicopter consists of three subsystems:

elevation (ǫ), pitch (ρ) and travel (γ). Elevation is the angle between the main beam and the horizontal axis, pitch

is the angle that the motor beam moves around the main beam, and travel is the angle that the main beam moves
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around the vertical axis.Tf andTb are the front and back thrusts generated by the DC motors. Ourobjective is to

control the 3DOF helicopter to follow a commanded elevationǫr and a commanded travel rateγ̇r.

The system dynamic is described by the following equations [30].

Jǫǫ̈m =−
√

((mlw −Mla)g)2 + ((m+M)gd)2 sin(ǫm) + Tcol cos(ρ)(la + d tan(ǫm + ǫ0))− cǫǫ̇m,

Jρρ̈ =Tcyclh −Mbfgd sin(ρ)− cρρ̇+ cγργ̇,

Jγ γ̈ =− laTcol sin ρ cos ǫ− cγ γ̇,

and the elevation, pitch and travel rate can be directly measured with the measurement noises to be white zero

mean Gaussian, and the variances of the measurement noises are 1.857× 10−6, 1.857× 10−6, and1.857× 10−6,

respectively.

In this model,ǫm = ǫ − ǫ0, m is the gross counter weight at the tail,M is the gross weight at the head,

Mbf = mb+mf is the sum mass of the two motors,lw is the length from the pivot to the tail whilela is the length

from the pivot to the head,d is some adjusted length with respect to the elevation,g is the gravity acceleration,

Tcol = Tf +Tb andTcyc = Tb−Tf are the collective and cyclic thrusts,cǫǫ̇, cρρ̇, cγργ̇, cγ γ̇ are the drags generated

by air due to the change of elevation, pitch and travel, andJǫ, Jρ andJγ are the inertia moments for elevation,

pitch and travel respectively. The parameter values are given in Table V.

Neglecting the non-dominant terms and under the assumptionthat sin(ρ) ≈ ρ and sin(ǫm) ≈ ǫm, the model of

3DOF helicopter can be linearized as

Jǫǫ̈m = −
√

((mlw −Mla)g)2 + ((m+M)gd)2ǫm − cǫǫ̇m + lauǫm (29)

Jρρ̈ = −Mbfgdρ− cρρ̇− cγργ̇ + lhuρ (30)

Jγ γ̈ = − cγ γ̇ − lauγ , (31)

whereuǫm , uρ anduγ are the control inputs for elevation, pitch and travel subsystems satisfying

uǫm =Tcol cos(ρ), (32)

uρ =Tcyc, (33)

uγ =Tcolρ cos(ǫ). (34)

The control laws of these control inputs are

uǫm =[7 44 68][

∫ t

0

ǫm(s)− ǫr(s)ds ǫm(t)− ǫr(t) ǫ̇m(t)]T , (35)

uρ =[3.5 30 20][

∫ t

0

ρ(s)− ρr(s)ds ρ(t)− ρr(t) ρ̇(t)]
T , (36)

uγ =[25 3][γ(t)− γr(t) γ̇(t)− γ̇r(t)]
T , (37)

whereρr is the reference pitch signal which will be explained later.
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Fig. 3: Structure of event triggered 3DOF helicopter

To compute the collective and cyclic thrustsTcol andTcyc, we first compute the control inputsuǫm , uρ anduγ

according to equation (35), (36) and (37) respectively, andthen computeTcol, Tcyc andρr based on the following

equations which are derived from equation (32), (33 and (34).

Tcol =uǫm/ cos(ρ),

Tcyc =uρ,

ρr =uγ/(Tcol cos(ǫ)).

B. Design of the event triggered 3DOF helicopter.

From equation (29), (30) and (31), we can see that the helicopter system is decomposed into2 decoupled

subsystems: elevation subsystem and pitch-travel subsystems. For each subsystem, we will design a Kalman filter,

a remote observer and a suboptimal event trigger. The structure of the whole closed loop system can be found in

Figure 3.

1) Design of the elevation subsystem:The elevation subsystem is discretized with period0.005s, and the discrete

model of the elevation subsystem is

xǫm(k + 1) =













1 0.005 1.25e− 5

0 1 0.004999

0 −0.001956 0.9997













xǫm(k) +







3.988e− 9

2.393e− 60.000957






uǫm + wǫm

yǫm(k) =







1 0 0

0 1 0






xǫm(k) + vǫm ,
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subsystem elapsed time for operating

solve poly inequality

function

solve poly inequality

function evaluation

times

upper boundJ lower bound on

minimum costJ∗

J
J∗

elevation ≈ 40s 21 0.20 0.076 2.65

pitch-travel ≈ 630 21 0.67 0.16 4.18

TABLE VI: Upper bound on the suboptimal cost and lower bound on the minimum cost

wherexǫm(k) = [
∫ 0.005k

0 ǫm(s)ds ǫm(0.005k) ǫ̇m(0.005k)]T , the variances ofwǫm andvǫm arediag([8e− 3 1e−

12 3.1e− 4]) anddiag([01.86e− 6]), respectively.

