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Abstract— Regime shifts refer to sudden changes in the
structure or function of an eco-system due to external forces
on the system. Such shifts arise because these systems have
multiple equilibria so external disturbances may drive the state
between different regions of attraction. Examples of such shifts
include the shift in eutrophic state of shallow lakes in response
to nutrient loading as well as the collapse of fisheries in response
to the introduction of invasive species. A key measure of an eco-
system’s resilience to such shifts is measured by first passage
times (FPT) between the basins of attraction for different
equilibria. Prior work in eco-system management has assumed
low-dimensional linearized models driven by Brownian motions.
This paper uses sum-of-square (SOS) programs to bound FPT
probabilities for more complex nonlinear population processes
in which the primary disturbance is a Poisson jump process.
The paper uses this approach to design management policies
controlling the level of invasive species in lake systems.

I. INTRODUCTION

Regime shifts [13] refer to the abrupt change in an eco-
system’s state as a result of external disturbances. Such shifts
arise when the underlying system has multiple equilibria and
when disturbances drive the system state between the basins
of attraction for competing equilibria. These conditions are
nearly always present in an eco-system’s population pro-
cesses. In many cases, regime shifts occur with great speed as
a result of slow changes in the environmental conditions. A
prime example of this is seen in the eutrophication of shallow
lakes caused by nutrient loading [14] where a previously
clear lake with a high level of biodiversity abruptly shifts to
a turbid state whose biota is dominated by algae. Another
example can be found when invasive species invade an
existing eco-system, thereby causing abrupt declines in those
species that have historically occupied the system [12]. Each
of these shifts has the potential to greatly disrupt the services
that these eco-systems provide to society. There is, therefore,
considerable interest in finding ways to detect such shifts and
to develop policies to better manage the impact these shifts
have on eco-system services [4].

Eco-system resilience may be measured by those dis-
turbance intensities that trigger a shift to an alternative
equilibrium [6]. It may also be measured by the time it
takes a system to return to normal after a given disturbance
[4]. For either definition, one must realize that disturbances
are usually not one-time events. Eco-system disturbances are
better characterized as stochastic renewal processes that de-
liver a sequence of ”shocks” to the system. A good example
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of this is found in random storm events that deliver pulses
of nutrient rich water to downstream receiving waters. For
such stochastic disturbances, one should use a probabilistic
measure of resilience.

One appropriate measure of resilience is given by a
system’s first passage times. These passage (a.k.a. exit or
stopping) times are random variables representing the first
time when the system state first enters the region of at-
traction for a competing equilibrium. This paper presents
computational methods for characterizing first passage times
of regime shifts in ecological systems. The main result uses
sum-of-square (SOS) programming [10] to compute first
passage times for jump dynamical systems. SOS programs
have already been proposed as a tool for analyzing stochastic
reachability problems in cellular biology [3]. This work
extends the earlier methods in [9] to eco-systems modeled as
jump dynamical processes. We then demonstrate how these
results can be used to better manage invasive species in a
specific ecological system [2].

The remainder of this paper is organized as follows. Jump
processes and first passage times are reviewed in sections
II and III, respectively. Section IV presents the use of sum-
of-square programming to characterize first passage times of
jump processes. Section V illustrates how these tools may
be used to manage invasive species in lake eco-systems.
Notational Conventions: Let Z and R denote the set of
integers and real numbers, respectively. Let Z+ and R+

denote the set of positive integers and non-negative real
numbers, respectively. Let Rn denote the n-dimensional
Euclidean vector space. Given a vector x ∈ Rn, we let xi
denote the ith component of that vector. A continuous-time
random process, x, will be denoted as {x(t) : t ∈ R+}. The
probability and expectation of this process will be denoted
as P[x] and E[x], respectively. If {x(t)} has distribution F(x),
then its nth moment is Mn =

