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Abstract

Event-triggered transmission has been shown to minimizestimator's mean square error discounted by the
communication cost. This optimal trigger, however, is difft to compute, which motivated the use of sub-optimal
quadratic event triggers that are easier to synthesizes Jdgper introduces algorithms for computing a larger class
of polynomial event-triggers for MMSE state estimatorse3é algorithms pose the synthesis problem as a semi-
definite program (SDP) that is efficiently solved using cotafianal tools such as SOSTOOLS. The paper derives
upper bounds and lower bounds on the performance achievetiesg polynomial event-triggers and simulation
results show that these polynomial triggers always oufeper the quadratic triggers proposed in earlier works.
Finally, the paper applies these methods to8adimensional nonlinear three degree-of-freedom (DOF)cbgler.
The simulation results show that our event-triggered egtimuses fewer communication resources than periodically
triggered estimator while achieving similar performanegels. To our best knowledge, this is the first time this
particular approach to event-trigger synthesis has bephedpto systems with dimension greater than

I. INTRODUCTION

Wireless networked control systems are invaluable in mariyand military applications, such as environmental
monitoring, traffic control, smart grid, manufacturingJleoting information on the battlefield, and so on. In most
cases, the sensors are battery driven and the wirelessalltasvery low bandwidth, which limits the transmission
frequency. Meanwhile, to assure accurate monitoring ofsfretem, one wants the sensors to transmit information
as often as possible. This tradeoff between communicasageland the monitoring quality (performance) can be
formulated as an optimization problem that seeks to mirgntiie average mean square estimation error discounted
by the cost of communication with respect to the transmissite.

This optimization problem was first studied in [1] where itssshown that the optimal transmission rule was
event triggered transmission. Event triggered transonisis a transmission method in which sensors or controllers

only transmit information when some event occurs. In pakic information is transmitted when a measure of
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data ‘novelty’ exceeds a specified threshold. As early a®99,189was claimed that event triggering could make
more efficient use of communication resources than peritrdicsmission schemes [2]. This claim was further
demonstrated experimentally by the fact that event triggemaintains comparable system performance while
using fewer communication resources than periodic trassion [3]-[9]. These experimental results coincide with
the theoretic result given in [1] which said that the optinransmission rule that minimizes the average mean
square estimation error discounted by the communicatiah isoevent triggered transmission. This optimal event
trigger, however, is difficult to compute, and the computadil complexity for finding the optimal event trigger
grows exponentially with respect to the state dimension.

Based on the sub-optimality bounds in [10], people begaontsider suboptimal event triggers, and tried to use the
difference between an upper bound on the suboptimal cosaadmger bound on the minimum cost to characterize
how well the suboptimal event trigger performs. [11] predda suboptimal event trigger, and guaranteed that the
suboptimal cost is always less thatimes of the minimum cost. This result, however, only holusstable systems.
Later, [12] and [13] gave suboptimal event triggers for abl systems and the corresponding upper bounds on
the suboptimal costs, but didn't provide any measure of hoadgthese suboptimal event triggers were.

This paper proposes an algorithm to compute a polynomiastirtnal event trigger and an upper bound on the
suboptimal cost, and an algorithm to compute a lower bountherminimum cost. Both algorithms are based on
semi-definite programs, and hence computationally effect8oth algorithms work for both stable and unstable
systems. In our simulation, when we increase the order optiynomial event trigger ta0, the ratio of the upper
bounds on the suboptimal costs to the lower bounds on themmami costs are less than4 for both stable and
unstable systems, while [11] only guarantees that thie liatiess tharé for stable systems, and [12], [13] didn't
provide any result on this ratio.

Later, we apply the polynomial event triggers to &mimensional 3 degree-of-freedom (3DOF) helicopter. To
our best knowledge, this is the first time the suboptimal etrggger has been applied to a system whose dimension
is greater tharz. Our simulation results show that with polynomial evenggers, the 3DOF helicopter tracked the
reference signal with small overshoot and no steady erfos &vent triggered helicopter used fewer communication
resources than a periodically triggered helicopter witmparable performance, and tolerated the same amount of

transmission delay as the periodically triggered helieopthile maintaining the system performance.

II. EVENT TRIGGEREDSTATE ESTIMATION PROBLEM

A block diagram of the event triggered state estimation fgmobis shown in Figure 1. This system consists of
three components: plant subsystejra sensor subsysterand aremote observer

The plant subsysteonsists of two parts: a plant and a sensor, satisfying thewimg difference equation
x(k) = Az(k — 1) + w(k — 1),

y(k) = Cx(k) + v(k),
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Fig. 1: Structure of the event triggered state estimatimiesgs

fork=1,2,...,00. LetR™ denote the: dimensional real space, aiy denote the set of all non-negative integers.
In the difference equation,
e z: Ny — R" is the system state with initial statg0) being a Gaussian random variable with meanand
variancelly.
o w IS a zero mean white Gaussian noise process with varidnce
» v Iis another zero mean white Gaussian noise process withnearid. The initial statex(0), w andv are
statistically independent.
« The pair(4, C) is observable.
o y: Ng — RP is the measurement of the plant which is fed into the sendosystiem.
The sensor subsystamses sensor measurements to decide when to transmit irfformta the remote observer.
The sensor subsystem consists dfaman filter, a remote observer in sensor subsystanad anevent detector
The Kalman filtergenerates a filtered statecr : Ng — R™ that minimizes the weighted mean square estimation
error (MSEE), i.e.

Trrp(k) = min E[[la(k) - Txrk)l|Z ] {y(0),y(1), - y(k)}]

whereZ > 0 is a symmetric weighting matrix, anth||% = 67 Z¢. For the process under study the filter equation
is

Trrp(k) = ATgp(k— 1)+ L{y(k) - CAZp(k —1)], €y
whereL = AXCT(CXCT + V)1, and X satisfies the discrete linear Riccati equation

AXAT - X —AxXCT(CXOT +v)tox AT + W =o. 2)

The steady state estimation errat (k) = (k) — Txr(k) is a Gaussian random variable with zero mean and
variance

Elegrekp)=Q = (I - LO)X.