By solving the discrete linear Riccati equation (2), we havethe Kalman filter gain as

Lǫm =













1 0.0016

0 0.3563

0 10.77













.

Algorithm 4.6 was, then, used to compute a suboptimal event trigger. Let the weight matrixZ = diag([1 6 1]),

λ = 1, φ = 2, δ1 = 1, δ2 = 1. h2 was chosen to be a polynomial which contains all possible monomials whose

degree is even and no greater than10.

A lower bound on the minimum cost was computed using Algorithm 5.4. In this Algorithm,h1 was chosen to

be a polynomial which contains all possible monomials whosedegree is no greater than10.

The related results about the upper bound on the suboptimal cost and lower bound on the minimum cost are

given in Table VI. From the last column of this table, we find that the upper bound on the suboptimal cost is2.65

times of the lower bound on the optimal cost, which is considered to be acceptable.

2) Design of the pitch-travel subsystem:With the period to be0.005s, the discrete model of the pitch-travel

subsystem is given below.

xρτ (k + 1) =





























1 0.005 1.249e− 5 0 6.247e− 11

0 0.9999 0.004996 0 3.748e− 8

0 −0.05679 0.9984 0 1.499e− 005

0 0 0 1 0.004999

0 0 0 0 0.9997





























xρτ (k) +





























3.686e− 7 −1.308e− 14

0.0002211 −1.046e− 11

0.08843 −6.277e− 9

0 −2.094e− 6

0 −0.0008374



































uρ

uτ







+ wρτ

yρτ (k) =







1 0 0

0 1 0






xρτ (k) + vρτ ,

wherexρτ (k) = [
∫ 0.005k

s=0 ρ(s)ds ρ(0.005k) ρ̇(0.005k) τ(0.005k) τ̇(0.005k)]T . The variances ofwρτ andvρτ are

diag([1e− 3 1e− 12 2e− 4 1e− 12 5.4e− 4]) anddiag([0 1.86e− 6 1.86e− 6]), respectively.
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sampling method delay: s elevation pitch-travel total

polynomial event trigger
0.005

1 53 54

periodic triggering 1 300 301

polynomial event trigger
0.01

1 48 49

periodic triggering 1 300 301

polynomial event trigger
0.02

1 2422 2423

periodic triggering 1 300 301

TABLE VII: Transmission times using event triggering and periodic triggering with different delays.

The Kalman gain can be computed by solving the discrete linear Riccati equation (2). For the pitch-travel

subsystem, the Kalman gain is

Lǫm =





























1 0.0015 0

0 0.3177 0

0 8.68 0

0 0 0.4083

0 0 13.837





























.

We, then, used Algorithm 4.6 to compute a suboptimal event trigger. Let the weight matrixZ = diag([1 6 1 1 6]),

λ = 1, φ = 2, δ1 = 1, δ2 = 1. Here, we choseh2 such that there was no cross terms between the pitch state and

the travel state, and all possible monomials whose degree was even and no greater than4 were included.

A lower bound on the minimum cost was also computed using Algorithm 5.4. In this algorithm,h1 was chosen

such that it contained all polynomials, except cross terms between the pitch state and the travel state, whose degree

is no greater than8. The related results about the upper bound on the suboptimalcost and the lower bound on the

minimum cost is shown in the second row of Table VI. From the last column, we see that the upper bound on the

suboptimal cost is4.18 times of the lower bound on the minimum cost, which is considered to be acceptable.

C. Experimental results for the event triggered 3DOF helicopter and periodically triggered 3DOF helicopter

We first ran the event triggered 3DOF helicopter system for90 seconds, and then ran a periodically triggered

3DOF helicopter system for90 seconds. When we ran the periodically triggered 3DOF helicopter system, we

adjusted the periods of the elevation subsystem and pitch-travel subsystem until the performance was similar to the

performance of the event triggered 3DOF helicopter.

1) Transmission times and performance with0.005s delay: The transmission times for both event triggered and

periodically triggered helicopter are shown in Table VII. In this experiment, the transmission delay is set to be

0.005s, from the last column, we can see that the total transmissiontimes of event triggered helicopter is less than

0.2 times of the transmission times of the periodically triggered helicopter.
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Fig. 4: inter-sampling intervals of event triggered 3DOF helicopter.
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Fig. 5: The elevation, travel rate and pitch performance of the event triggered 3DOF helicopter and periodically

triggered 3DOF helicopter.
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Figure 4 shows the inter-sampling intervals of even triggered helicopter withx-axis indicating time andy-axis

indicating inter-sampling intervals measured by second. Let us first look at the inter-sampling intervals (circles)

of pitch-travel subsystem. The most frequent transmissions occurred during the intervals[15s, 20s], [32s, 42s] and

[55s, 60s]. Compared with the middle plot of Figure 5, we see that these intervals are those when the travel subsystem

was in transient processes. We, then, look at the inter-sampling intervals (dot) of elevation subsystem, and find that

there was only one transmission in the elevation subsystem.Notice that the elevation subsystem is stable and only

coupled with pitch subsystem (see equation (29)). So, if theremote state estimate of pitch is accurate enough, the

remote state estimate of elevation will be accurate enough and there will be very few transmissions in the elevation

subsystem.