∫
∞

0 xndF(x).
An n-dimensional multi-index is an n-tuple, α ≡

(α1,α2, · · · ,αn) of non-negative integers. The absolute value
of a multi-index α is defined as |α| = ∑

n
i=1 αi. Given a

vector x ∈ Rn with components xi (i = 1,2, . . . ,n) and an
n-dimensional multi-index α , the αth power of x is defined
as x[α] ≡ xα1

1 xα2

2 · · ·xαn
n . Let α!≡ α1!α2! · · ·αn!. The sum or

difference of two multi-indices in Zn
+ is the component wise

sum/difference of the indices. In a similar way, we say that
α ≥ β if and only if αi ≥ βi for i = 1,2, . . . ,n. The binomial
coefficient of α and β is defined as(

α

β

)
=

(
α1

β1

)
· · ·
(

αn

βn

)
=

α!
β !(α−β )!

Let V (·) :Rn→R be a real valued function over Rn. Given an



n-dimensional multi-index α , the αth order partial derivative
of V is defined as ∂ [α]V = ∂

α1V
∂x1

∂
α2V
∂x2

. . . ∂ αn

∂xn
. The multi-index

binomial theorem states

(x+ y)[α] = ∑
0≤β≤α

(
α

β

)
x[α−β ]y[β ]

It can be shown that

∂
[α]x[β ] =

{
β !

(β−α)! x[β−α], if α ≤ β

0 otherwise

A pth order polynomial may be written in multi-index
notation as V (x) = ∑|α|≤p cα x[α] where α is a multi-index
and cα is some coefficient associated with the x[α] monomial.
We say that the polynomial V (x) is SOS or sum-of-squares
if it can be rewritten as V (x) = ∑

M
k=1 q2

k(x) of some set of M
polynomials qk(x) where k = 1,2, . . . ,M.

II. JUMP PROCESSES

Consider a shot noise process

J(t) =
Nt

∑
`=1

y`e−δ (t−t`) (1)

where {y`, ` ∈ Z+} is an i.i.d. random process with distri-
bution F(y) describing the `-th jump’s size, {τ`, ` ∈ Z+}
are the event times of a Poisson process, {P(t), t ∈ R+},
with constant intensity ρ , and δ is a real positive constant
representing a rate of exponential decay after a Poisson jump.
Let Y (τ`,y`) = y`eδτ` , then J(t) may be written as

J(t) = e−δ t
∫ t

0

∫
Rn

Y (τ,y)N(dτ,dy) (2)

where N(dτ,dy) is a Poisson random measure with
Et [N(dt,dy)] = ρdtF(dy). We define the increment of the
jump process J as dJ(t) = J(t + dt)− J(t) where dt is an
infinitesimal time increment. Using equation 2 to expand out
dJ(t) and retaining first order terms in dt, one finds the jump
process increment can be written as

dJ(t) =−δJ(t)dt +
∫
Rn

yN(dt,dy) (3)

where the second term in equation (3) is known as a
compound Poisson process.

Now consider a jump stochastic differential equation
(JSDE)

dx(t) = f (x(t))dt +σ(x(t))dw(t)+dJ(t) (4)

where f (·) : Rn → Rn and σ(·) : Rn → Rn are Lipchitz
continuous functions, {x(t), t ∈ R+} is a stochastic process,
{w(t), t ∈R+} is a Wiener process and {J(t), t ∈R+} is the
jump process defined in equation (2). Using the expression
for the jump increment in equation (3), the JSDE can be
rewritten as

dx(t) = [ f (x(t))−δJ(t)]dt +σ(x(t))dw(t)

+
∫
Rn

yN(dt,dy) (5)

One may observe that the solution of the JSDE consists of a
diffusion process driven by a compound Poisson process. The

diffusion process is Markov and the jump process in equation
(1) is also Markov. Since {w(t)} and {J(t)} are independent
of each other, one can conclude that the solution to the JSDE
(5) will also be a Markov process [11].

Now consider a Markov process {x(t) : t ∈ R+} and
consider any function V (·, ·) : R+ ×Rn → R that is twice
differentiable in the second variable and differentiable in the
first variable (denote this class of functions as C1,2). Assume
{x(t)} has right continuous sample paths and consider the
limit

lim
h↓0

1
h
[ExV (x(h))−V (x(0))] = LV (x).