While the Kalman filter generates the most ‘knowledgabkestestimate, theemote observer in sensor subsystem

duplicates the remote state estimate. With these two stlimates, the event detector knows how far away the
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remote state estimate is from the most ‘knowledgable’ statématez i . If the remote state estimate is too far
away fromZ g, thenZ g should be transmitted. Now, let us see how the remote ohsansensor subsystem
works. At stepk, before the event detector in sensor subsystem decidefievhiet transmit, the remote observer
in sensor subsystem producesapriori remote state estimatey, (k) which will be described in detail when we
introduce the remote observer. Tagriori remote state estimatgy, (k) together with the filtered statex (k) is
then handed to the event detector in sensor subsystem wedehiether or not to transmit the filtered stater (k)

at stepk.

The event detector in the sensor subsystesas thea priori gap

exrrok) =Trr(k) —Tho(k), 3

to decide whether or not to transniit (k) to the remote observer. Let(k) € {0,1} be the action the event

detector takes at stefp We say that
1, if the event detector decides to transmit;

a(k) =
0, otherwise.

Here, we define a large positive constarduch that
0> \>0, (4)

where \ is the communication price paid for one transmission. Ofcg;. p, (k)[|% is greater thard, Tx r (k)
has to be transmitted. Otherwise, the event detector inghsas subsystem can choose either to transmit or not to
transmit. Thelth transmission time from the sensor subsystem to the reotigerver is denoted as.

The remote observegenerates the remote state estimaig, (k) to minimize the MSEE based on all of the
remote observer’s information up to stép Let I(k) = max{l : 7' <k} indicate the latest transmission time
instants from the sensor subsystem to the remote obsethehiStory informatiorH zo (k) of the remote observer

at stepk is
H o (k) = {EKF(Tl),EKF(TQ), o T (T ), a(0), a(1), .. ., a(k)} :

for k=0,1,...,00 with Hgo(—1) = (. To minimize the MSEE, the posteriori remote state estimaig;o (k)

satisfies (see section 3.2.4 in [14])
Tro(k) = E(z(k)[Hro(k)),
and thea priori remote state estimatey,, (k) satisfy
Tro(k) = E(z(k)Hro(k —1)).
It was shown in [15] that the remote state estimate takesdhma bf
Tro(k) =ATro(k — 1), with 27 (0) = po ()

Tro(k) =a(k)Tkr(k) + (1 — a(k))Tro (k). (6)
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Remark 2.1:If the controller is assumed to know the triggering eventhia sensor subsystem (which is not the
case in this paper), the history information of the remotseoter should include the event triggering information
in the sensor subsystem, and the minimum MSEE won’t be ezhligy the form given by equation (5) and (6). An
approximated minimum MSEE assuming that the controllemisithe triggering event in sensor subsystem was
presented in section 2 of [16].

Now, let us define the remote state estimation eergy (k) as
ero(k) = z(k) —Tro(k).

The average cost in this event triggered state estimatioblgm is

N—-1
T({ak)}ie) = Jim ~ > B(eleno(k), (k) ™)
k=0
where the cost function
clero(k),a(k)) = llero (k)% + a(k), (8)

and \ is the communication price for one transmission.

Our objective is to find a transmission rule to minimize therage cost/({a(k)}32,), i.e.

7= i T(a)E) ©)

IIl. THE OPTIMAL EVENT TRIGGER

This section first transforms the optimal problem descriine(®) to a new optimal problem whose cost function
relies oney . »o instead ofego, and then provide the optimal event trigger for the new ogtiproblem.

Let exrro(k) = Txr(k) — Tro(k) be thea posteriori gapbetween the filtered state and the remote state
estimate. We find that this gagx r ro(k) is orthogonal to the filtered state errek (k). This is stated in the
following lemma. Please see Lemma 2 in [15] for the detailexbp

Lemma 3.1:The filtered state errogx (k) is orthogonal teex 7, ro (k), the gap between filtered state and the
remote state estimate.

Sinceero = exr + exr ro, according to Lemma 3.1, the expected value of the cost ifomd(c) satisfies
E(c(ero(k), a(k))) = trace(QZ) + E(llexr,rol%)
= trace(QZ) + E (en(ex pro (k) a(k)) )

where

cnlexp,ro (k) a(k)) = a(k)A + (1 = a(k))lex pro (k)% (10)

Thus, the average cost is rewritten as

J({a(k)}iZo) = trace(QZ) + Jn({a(k)}7o), (11)
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where
N-—1

o . 1 _
Tn({aB)}ie) = lim = 3 F (enlerprolh) alk)) . (12)
k=0

and the minimum cosf* satisfies

J* =trace(QZ) + J;, (23)
where

J*= min J,({a(k)}Z 14
= i Ta(alh)}o) (14)

This is an average cost optimal problem in a discrete timekblacontrol process (MCP) [17], [18]. In this MCP,
exrro(k) € R is the stateq(k) € {0, 1} is the action with feasible action set to b& 1} if |le 1 o (F)||Z < 6,
{1} otherwise, and,, is the cost function. Sincey . z (k) is the state in the MCP, we are interested in the dynamic

behavior ofey . n (k). From equation (1), (5) and (6), we have
exrrolk +1) = Aexpro(k) + Ly(k + 1)
= (1 —a(k))Aexp po(k) + Lk + 1) (15)

whereg(k+1) = y(k+1) - CATkp(k) = CAegp(k)+Cw(k)+v(k+1). Itis easy to see that(k+1) is a zero
mean Gaussian random variable with variante= CAQATCT + CWCT + V. Thus, the transition probability

of ey ro(k + 1) conditioned orey . (k) anda(k) is

p (¢xmrolk+ Dleirro(k),atk)) =N (1= a(k) A o k), LYLT) , (16)

where NV (u, IT) is the Gaussian probability density function with mean aadance to be: andTI, respectively.

Let

wheres is a random variable whose probability density functions§ias p(s) = NV(u, LY LT). It is easy to show

that
E (hex r.rolk + D)leicn.ro(k)alk) = 0) = En (A . ro(h))
E (h(e;{F,RO(k +1))lexrro(k) a(k) = 1) = Ep(0).

With the Markov control process characterized above, withdame technique used in Theorem 1 of [1], we have
the following theorem about the optimal transmission ruid ¢he optimal cost for the optimal problem described
in (14).