The system performances are shown in Figure 5. The top plot isthe system performance of elevation subsystem,

with x-axis indicating time andy-axis indication elevation measured by rad. We can see that event triggered

helicopter (dotted line) and periodically triggered helicopter (solid line) has similar elevation performance, and both

of them track the commanded signal (dash dotted line) with small overshoot and no steady state error. The middle

plot is the performance of travel rate measured by rad/s, with x-axis indicating time andy-axis indicating travel

rate. From the middle plot, we see that event triggered helicopter (dotted line) and periodically triggered helicopter

(solid line) has similar performance, and both of them trackthe commanded signal (dash dotted line) with small

overshoot and no steady state error. The bottom plot is the performance of pitch measured by rad, withx-axis

indication time andy-axis indication pitch angle. We see that the event triggered helicopter (dotted line) and the

periodically triggered helicopter (solid line) have similar pitch performance, and both of them only have small

oscillation. Overall, we can say that the event triggered helicopter and the periodically triggered helicopter have

similar performance.

2) Transmission times and performances with0.01s and 0.02s delay: In this experiment, we first set the

transmission delay to be0.01s, and then set the transmission delay to be0.02s to see how the system performances

of event triggered helicopter and periodically triggered helicopter decay with respect to transmission delays.

In the presence of0.01s delay, the system performances of both event triggered 3DOF helicopter and periodically

triggered 3DOF helicopter are shown in Figure 6. The top plotis the performance of the elevation subsystem, the

middle plot is the performance of travel rate, and the bottomplot is the performance of pitch. In these three plots,

solid lines are performances of periodically triggered helicopter, dotted lines are performances of event triggered

helicopter, and dash dotted lines are commanded signals. From the three plots of Figure 6, we can see that in the

presence of0.01s delay, the performance of event triggered helicopter is similar to the performance of periodically

triggered helicopter, and both of them tracked the commanded elevation and travel rate with small overshoot and no

steady state error with small oscillation in the pitch angle. Now, let us look at the transmission times of both event

triggered helicopter and periodically triggered helicopter. The transmission times are shown in the3rd and4th row of

Table VII. We see that compared with the periodically triggered helicopter system, the total transmission times in the

event triggered helicopter system is about0.2 of the total transmission times in the periodically triggered helicopter

system. Therefore, we conclude that when the transmission delay is 0.01s, the event triggered helicopter and the
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Fig. 6: System performance with0.01s delay
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Fig. 7: System performance with0.02s delay

periodically triggered helicopter achieved similar performances while the event triggered helicopter transmitted less

than the periodically triggered helicopter.

When the transmission delay is0.02s, the system performances are shown in Figure 7 with dotted lines indicating

performances of the event triggered helicopter, solid lineindicating performances of the periodically triggered

helicopter, and dash dotted line indicating commanded signals. The top two plots are the performances of elevation

and travel rate, respectively. We see that event triggered helicopter and periodically triggered helicopter had similar

elevation and travel rate performance. While both event triggered system and periodically triggered system tracked

the commanded elevation with small overshoot and no steady state error, there existed steady state errors in travel

rate for both event triggered system and periodically triggered system. The bottom plot shows the performances of

pitch. we can see that the event triggered helicopter had smaller oscillation in pitch than the periodically triggered

helicopter. The transmission times of event triggered helicopter and the periodically triggered helicopter are given
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in the5th and6th row of Table VII. We see that in event triggered system, while the transmission times of elevation

subsystem remained at the same level, the transmission times of the pitch-travel subsystem increase to2422 from

54 (0.005s delay) and49 (0.01s delay). This is because the pitch angle kept oscillating, which means that the

pitch subsystem was always in a transient process. So, the pitch-travel subsystem kept transmitting information

during the whole running horizon. From Table VII, we see thatevent triggered helicopter transmitted more than

the periodically triggered helicopter, and the total transmission times of event triggered helicopter is about8 times

of the transmission times of the periodically triggered helicopter. From Figure 7 and Table VII, we conclude that

when the transmission delay is0.02s, the event triggered helicopter had better performance than the periodically

triggered helicopter, but consumed more communication resource than the periodically triggered helicopter.
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