If this limit exists, we refer to it as the generator of the
Markov process applied to the function V . When the process
x is a diffusion with continuous sample paths (i.e. dx =
f (x)dt +σ(x)dw) then the generator, L , is

LV (x) =
∂V (t,x)

∂x
f (x)+

1
2

Trace
(

σ
T (x)

∂ 2V (t,x)
∂x2 σ(x)

)
. (6)

If the process x is a jump process dJ, then one can show [1]
that the generator, G , is

GV (x) = ρ

∫
∞

0
(V (t,x+ y)−V (t,x))dF(y).

The following proposition characterizes the generator for the
JSDE in equation (4).

Proposition 2.1: Let V (·, ·) be any C1,2 real-valued func-
tion defined over Rn. Assume that the jump process in
equation (4) has right continuous sample paths, then the
generator, L ∗, for this process is

L ∗V (t,x) =
∂V (t,x)

∂x
[ f (x(t))−δJ(t)]

+
1
2

Tr
(

σ
T (x(t))

∂ 2V (t,x)
∂x2 σ(x(t))

)
+ρ

∫
∞

0
(V (t,x+ y)−V (t,x))dF(y) (7)

Proof: Since the generator is a linear operator, we can
simply combine the results for the generators of the jump
process and the diffusion process. ♦.

III. FIRST PASSAGE TIMES

Consider a random process, {x(t), t ∈R+}, with x(0) = x0.
Consider an open subset X of Rn that contains x0, and let
∂X denote the boundary of X . The time at which a sample
path of x hits the boundary ∂X is a random variable τ called
the first passage time. Formally, we can express this passage
time as

τ ≡ inf{t ≥ 0 : x(t) ∈ ∂X }

The standard approach for computing the expected value
of τ , i.e. mean first passage time (MFPT), is obtained by
solving the corresponding backward Chapman-Kolmogorov
equation [5]. This approach, however, is difficult to use for
systems with dimensionality greater than one as it involves
solving a set of partial differential equations with appropriate



boundary conditions. An alternative approach for approx-
imating the MFPT based on Itô’s lemma is given by the
following proposition.

Proposition 3.1: Consider a diffusion process dx =
f (x)dt +σdw defined on a bounded open subset X ⊂ Rn

with smooth boundary ∂X . Assume the initial condition
x(0) takes its value in X0 ⊂Rn. If there exists a real-valued
function V ∈ C 1,2 and a positive constant γ > 0 such that

V (t,x) ≥ 0, ∀x ∈X

V (t,x) ≤ 0, ∀x ∈ ∂X

V (t,x) ≤ γ, ∀x ∈X0

∂V (t,x)
∂ t

+LV (t,x) ≤ −1, ∀x ∈X

where is the generator in equation (6), then E[τ]≤ γ where
τ = inf{t ≥ 0 : x(t) ∈ ∂X }.

Proof: The technique for the proof is similar to that in
[9]. Itô’s lemma provides a stochastic differential equation
for V

dV (t,x) =
(

∂V
∂ t

+LV
)

dt +
m

∑
k=1

(
n

∑
i=1

∂V
∂xi

σik

)
dwk(t)

where LV is the generator of the diffusion x with respect to
function V . Let τ ≡ inf{t ≥ 0 : x(t)∈ ∂X } and define τ∧t =
min{τ, t}. Integrating dV (t,x) from [0,τ ∧ t] and taking the
expectation yields,

E [V (x(τ ∧ t))]

=V (x(0))+E
[∫

τ∧t

0

(
∂V (s,x)

∂ s
+LV (s,x)

)
ds
]

Take the limit as t → ∞ and using the last condition in the
proposition’s statement, one finds

E[V (x(τ)]≤V (x0)−E
[∫

τ

0
ds
]
=V (x0)−E[τ]. (8)