Theorem 3.2: 1) There exist a unique constasit and a functiont}, such that for alky ;. o (k) € R”

o+ hileinro®) =min { ek rro (I + Br; (Aekpro(®) A+ En (O, (D)

2) The optimal cost/* = p* + trace(QZ2).
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3) There exists a deterministic stationary optimal traositule, i.e.the optimal event triggemwhich is

) L if flegpro (Bl + Eng (AeI_{F,RO(k)) > A+ Eps (0) or [lexrroll% > 0,
a =

0, otherwise.
Remark 3.3:It is hard to find an analytic solution to equation (17). Altlghh we can iteratively compute the
solution of equation (17) by value iteration [19] or poli¢gration [20], [21], the computational complexity increas

exponentially with respect to the state dimension.

IV. A SUBOPTIMAL EVENT TRIGGER ANDAN UPPERBOUND ON THE SUBOPTIMAL COST

Because of the difficulty of computing the optimal eventdaeg much of the prior work has only solved this
problem for scalar systems. Higher dimensional systemsooanbeen addressed using quadratic approximations,
but even in these cases the manual computation of theseaiigagipproximations can be tedious and the bounds
may be poor. This section provides a semi-definite prograsedalgorithm to compute a polynomial suboptimal
event trigger and an upper bound on the suboptimal cost.

The suboptimal event trigger and the upper bound on the goraling suboptimal cost is computed based on
Theorem 1 in [10]. Here, we state this lemma without proofe Tinoof can be found in Theorem 1 in [10] or
Theorem 4.1 of [22].

Lemma 4.1:Suppose in a Markov control procesgk) € S is the state wher& is the state spaceyk) € A
is the action whereA is the action set¢ is the cost function, and) is the transition probability ok(k + 1)
conditioned ons(k) anda(k). If there exist a constant, a functionk, bounded from below, and a deterministic

stationary rulef, such that for alls € S

J + ha(s(k)) >min {c(s(k), a(k)) + /S ha(s(k +1))Q(s(k + 1)|s(k), a(k))}

acA

=c(s(k), f(s(k))) + /S ha(s(k +1)Q(s(k + 1)[s(k), f(s(k))),

N-1 N-1
then the average cost({a(k)};%,) = J(f) = ]&@w% > E(c(s(k),a(k))) = Nl@@% > E(c(s(k), 1))
satisfies = =0
J(f)<T

According to Lemma 4.1, we have the following theorem.

Theorem 4.2:If there exist a constant; and a functiom:,, such that for aley. . p, (k) € R,

p2+ ha(ei .o (®) Zmin { g . ro (I3 + Ens (Aekrro(k)) s A+ En (0) } (18)
and

L it ek proI% + s (Aekrro(R)) = A+ Eny(0) OF e p o (k)% > 0;
a(k) = (19)

0, otherwise,
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then the average cost({a(k)}?2,) defined in equation (7) satisfies
J({a(k)}zy) < J = p2 + trace(QZ).

Proof: Consider the average cogt described in (12). The corresponding Markov process ir®bhe state
exr ro» the actiona, the cost functiore,,, and the transition probability described in (16). According to Lemma
4.1, if there exists a constapt, a functionh., and a deterministic stationary rufesuch that for alkey 1. (k) €
R™,

p2 +hafeicpo(k) = min Len(eger no(k),a(k) + B (ha(eger polk + Dlexcro (k) a(k))) } - (20)

:Cn(el_{F,RO(k)v +E (hQ(eI_(F,RO(k + 1)|eI_(F,RO(k)a f)) ) (21)

then J,,(f) < p2, and from equation (11), we hav& f) < ps + trace(QZ).
From the dynamic behavior afy . p, described in (15) and the new cost functionin (10), the right hand

side of (20) is rewritten as
min {”el_{F,RO(k)HQZ + Eh, (Ael_(F,RO(k)) s A+ En, (0)}
—cn(erprok) f)+E (hg(e;{RRO(k +1)leg pro(k), f)) .
The equality holds if

L it ek rroI% + s (Aeirro(k)) 2 A+ Eny(0) OF e p po (k)% > 6;

0, otherwise.

a(k) = f(eI_(F,RO(k)) =

[
Next, we want to effectively search fgr, and ho such that equation (18) is satisfied. The basic idea behind
equation (18) is thaps + ha(ex p ro(k)) is greater tharley p po (k)% + En, (Ael_(F,RO(k)) if exrro(k) is
in a neighborhood of the origin\ + Ej,, (0) otherwise. Based on this idea, we have the following complla
Corollary 4.3: Given positive constants, dy, d2 and positive integerg, 6; < ¢ andds. If there exist a constant

p2, and a positive definite polynomial functidn such that the following inequalities hold for @U}F,Ro(k) e R”,

p2+ ha(ek . ro(K)) Zllexpro(0)I% + Bna (Aekrpo(h))

||e;<FRo(k)¢HzZ —d
— (llex m.ro®)IIZ + B (A€ pro(k) - ’
( KF,RO Z 2 ( KF,RO )) dl + ||eKF,RO(k)¢_51H2Z

||e;(F,RO(k)¢|‘2Z —d

d2 + [leg g po (k)P T 1z

(22)

p2 + ha(exp ro(K)) ZA + Eny (0) + (A + En, (0))

(23)
wheres? = [s? s7 ... s?]7, anda(k) satisfies equation (19), then

T({a(k)}io) < T = po + trace(QZ).
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Proof: If He;(F_’RO(k)‘f’H?Z —d <0, from equation (22), we have
p2 + ha(exp ro(k)) ZHe;{F,RO(k)HQZ + Eh, (Ae;{F,RO(k))

2 min { ”eI_{F,RO(k)HZZ + Eh, (AeI_(F,RO(k)) s A+ Ep, (0)} .
If llex r ro(k)?% — d > 0, from equation (23), we have
p2 + ha(egr ro(k)) =X+ Ep, (0)
2 min { ”eI_{F,RO(k)HZZ + Eh, (AeI_(F,RO(k)) s A+ Ep, (0)} .
Therefore, equation (22) and (23) guarantee equation (ir8£,llfe;<F7RO(k) € R™. According to Theorem 4.2,
we haveJ ({a(k)}32,) < J = p2 + trace(QZ). [ |
Remark 4.4:Equation (22) and (23) can be transformed to a semi-defindgram, and hence efficiently solved
by the SDP solvers (SeDumi or SDPT3).