τ is the first time the state trajectory hits the set ∂X and so
equation (8) implies the MFPT satisfies

E[τ]≤V (x0)−E[V (x(τ))]

Boundary points of X are limit points of X and since
V (t,x)≥ 0 on X , this means V (t,x) = 0 on ∂X . One may
therefore conclude that E[τ,x(τ)] = 0 which implies E[τ]≤
V (x(0)). By the third condition, we know that V (t,x)≤ γ on
X0, which implies E[τ]≤ γ . ♦

Remark 3.2: From the proof of this proposition, we see
that E[V (x(t))|V (x(0))] ≤ V (x0) for 0 ≤ t ≤ τ . Since X is
bounded, this implies E[V (x(t))] < ∞ which along with the
requirement that V (t,x) ≥ 0 implies the stochastic process
generated by V is a supermartingale.

The main result of this section is found in the following
proposition, which uses the generator for the jump-diffusion
process to approximate MFPT.

Proposition 3.3: Consider the jump diffusion process in
equation (5) defined on a bounded open subset X ⊂ Rn

with smooth boundary ∂X . Let the initial condition x(0) is
a random variable taking values in X0 ⊂ Rn. If there exists

a real-valued function V ∈C1,2 and a positive constant γ ≥ 0
such that

V (t,x) ≥ 0, ∀x ∈X

V (t,x) ≤ 0, ∀x ∈ ∂X

V (t,x) ≤ γ, ∀x ∈X0

∂V (t,x)
∂ t

+L ∗V ≤ −1, ∀x ∈X

where L ∗ is the generator in equation (7), then E[τ] ≤ γ

where τ = inf{t ≥ 0 : x(t) ∈ ∂X }.
Proof: The proof is similar to that in Proposition (3.1)

except that we use the generator described in Proposition
(2.1). ♦

Using the generator described in Proposition (2.1), one can
also perform stochastic reachability analysis [9] for jump-
diffusion processes. Stochastic reachability aims to compute
an upper bound for the probability that, starting in an initial
set X0, the sample path of {x(t)} will reach a given target set
XT in a finite time t ≤ τ , where τ = inf{t ≥ 0 : x(t) ∈XT}.
In other word, find a constant β ∈ [0,1] such that

P [x(t) ∈XT for some 0≤ t ≤ τ|x(0) ∈X0]≤ β .

This problem was solved for diffusion processes in [9]. The
solution involves searching for a ”stochastic” Lyapunov func-
tion, V (t,x), that generates a supermartingale from which
an upper bound on β can be deduced. Using the process
generator in (7), the same method from [9] can be used
to extend this search for jump diffusion processes (5). This
extension is stated in the following proposition.

Proposition 3.4: Consider the jump-diffusion process in
equation (5). Let T be a finite time horizon and let X , X0,
and XT be bounded subsets of Rn. If there exists a function
V (t,x) ∈ C 1,2 and a constant β ∈ [0,1] such that

V (t,x) ≤ β , ∀(x, t) ∈X0× [0,T ]
V (t,x) ≥ 1, ∀(x, t) ∈XT × [0,T ]
V (t,x) ≥ 0, ∀(x, t) ∈X × [0,T ]

∂V (t,x)
∂ t

+L ∗V (t,x) ≤ 0, ∀(x, t) ∈X × [0,T ]

where L ∗V (t,x) is defined as in Proposition 2.1, then

P [x(t) ∈XT for some 0≤ t ≤ τ|x(0) ∈X0]≤ β .
Proof: The proof is similar to that in [9, Th. 15] except

that we use the generator described in Proposition 2.1. ♦

IV. SOS PROGRAMMING

The propositions in section III show that characteriz-
ing a jump process’ first passage times involves finding
a function V (t,x) that is positive/negative semi-definite on
appropriately defined subsets of Rn. Searching for functions
that are positive definite, however, can be difficult. Since
any SOS polynomial is also positive semi-definite, one can
relax the positive definite conditions in proposition 3.4 to
simply requiring that the functions be SOS. Once this is
done, then one can establish the positive-definiteness of the
functions by using semi-definite programming to search for



SOS functions [8]. In particular, if the vector fields in (5)
are polynomials and the sets {X ,X0,∂X ,XT} can be
described as polynomial equalities/inequalities, the search for
V (t,x) can be cast as SOS program which can be solved
efficiently using SOSTOOLS [10] combined with a semi-
definite program solver [15].