Equation (22) and (23) can be transformed to the following twequalities (which will be shown to be

polynomial).
(2 + haleip ro(®) = lekrnoMWIIE = Bra (Aekppo(k D(@+wmwo -w)

+ (lek r.roMI% + Bna (Aekrro®) ) (lekrro®)?l3 —di) >0 (24)
(b2 + haexr.ro (k) = A = Eny(0) (ds + ez, ro (k) +w\)

+ (A + Eia(0) (dh = llegpno(h)?l%) > 0, (25)

Sinceh, is a polynomial, according to the Isserlis’ theorérf23], £y, (AeI_(F,RO(k)) is also a polynomial, and
the corresponding coefficients are linear combinationshefdoefficients of,. So, the two inequalities (24) and
(25) are polynomial inequalities whose coefficients aredincombinations of the coefficients bf.

With the sum of squares (SOS) decomposition of multi-vdeigimlynomials, the two polynomial inequalities
(24) and (25) can be transformed to a semi-definite progreehhb(s) = vazl a;s™, wherea; € R, s € R”,

a; € N" ands® =s{"" -...-s,"". Both (24) and (25) can be expressed as
M

g(s) = Zcisﬁi >0,

i=1
wherec; is a linear combination ofa;}iL,, and3; € N". g(s) > 0 is guaranteed, if there exist polynomials
f1(8), ..., fm(s) such that

s)=_fi(s)

isserlis’ theorem:] If(x1,. .., z2y) is @ zero mean multivariate normal random vector, then
E(xix2- - ,x2n) = Z H E(zizj),
E(z1z2 -+ ,x2n—1) =0,
where the notatiory . [ means summing over all distinct ways of partitioning, . . ., z2, into pairs.
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10

This SOS condition is equivalent to the existence of a p@siiemi-definite matrixG such that
g(s) =51 Gs,

wheres is some properly chosen vector of monomials véth= s where~; € N" [24]-[26]. At this point, the
SOS decomposition of the polynomig(s) is the same as finding a symmetric matfixsuch that
Z Gij=cp,forallk=1,..., M,
Yi+; =Bk

G > 0.

This is a semi-definite programm, and can be efficiently sblg SeDumi or SDPT3. SOSTOOLS provides a
convenient tool which automatically converts polynomia¢qualities to SDP, calls the SDP solver (SeDumi or
SDPT3), and converts the SDP solution back to the solutiotheforiginal polynomial inequalities. For detail
about SOSTOOLS, please check [27].

Remark 4.5:There ares parameters to be chosen in equation (22) and (23). Accotdiogr experience, Larger
¢, 61 and oo provide smallerps, but consumes more computation effort. $9,6; and d, can be chosen to be
large enough such that the computation time is not too ldagand d» can be chosen such thdt = 5004 and
ds = d. At this point, the only undetermined parametet/jsand we will use DIRECT optimization algorithm [28]
to searches for thé which provides the smallegt.

The DIRECT optimization algorithm is an algorithm based dpskchitzian optimization without knowing the
Lipschitz constant [29]. The DIRECT optimization algorithcan solve global optimization problems with bound
constraints and a real valued objective function withowt kmowledge of the objective function gradient. The
accompanying MATLAB program, directc.m, can be found in][28

Next, we provide an algorithm to compute the suboptimal etggger and the upper bound on the suboptimal
cost.

Algorithm 4.6 Compute the suboptimal event trigger and the upper bound on the suboptimal cost):

1) Initialization

a) Provide system parameters; C, W, V, L, Q, Z, and \.
b) Provide parameters in equation (22) and (28)d,, andds.
¢) Initialize an SOS program gwog using toolbox ‘SOSTOOLS'.

« Declare scalar decision variablgs, si, ..., s, (s = [s1, ..., sa]T denote%}FﬂRO(k:) in equation
(22) and (23).
« Declare a polynomial variabléi,.

» ComputeEy,(0) and E}, (As) using the Isserlis’ theorem.
2) Use DIRECT optimization algorithm to search bt which provides the smallegi.

a) Fix the initial searching interval to 6, 10)]. Let bound = 10A.
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11

b) Call functionsolve poly_inequalityto computep, and ko at the pointd = 10A. If there is no feasible
solution, then use the bisection method to find the lardes{0, 10\] which provides a feasible solution.
Let bound be this largest! providing a feasible solution.
c) Search ford* usingdirect function (given in [28]) with the function handle to lselve poly_inequality
and the searching interval to B, bound].
3) Call functionsolve poly_inequality to computep, and ko at the pointd*. Compute the suboptimal event
trigger: s Zs + Ep,(As) — A — Ep,(0) > 0, and the upper bound on the suboptimal cest+ trace(QZ).
4) Return.
solve_poly_inequality function:
[p2, ha] = function solve poly_inequality(d, \, ¢, 61, 82, prog, pa, s, ha, En,(0), En,(As))
1) Initialize parameters in equation (22) and (28):= 500d anddy = d.
2) Solve the following problem using the toolbox ‘SOSTOOLS’

min po (26)
subject to: (24) and (25)

3) Get solutions from the SOS prograrog. If problem (26) is feasible, then assign the valuergfand i, to
p2 and ho, respectively. Otherwise, Lgt, = \ andhy = 0.
4) Return|py, hs].
At this point, we can effectively compute the suboptimalreévgigger and the upper bound on the suboptimal
cost. A natural question is how good this suboptimal evaggér is. This can be characterized by the difference
between the upper bound on the suboptimal cost and the loaterdbon the optimal cost. The next section will

provide an algorithm to compute a lower bound on the optinat.c

V. COMPUTE A LOWER BOUND ON THE MINIMUM COST

This section first states an existing result about a lowenban the minimum cost for a general Markov control
process, then provides the main theorem about the lowerdounthe minimum cost for the state estimation
problem described in Section Il, and finally gives an aldnitto compute the lower bound on the minimum cost.

Lemma 3 of [10] provides a lower bound on the minimum cost fareaeral Markov control process, here we
state this lemma without proof.