An SOS program is a convex optimization problem of the
form

min
m

∑
j=1

ω jc j

s.t. p(x) = ∑
α≤p

cα x[α] is SOS, for α = {0, . . . , p}

where ω j’s are given real numbers, c j’s are scalar real
decision variables, x[α] is a given [α]-th degree polynomial
in n-variables, and α is an n-dimensional multi-index.

To search for V (t,x) that satisfies each condition in Propo-
sitions 3.1, 3.3 and 3.4 using SOS programming, we will
first need to express each inequality in V (t,x) as a positive
definiteness condition for V (t,x) and then replace them with
SOS condition. Replacement from positive definite condition
to SOS condition can be done by introducing other SOS
multipliers whose coefficients will also be determined during
the optimization task. The following proposition describes
the SOS program for Proposition 3.1

Proposition 4.1: Consider the diffusion process dx =
f (x)dt +σdw with initial x(0) = x0. Let the sets X , X0,
∂X be described by X = {x ∈Rn : gX (x)≥ 0},X0 = {x ∈
Rn : gX0(x)≥ 0}, ∂X = {x∈Rn : g∂X (x)= 0}, respectively,
where g’s are polynomials. Consider a polynomial parame-
terization V of V (t,x), and define τ ≡ inf{t ≥ 0 : x(t)∈ ∂X }.
If there exists V (t,x)∈ V , a constant γ > 0, a small constant
ε > 0, and SOS polynomials σX (x),σX0(x),σ∂X (x) such
that the following SOS program

min γ

s.t. V (t,x)−σX (x)gX (x)− ε is SOS,
−V (t,x)−σ∂X (x)g∂X (x) is SOS,
−V (t,x)+ γ−σX0(x)gX0(x) is SOS,

− ∂V (t,x)
∂ t −LV (t,x)−σX (x)gX (x)−1 is SOS,

has a feasible solution, then E[τ]≤ γ .
Proof: The conditions for V (t,x) in the above SOS pro-

gram is the SOS relaxation of the inequalities in Propo-
sition 3.1. Such relaxation for each corresponding set is
accommodated using the SOS multipliers σ(·)(x). Also, γ (0-
order SOS polynomial) is chosen as the objective function
to be minimized since its minimum value obtained from the
optimization will serve as the tightest upper bound for a
given SOS polynomial parameterization. ♦

The inequality constraints in proposition 3.3 cannot be
directly translated into SOS constraints due to the presence
of integral term in the generator. The following proposition
shows how to rewrite the inequality constraint on generator
L ∗V as an SOS polynomial.

Proposition 4.2: Let y ∈ Rn be an n-dimensional inde-
pendent random variable with distribution F(y). Let V (x) =

∑|α|≤p cα x[α] be a multi-index representation of a polynomial
function. Then∫

(V (x+ y)−V (x))dF(y) = ∑
1≤|β |≤p

1
β !

∂
[β ] [V (x)]M|β | (9)

Proof:

V (x+ y) = ∑
|α|≤p

cα(x+ y)[α]

= ∑
|α|≤p

cα ∑
0≤|β |,β≤α

(
α

β

)
x[α−β ]y[β ]

= ∑
|α|≤p

cα

[
x[α]+ ∑

1≤|β |,β≤α

(
α

β

)
x[α−β ]y[β ]

]

For notational convenience, let us denote the difference
V (x+ y)−V (x) as ∆V (x,y). Using the above sum, one can
write this difference as

∆V (x,y) = ∑
|α|≤p

cα ∑
1≤|β |,β≤α

(
α

β

)
x[α−β ]y[β ]

and since

∂
[β ]
[
x[α]
]
=

{
α!