Lemma 5.1:Suppose in a Markov control processgk) € S is the state wher8 is the state space(k) € A is
a static state-feedback action whekeis the action setg is the cost function, and) is the transition probability

of s(k+ 1) conditioned ons(k) anda(k). If there exists a constapt and a functiori;, such that for alls(k) € S

J+ hi(s(k)) < min {c(s(k), a(k)) + / hi(s(k+1))Q(s(k + 1)|s(k),a(k))ds(k + 1)} ,

a(k)EA S
then the minimum cosf™ = min 4y}  imy oo + fo;ol E (c(s(k),a(k))) satisfies

J* > J.
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Based on Lemma 5.1, we have the following theorem.

Theorem 5.2:If there exists a constapt; and a polynomial functiork,, such that for alky . po (k) € R™
p1+ hi(egp ro(k)) SHeI_(F,RO(k)HQZ + Eh, (AeI_(F,RO(k)) ) (27)
p1+ hy (e}_{F7RO(k)) <A+ Ehl (0)7 (28)
thenJ* > J* = p1 + trace(QZ).

Proof: According to Lemma 5.1, for the optimal problem describeéduation (14), if there exists a constant

p1 and a functiom, such that for aley . po (k) € R”

p1+ hl(eI_{F,RO(k)) < a(kl)léi{%_’l} {Cn(el_(F,RO(k)’ a(k)) + E(hl(ei_(F,RO(k + 1))|€I_(F,R0(k)v a(k))} 5

thenJ* > p;. From equation (13), we havé* > p; + trace(QZ).
From the dynamic behavior afy ;. ,, described in (15) and the new cost functignin (10), the right hand

side of (20) is rewritten as
pr+ M (e p.ro(K) < min { e nro(®I% + Eny (Ackpro(K)) A+ Eiy (0)}

L+ h(ekpro®) < ek pro®)% + Bu (Aekrro(®))

p1+ hl(e;(F,RO(k)) < X+ Ep, (0)

So, we have Theorem 5.2. [ |

=

Remark 5.3:With the same argument in Remark 4.4, we can see that equ&fiyrand (28) can be transformed
to a semi-definite program, and hence efficiently solved.tN&g will give an algorithm to search for, and h;.
Algorithm 5.4 Compute a lower bound on the minimum cost):
1) Initialization
a) Provide system parameters; C, W, V, L, Q, Z, and \.
b) Initialize an SOS program gwog using toolbox ‘SOSTOOLS'.
« Declare scalar decision variablgs;, s1, ..., s, (s = [s1, ..., sn]T denote%;(F,Ro(k) in equation
(27) and (28).
« Declare a polynomial variablét; .
o ComputeEy, (0) and Ey, (As) using the Isserlis’ theorem.

2) Solve the following problem using the toolbox ‘SOSTOOLS’
min —p;
subject to: (27) and (28)

3) Get solutions ofp; and h; from the SOS prograrprog, and compute the lower bounfl on the minimum
cost asJ* = py + traceQZ.
4) Return.
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computation method degree, | elapsed time| lower boundJ*
3 0.14s 0
Algorithm 5.4 5 0.094s 1.35
8 0.375s 1.35
[11] 2 x 0.46
[13] 2 X X

TABLE I: The lower bounds on the optimal cost of the stableteys x indicates no feasible solution or not

available in the prior work.

VI. MATHEMATICAL EXAMPLES

This section uses Algorithm 4.6 and 5.4 to search for a sumaptevent trigger, an upper bound on the
corresponding suboptimal cost, and a lower bound on thenapttost for two linear time invariant (LTI) systems.
The first LTI system is a marginally stable system, and thersg¢d Tl system is an unstable system. We would
like to compare the upper bound on the suboptimal cost andacter bound on the optimal cost computed
from our algorithms with those computed based on the priorkwWb1]-[13]. The two examples were run on a
Microsoft Windows XP system witR.99 GHz CPU and3.37GB of RAM. All of the source files are available at

www.nd.edutlli3/projects.html.

A. Stable system

Consider a marginally stable system as below

10
z(k+1)= (k) + w(k)
0 1
y(k) =z (k),
0.03 —0.02 2 1
with covariance matritt = , the weight matrixZ = , and the communication price
—0.02 0.04 1 2

A = 20. This is the same example used in [11], and we would like topame the results in this paper with the
results in [11] and [13].

Algorithm 5.4 was first used to compute a lower bouhdn the minimum cost. In this algorithrh; was set to
be a polynomial which contained all possible monomials wehdsgrees were no greater théryree,. We varied
degree, to see how the lower bound on the minimum cost changes with respect to the degréa oThe results
are shown in Table I.

Algorithm 4.6 was then used to compute the suboptimal evegger and the upper boundl on the suboptimal

cost with¢ = 6 andd; = d2 = 4. In this algorithm,h, was set to be a polynomial which contained all possible

monomials whose degrees were even and no greaterithane,. We varieddegree,, to see how the upper bound
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computation method degree, elapsed time for solve poly_inequality | upper bound? difference Actual cost
operating function evaluation betweenJ and
solve poly_inequality times the largest/*
function

2 1.2s 13 6.75 5.40 ~ 5.1
4 1.7s 13 6.07 4.72 ~ 1.86
Algorithm 4.6 6 2.8s 13 2.14 0.79 ~ 1.70
8 4.4s 13 1.85 0.5 ~ 1.56
10 7.3s 15 1.79 0.44 ~ 1.56
[11] 2 x 1 2.74 2.28 ~ 1.56
[13] 2 x 1 3.78 x ~ 1.4

TABLE II: The upper bounds on the suboptimal cost of the stayistem.x indicates no feasible solution or not

available in the prior work.

on the suboptimal cost changes with respect to the degrkee dloreover, to characterize how good the suboptimal
event trigger is, we computed the difference between theeuppund.J on the suboptimal cost and the largest
lower boundJ computed from Algorithm 5.4, and compared this differendtwhe prior work [11] and [13]. The
results are given in Table Il. From the fourth column of Tahleve see that as the degree fof increases, the
lower boundJ™ on the minimum cost increases. When the degrek, a6 5, the lower bound/* on the minimum
cost increases t0.35, which is about3 times of the lower bound on the minimum cost given by [11].

From the fourth column of Table II, we see that as the degrég afcreases, the upper bouddn the suboptimal
cost decreases. As the degreehgfincreases ta0, the upper bound on the suboptimal cost decreasds7f
which is the smallest among all the upper bounds on suboptiosds provided by this paper, [11] and [13]. When
the degrees of; andh. are5 and10, respectively, the difference between the upper bound erstiboptimal cost
and the lower bound on the optimal cost is ofily4 , which is aboutl /5 of the difference provided by [11].