(α−β )! x[α−β ] if β ≤ α

0 otherwise

the expression for ∆V can be rewritten as

∆V (x,y) = ∑
|α|≤p

cα ∑
1≤|β |,β≤α

1
β !

∂
[β ]
[
x[α]
]

y[β ]

Expand out the first summation to obtain

∆V (x,y) = ∑
|α|=1

cα ∑
|β |=1

1
β !

∂
[β ]
[
x[α]
]

y[β ]

+ ∑
|α|=2

cα ∑
1≤|β |≤2

1
β !

∂
[β ]
[
x[α]
]

y[β ]

...

+ ∑
|α|=p

cα ∑
1≤|β |≤p

1
β !

∂
[β ]
[
x[α]
]

y[β ]

The order of the summations can now be interchanged since
α and β are no longer directly coupled to yield

∆V (x,y) = ∑
|β |=1

1
β !

[
∑
|α|=1

cα ∂
[β ]
[
x[α]
]]

y[β ]

+ ∑
1≤|β |≤2

1
β !

[
∑
|α|=2

cα ∂
[β ]
[
x[α]
]]

y[β ]

...

+ ∑
1≤|β |≤p

1
β !

[
∑
|α|=p

cα ∂
[β ]
[
x[α]
]]

y[β ]



Reordering the terms in the first summation yields,

∆V (x,y) = ∑
|β |=1

1
β !

[
∑

1≤|α|≤p
cα ∂

[β ]
[
x[α]
]]

y[β ]

+ ∑
|β |=2

1
β !

[
∑

2≤|α|≤p
cα ∂

[β ]
[
x[α]
]]

y[β ]

...

+ ∑
|β |=p

1
β !

[
∑
|α|=p

cα ∂
[β ]
[
x[α]
]]

y[β ]

Because ∂ [β ]
[
x[α]
]
= 0 when α ≤ β , the summation limits of

the inner sums can be extended from 1 to p thereby yielding

∆V (x,y) = ∑
|β |=1

1
β !

[
∑

1≤|α|≤p
cα ∂

[β ]
[
x[α]
]]

y[β ]

+ ∑
|β |=2

1
β !

[
∑

1≤|α|≤p
cα ∂

[β ]
[
x[α]
]]

y[β ]

...

+ ∑
|β |=p

1
β !

[
∑

1≤|α|≤p
cα ∂

[β ]
[
x[α]
]]

y[β ](10)

Now note that

∂
[β ]V (x) = ∂

[β ]

[
∑
|α|≤p

cα x[α]

]
= ∑

1≤|α|≤p
cα ∂

[β ]
[
x[α]
]

which is simply the inner sum in (10) and so the difference
becomes

∆V (x,y) = ∑
1≤|β |≤p

1
β !

∂
[β ] [V (x)]y[β ]

Integrating both sides with respect to F(y), and since each
component of y is independent, we have∫

∆V (x,y)dF(y) = ∑
1≤|β |≤p

1
β !

∂
[β ] [V (x)]

∫
y|β |dF(y)

= ∑
1≤|β |≤p

1
β !

∂
[β ] [V (x)]M|β |

♦
Using Proposition (4.2), the JSDE’s generator in Proposi-

tion (2.1) can be rewritten as

L ∗V (t,x) =
∂V (t,x)

∂x
[ f (x(t))−δJ(t)]

+
1
2

Tr
(

σ
T (x(t))

∂ 2V (t,x)
∂x2 σ(x(t))

)
+ρ

p

∑
1≤|β |≤p

1
β !

∂
[β ] [V (x)]M|β | (11)

With this generator, propositions 3.3 and 3.4 can be used
to bound the MFPT and passage time probability using
SOS programs that only require knowledge of the partial
derivatives of the candidate function V .