After obtaining a suboptimal event trigger, we applied therg trigger to the marginal stable system, ran the
system for3000 steps, and computed the actual average godthe results are given in the last column of Table
II. We find that as the degree &f, increases from to 10, the actual cost only decreases by the amoumit&fbut
the computational effort to evaluate the suboptimal eveggér increases a lot. So, when applying a polynomial
event trigger to a control system, we should use the polyabavient trigger with lowest degree while providing

acceptable upper bound on the suboptimal cost.
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computation method degree, | elapsed time| lower boundJ*
3 0.17s 1.82
5 0.39s 27
Algorithm 5.4 7 0.56s 2.72
9 » »
13 0.78s 3.23
[13] 2 % N
[12] 2 % 9

TABLE Ill: The lower bounds on the optimal cost of the unstablstem.x indicates no feasible solution or not

available in the prior work.

B. Unstable system

Next, we consider an unstable system.

z(k+1)= z(k) + w(k)

02 0 10
with the covariance matri¥t’ = and V = 0.3, the weight matrixZ = , and the

communication price\ = 5.

With the same steps as we did for the stable system, we cothpgelower bound/* on the minimum cost
while varying the degree di; (see Table Ill), the upper bounfion the suboptimal cost while varying the degree
of hy (see Table 1V), and the difference betweémnd the largest* (see Table 1V). These results were compared
with the results given by [12] and [13].

From Table 1ll, we see that among all the existing work, ot tpaper provides a way to compute the lower
bound on the minimum cost for unstable systems, and thisrilbeend.J* increases as the degree/qf increases.
When the degree dfi; increases td 3, the lower bound on the minimum cost increases.is.

From Table IV, we see that the upper bousdn the suboptimal cost decreases as we increase the degree of
ho. When the degree df, increases td0, J decreases t8.79 which is about).7 and0.5 times of theJ provided
by [13] and [12], respectively. When the degreeshpfand h, are 13 and 10, respectively, the difference between
the upper bound/ on the suboptimal cost and the lower bouwitl on the minimum cost i$.56 which is about
0.17 of J*.

After obtaining a suboptimal event trigger, we applied tlers trigger to the unstable system, ran the system
for 3000 steps, and computed the actual average dogthich is given in the last column of Table 1V. We find

that as the degree df; increases fromt to 8, the actual cost remains almost the same. When the degrke of
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computation method| degreea elapsed time for solve poly_inequality | upper bounds difference actual cost
operating function evaluation betweenJ and
solve poly_inequality times the largest/*
function

2 1.2s 15 6.83 3.60 ~ 3.73
4 3.4s 13 6.70 3.47 ~ 3.30
Algorithm 4.6 6 5.58 13 4.40 1.17 =~ 3.30
8 7.1s 11 4.34 1.11 ~ 3.29
10 8.5s 15 3.79 0.56 ~ 3.47
[13] 2 x 1 5.57 x ~3.24
[12] 2 x 1 7.69 x ~ 5.4

TABLE IV: The upper bounds on the suboptimal cost of the unlstaystemx indicates not available in the prior

work.

increases fron® to 10, the actual cost even increases by the amoufti#. So, when applying a polynomial event
trigger to this control system, the polynomial event triggeould be chosen such that it has the lowest degree with

acceptable upper bound on the suboptimal cost.

VII. APPLICATION INA QUANSER® 3DOF HELICOPTER

This section applies the suboptimal event trigger compiitesh Algorithm 4.6 to a8 dimensional nonlinear
3DOF helicopter. Subsection VII-A introduces the nonlingedel of the 3DOF helicopter, linearization of this
nonlinear model and the controllers we will use for the 3D@kdopter. Subsection VII-B explains how we design

the suboptimal event triggers for this 3DOF helicopter. Ekperiment results are given in subsection VII-C.

A. QUANSER® 3DOF Helicopter

| T, o la 0.67 m €0 -0.136 rad
I T
'y W ooy AL |0, | 0177m || o | 0.18kgm?/s
\JIJ' e Motor 2
5 “@@\_,/ L 0.48 m ¢p | 0.003kg.m?/s
] /y\' d 0.04 m ¢y | 0.25kg.m?/s
T -
b A e M | 1.4611kg|| ¢,, | 0.003kg.m?/s
pivol@aZ _ . -
'? horizontal axis m 2 kg J€ 35 kg.m2
I
ﬁ Myf | 0.29 kg Jp 0.01kg.m?
Table top
g 9.8m/s* || J, 4 kg.m?

Fig. 2: Schematic of the 3DOF helicopter. TABLE V: 3DOF helicopter parameter values
Figure 2 gives the basic schematic of the 3DOF helicoptee. 3DOF helicopter consists of three subsystems:
elevation €), pitch (p) and travel {). Elevation is the angle between the main beam and the hd&kaxis, pitch

is the angle that the motor beam moves around the main beahtrarel is the angle that the main beam moves
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around the vertical axisl’y andT; are the front and back thrusts generated by the DC motorsofjactive is to
control the 3DOF helicopter to follow a commanded elevatipmnd a commanded travel raie.

The system dynamic is described by the following equati@g. [

Je€m = — \/((mlw - Mla)g)Q + ((m + M)gd)Q Sin(em) + Tear cos(p)(la + dtan(em + 60)) — Ce€m,
Jpﬁ :Tcyclh — ]\/[bfgd sm(p) — Cpp + C'yp;y7

J ¥ == 1Teorsin pcose — ¢y,

and the elevation, pitch and travel rate can be directly omealswith the measurement noises to be white zero
mean Gaussian, and the variances of the measurement naese85 x 1076, 1.857 x 1076, and1.857 x 1075,
respectively.

In this model,¢,, = ¢ — ¢, m is the gross counter weight at the tallf is the gross weight at the head,
My = mp+my is the sum mass of the two motots, is the length from the pivot to the tail whilg is the length
from the pivot to the head] is some adjusted length with respect to the elevatipis, the gravity acceleration,
Teot =Ty + Ty andT,y. = T, — Ty are the collective and cyclic thrustsg, c,p, c4,7, ¢,y are the drags generated
by air due to the change of elevation, pitch and travel, dndJ, and J, are the inertia moments for elevation,
pitch and travel respectively. The parameter values arengiv Table V.