V. ECO-SYSTEM MANAGEMENT

First passage times (FPT) may be used as a measure
of an eco-system’s resilience. This section uses the FPT
approximations discussed above to manage eco-systems. In
particular, we consider the problem of choosing a harvesting
strategy to manage the bass-crayfish population in freshwater
lakes.

Bass-crayfish interaction is an intraguild-predation (IGP)
type in which both species compete for the same resource
while at the same time the crayfish predate the bass. This
system has two equilibria; one in which the bass dominate
the eco-system and the other in which the crayfish dominate
the eco-system. An outbreak of crayfish is undesirable as it
can suppress the bass population. If such an outbreak occurs,
management strategies are needed to induce a regime shift
back to the bass-dominated equilibrium point.

One method for achieving this management objective is
to permit the harvesting of crayfish by anglers. In general,
this harvesting process can be modeled as a compound
jump process in which the size of harvest and the intensity
of harvesting events are the variables that the eco-system
manager needs to set. The FPT analysis presented in the
preceding sections provides a systematic framework in which
such management decisions can be made.

This particular example is drawn from a paper [2] that
used mean first passage times as a basis for management
decisions. The underlying system model is characterized by
the following state equations,

ẋ1(t) = x1(1− x1−0.7x2)−
0.075x2x2

1

0.01+ x2
1
−

Nt

∑
i=1

yiδ (t− τi)

ẋ2(t) = 1.5x2(1−0.9x1− x2)+0.01
0.075x2x2

1

0.01+ x2
1

(12)

in which the biomass of the crayfish and bass are denoted as
x1 and x2, respectively. The last term in the first equation
models crayfish harvesting as a double exponential jump
process in which Nt is the number of harvest events in the
interval [0, t], the harvest size {yi}Nt

i=1 and the harvest times,
{τi}Nt

i=1 are exponentially distributed i.i.d. random processes
with intensity µ , and λ , respectively.

In the absence of harvesting, this model has three equi-
libria (two stable and one unstable) in R2

+. One of these
equilibria is dominated by the bass and the other is dom-
inated by the crayfish. The stable equilibria have regions
of attraction (ROA) that partition the state space into two
regions as shown in Figure 1. This figure plots the isoclines
for equation (12), identifies the two stable equilibrium, and
marks the separatrix between the two competing regions of
attraction.

Figure 1 also shows sample path for this system under a
given harvesting policy. From this figure, one sees that each
harvesting event causes a step decrease in the crayfish pop-
ulation, after which the system begins relaxing back to the
crayfish-dominated equilibrium. There is a finite probability
that repeated harvesting events will drive the system state
across the separatrix, whereupon the system’s equilibrium



state shifts to the bass-dominated equilibrium. Assuming that
the system’s current state lies in the ROA dominated by
the crayfish, we’re interested in specifying those harvesting
parameters µ and λ that maximize the probability of a
regime shift to the bass-dominated ROA in a specified time-
interval subject to a constraint that limits the probability of
driving the crayfish population to extinction.
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Fig. 1: Regions of Attraction in Bass-Crayfish Eco-system
[2]

Approximations to the MFPT are obtained with the SOS
program in proposition 4.1 using the generator representation
developed in proposition 4.2. In particular, we define the
following sets,

X =

{
x ∈ R2

+, t ∈ R+

∣∣∣∣x1(1 − x1) ≥ 0, x2(1 −
x2)≥ 0, t(T − t)> 0

}
X0 =

{
x ∈ R2

+,

∣∣∣∣−(x − 0.72)2 − (x2 −
0.36)2 +(0.01)2 ≥ 0

}

∂X =

x ∈ R+

∣∣∣∣∣∣
x1(0.27 − x1) ≥ 0,x2(1 −
x2) ≥ 0,x2 − 0.14x3

1 −
9.5x2

1−1.1x1 +0.0003 = 0


Region X characterizes a unit square in R2

+ over the time
interval [0,T ]. The initial region, X0 is a disk centered at
the crayfish-dominated equilibrium with a radius of 0.01.
The boundary region, ∂X is the separatrix shown in Figure
1.