Neglecting the non-dominant terms and under the assumhatsin(p) =~ p andsin(e,,) = €,,, the model of

3DOF helicopter can be linearized as

Jegm = — \/((mlw — Mla)g)2 + ((m + M)gd)2€m - Ceém + lauem (29)
Jop == Mypgdp — cpp = cyp7 + lntyp (30)
Sy == eyy = lauy, (31)

whereu,,, , u, andu., are the control inputs for elevation, pitch and travel sshays satisfying

Ue,, =L col COS(p)a (32)
Up :TcyCa (33)
Uy =Teo1p cos(€). (34)

The control laws of these control inputs are

Ue,, =[7 44 68] [/0 em(8) — €r(8)ds em(t) — er(t) ém(t)]T, (35)
=135 30 20)L [ 5) = pr(5)ds p(6) = o) 0", (36)
uy =[25 ][ (t) — 7 (t) A1) = ()], 37)

wherep,. is the reference pitch signal which will be explained later.
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*w(k)
v(k)

Xir e, (K) N
€, k
c, (k) Kalman Eventdetector | _ _ _ .| ___. . __ Remote observer Tro.q, (k)
filter in elevation subsystem i h o glevathon >
b (s0) subsystem
1
"
. controller
3DOF helicopter
elevation subsystem
X g, pr (K) %
(k) G Remote observer X 0,90 (k)
P Kalman Event detector it
| - N F——— = for pitth-travel  ——
filter in pitch-travel subsystem| - ! subsystem
(k) B : Xxr,pe(Spr)
} RO, pT (k)
’ 0 Controller subsystem
Remote observer —_—
in pitch-travel subsystem
pitch-travel subsystem

T..T

colr L eye

Fig. 3: Structure of event triggered 3DOF helicopter

To compute the collective and cyclic thrusts,; and T, we first compute the control inputg,,, u, andu,

according to equation (35), (36) and (37) respectively, #éweth computel.;, 7., and p, based on the following

equations which are derived from equation (32), (33 and.(34)

Tcol :Uem/COS(P)a

Tcyc =Up,

pr =t~/ (Teor cos(€)).

B. Design of the event triggered 3DOF helicopter.

From equation (29), (30) and (31), we can see that the heécagystem is decomposed infodecoupled
subsystems: elevation subsystem and pitch-travel sudragst-or each subsystem, we will design a Kalman filter,
a remote observer and a suboptimal event trigger. The ateictf the whole closed loop system can be found in
Figure 3.

1) Design of the elevation subsysteifhe elevation subsystem is discretized with pefidid5s, and the discrete

model of the elevation subsystem is

1 0005 125e—5
3.988¢ — 9
T, (k+1)=1| 0 1 0.004999 | =, (k) + Ue,, + We,,
2.393e — 60.000957
0 —0.001956  0.9997

Ye,, (k) = Te,, (k) + Ve,, s
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solve poly_inequality

solve poly_inequality
function evaluation

upper boundJ

lower bound on

minimum costJ*
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function times
elevation =~ 40s 21 0.20 0.076 2.65
pitch-travel =~ 630 21 0.67 0.16 4.18

TABLE VI: Upper bound on the suboptimal cost and lower boundttee minimum cost

wherez,, (k) = | 0-005K em(8)ds €,(0.005k) é,,(0.005k)]7, the variances ofv.,, andwv,,, arediag([8e —3 le —
12 3.1e — 4]) anddiag([01.86e — 6]), respectively.

By solving the discrete linear Riccati equation (2), we hthe Kalman filter gain as
1 0.0016

L., =

0 0.3563

0 10.77

Algorithm 4.6 was, then, used to compute a suboptimal eveggdr. Let the weight matri¥Z = diag([1 6 1)),
A=1,¢=2,6; =1, 02 = 1. hy was chosen to be a polynomial which contains all possibleamials whose
degree is even and no greater than

A lower bound on the minimum cost was computed using Algarith.4. In this Algorithm,h; was chosen to
be a polynomial which contains all possible monomials whiksgree is no greater tha.

The related results about the upper bound on the suboptiostland lower bound on the minimum cost are
given in Table VI. From the last column of this table, we findttthe upper bound on the suboptimal cos2.i$5
times of the lower bound on the optimal cost, which is congiddo be acceptable.

2) Design of the pitch-travel subsysteiith the period to be).005s, the discrete model of the pitch-travel

subsystem is given below.

[ 1 0.005 1.249e -5 0 6.247¢—11 ] [ 3.686e —7 —1.308e — 14 ]

0 0.9999 0.004996 0 3.748e —8 0.0002211 —1.046e — 11
Tor(k+1)=1| 0 —0.05679 0.9984 0 1.499¢ — 005 | 7, (k) + 0.08843 —6.277e — 9 v

0 0 0 1 0.004999 0 —2.094e — 6 v

i 0 0 0 0 0.9997 | i 0 —0.0008374 |

+ wpr

[ 1 0 0

pr (k) = 2 () + Uy

01 0

wherez,- (k) = [[29° p(s)ds p(0.005k) 5(0.005k) 7(0.005k) #(0.005k)|T. The variances of,. andu,, are

diag([le —3 le — 12 2e — 4 1le — 12 5.4e — 4]) anddiag([0 1.86e — 6 1.86e — 6]), respectively.
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sampling method delay: s | elevation | pitch-travel | total
polynomial event trigger 1 53 54
periodic triggering 0005 1 300 301
polynomial event trigger 0.01 1 48 49
periodic triggering 1 300 301
polynomial event trigger 0.02 1 2422 2423
periodic triggering 1 300 301

TABLE VII: Transmission times using event triggering andipdic triggering with different delays.

The Kalman gain can be computed by solving the discrete Hildecati equation (2). For the pitch-travel

subsystem, the Kalman gain is

1 0.0015 0

0 0.3177 0
L., =10 868 0

0 0 0.4083

0 0 13.837

We, then, used Algorithm 4.6 to compute a suboptimal evégder. Let the weight matri¥ = diag([16 11 6)),
A=1,¢=2,6, =1, 02 = 1. Here, we chosé, such that there was no cross terms between the pitch state and
the travel state, and all possible monomials whose degrseswen and no greater thdnwere included.

A lower bound on the minimum cost was also computed using #tlym 5.4. In this algorithmp; was chosen
such that it contained all polynomials, except cross tergta/ben the pitch state and the travel state, whose degree
is no greater thaB. The related results about the upper bound on the suboptiosaland the lower bound on the
minimum cost is shown in the second row of Table VI. From trst lumn, we see that the upper bound on the

suboptimal cost igl.18 times of the lower bound on the minimum cost, which is congddo be acceptable.

C. Experimental results for the event triggered 3DOF heiteo and periodically triggered 3DOF helicopter

We first ran the event triggered 3DOF helicopter system9fbiseconds, and then ran a periodically triggered
3DOF helicopter system fo90 seconds. When we ran the periodically triggered 3DOF hpl@osystem, we
adjusted the periods of the elevation subsystem and pitsfeltsubsystem until the performance was similar to the
performance of the event triggered 3DOF helicopter.

1) Transmission times and performance with05s delay: The transmission times for both event triggered and
periodically triggered helicopter are shown in Table Vh. this experiment, the transmission delay is set to be
0.005s, from the last column, we can see that the total transmid#ioes of event triggered helicopter is less than

0.2 times of the transmission times of the periodically trigagehelicopter.
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Fig. 4: inter-sampling intervals of event triggered 3DOHRidupter.
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Figure 4 shows the inter-sampling intervals of even triggenelicopter withz-axis indicating time andj-axis
indicating inter-sampling intervals measured by secorgt. us first look at the inter-sampling intervals (circles)
of pitch-travel subsystem. The most frequent transmissmgturred during the interval$5s, 20s], [32s, 42s] and
[65s, 60s]. Compared with the middle plot of Figure 5, we see that thetesvals are those when the travel subsystem
was in transient processes. We, then, look at the inter{sagniptervals (dot) of elevation subsystem, and find that
there was only one transmission in the elevation subsysdtkrtice that the elevation subsystem is stable and only
coupled with pitch subsystem (see equation (29)). So, ifréimeote state estimate of pitch is accurate enough, the
remote state estimate of elevation will be accurate enounghtlzere will be very few transmissions in the elevation
subsystem.

The system performances are shown in Figure 5. The top ptbeisystem performance of elevation subsystem,
with z-axis indicating time andy-axis indication elevation measured by rad. We can see thetdriggered
helicopter (dotted line) and periodically triggered hefiter (solid line) has similar elevation performance, aathb
of them track the commanded signal (dash dotted line) withllsavershoot and no steady state error. The middle
plot is the performance of travel rate measured by rad/d) widxis indicating time and;-axis indicating travel
rate. From the middle plot, we see that event triggered beler (dotted line) and periodically triggered helicopter
(solid line) has similar performance, and both of them triek commanded signal (dash dotted line) with small
overshoot and no steady state error. The bottom plot is th@meance of pitch measured by rad, withaxis
indication time andy-axis indication pitch angle. We see that the event trigddrelicopter (dotted line) and the
periodically triggered helicopter (solid line) have siamilpitch performance, and both of them only have small
oscillation. Overall, we can say that the event triggerelicbpter and the periodically triggered helicopter have
similar performance.

2) Transmission times and performances witiils and 0.02s delay: In this experiment, we first set the
transmission delay to b&01s, and then set the transmission delay t@92s to see how the system performances
of event triggered helicopter and periodically triggeredidopter decay with respect to transmission delays.

In the presence di.01s delay, the system performances of both event triggered=3elicopter and periodically
triggered 3DOF helicopter are shown in Figure 6. The top @dhe performance of the elevation subsystem, the
middle plot is the performance of travel rate, and the botpdat is the performance of pitch. In these three plots,
solid lines are performances of periodically triggereddugiter, dotted lines are performances of event triggered
helicopter, and dash dotted lines are commanded signalm Hre three plots of Figure 6, we can see that in the
presence 00.01s delay, the performance of event triggered helicoptemislai to the performance of periodically
triggered helicopter, and both of them tracked the commauettevation and travel rate with small overshoot and no
steady state error with small oscillation in the pitch an§lew, let us look at the transmission times of both event
triggered helicopter and periodically triggered heli@pThe transmission times are shown in 3hé and4th row of
Table VII. We see that compared with the periodically triggehelicopter system, the total transmission times in the
event triggered helicopter system is ab0w of the total transmission times in the periodically trigggihelicopter

system. Therefore, we conclude that when the transmisstay ds 0.01s, the event triggered helicopter and the
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Fig. 6: System performance withO1s delay Fig. 7: System performance with02s delay

periodically triggered helicopter achieved similar penfiances while the event triggered helicopter transmittad |
than the periodically triggered helicopter.

When the transmission delay(9)2s, the system performances are shown in Figure 7 with ddtied indicating
performances of the event triggered helicopter, solid lim#icating performances of the periodically triggered
helicopter, and dash dotted line indicating commandedadsgThe top two plots are the performances of elevation
and travel rate, respectively. We see that event triggeeiddpter and periodically triggered helicopter had samil
elevation and travel rate performance. While both eveggeied system and periodically triggered system tracked
the commanded elevation with small overshoot and no stetady srror, there existed steady state errors in travel
rate for both event triggered system and periodically &igg system. The bottom plot shows the performances of
pitch. we can see that the event triggered helicopter hadlenmescillation in pitch than the periodically triggered

helicopter. The transmission times of event triggeredcbelier and the periodically triggered helicopter are given

January 23, 2013 DRAFT



24

in the 5th and6th row of Table VII. We see that in event triggered system levtiie transmission times of elevation
subsystem remained at the same level, the transmissios tiféne pitch-travel subsystem increase2#@2 from

54 (0.005s delay) and49 (0.01s delay). This is because the pitch angle kept oscillatingickv means that the
pitch subsystem was always in a transient process. So, tble-tpavel subsystem kept transmitting information
during the whole running horizon. From Table VII, we see tbagnt triggered helicopter transmitted more than
the periodically triggered helicopter, and the total traission times of event triggered helicopter is ab®uimes

of the transmission times of the periodically triggeredidagter. From Figure 7 and Table VII, we conclude that
when the transmission delay (s02s, the event triggered helicopter had better performanae the periodically

triggered helicopter, but consumed more communicatioowes than the periodically triggered helicopter.
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