The SOSTOOLS were used to find an SOS polynomial,
V (t,x), that satisfies the SOS program in proposition 4.1 for a
range of µ and λ . Figure 2 shows the MFPT approximation
(circle) for µ = 0.1 and λ between 0 to 6. This plot also
shows the MFPT obtained using a Monte Carlo simulation
with a 95% confidence interval and estimates (asterisk) of the
MFPT obtained in [2]. The MFPT estimates obtained in [2]
were based on a linearization and were only valid for small
mean harvest sizes (µ). As a result, the estimates from [2]
under approximate the actual MFPT seen in Monte Carlo
simulations, whereas our results provide reasonable upper
bounds on the MFPT.

A more complete surface plot showing our MFPT approx-
imations for a range of µ and λ is shown in Figure 3. This

Fig. 2: MFPT comparison for µ = 0.1 and various λ .

Fig. 3: MFPT as a function of µ and λ

plot may be used as the basis for determining a harvesting
policy provided some additional constraints are imposed.
Clearly, one can maximize the likelihood of a regime shift
by simply increasing the intensity of harvesting. In general,
however, one would want to limit such harvesting intensity.
One issue with large harvesting intensity is that it may drive
the crayfish population to extinction. While crayfish may be
considered to be a ”nuisance”, the extinction of a species in
the eco-system reduces overall bio-diversity and often makes
such systems more prone to collapse from extreme events [7].
A reasonable limit on harvesting intensity involves limiting
the harvesting rates λ and µ to minimize the likelihood of
crayfish extinction while still achieving a regime shift over
a specified time interval.

Computation of extinction probabilities and regime shift
probabilities can also be done using the SOS programming
methods introduced in the preceding section. For initial states
around the crayfish dominated equilibrium, we compute two
probabilities. The first one is the probability of reaching a
controlled region (i.e. ∂X ) which we denote as PR. The sec-
ond one is the probability of reaching a small neighborhood
of x1 = 0, which corresponds to the event that the crayfish
will be driven to extinction. This extinction probability is
denoted as PE . We now define an SOS program in which the
initial set, X0, and domain X are the same as before. To
compute an upper bound βR for the regime shift probability,



Fig. 4: PR and PE for µ = 0.075.

PR, we define the target set

X R
T =

x ∈ R+

∣∣∣∣∣∣∣∣
x2 − 0.14x3

1 − 9.5x2
1 −

1.1x1 + 0.0003 ≥
0,x1(0.27 − x1) ≥
0,x2(1− x2)≥ 0


whereas for an upper bound βE on the extinction probability,
PE , the target set is

X E
T =

{
x ∈ R2

+

∣∣∣∣x1(0.01 − x1) ≥ 0,x2(1 −
x2)≥ 0

}
A similar computation is then done using the SOSTOOLS
to obtain upper bounds βR and βE on the regime shift and
extinction probabilities. A plot of this result is shown in
Figure 4 for a specific harvest size µ = 0.075 and a range
of λ for a specified time interval of T = 5.

The preceding approximations can be used in many ways.
One possible management strategy would be to determine
those intensities µ and λ that minimize the probability
of crayfish extinction subject to a constraint requiring the
regime shift’s MFPT to be less than a specified deadline,
T . Let us set, for example, T = 5 as the deadline for regime
shift’s MFPT and search for that (µ,λ ) that give the smallest
upper bound, βE , of the extinction probability PE . Using
the surface plot in Fig. 2, we first find all possible (µ,λ )
pairs for which E[τ] ≤ 5. Among all of these sets, we then
choose one that gives the smallest βE . We find that the pair
(µ = 0.075,λ = 1) gives E[τ]≤ 4.31 and PE ≤ βE = 0.277
(triangle in Figure 4). Using this pair, we use a Monte
Carlo simulation with 95% confidence interval to compute
the corresponding MFPT and PE . We find that MFPT =
4.6896±0.083 and PE = 0.243±0.104. This confirms that
our management approach minimizes the likelihood of an
extinction event while assuring the regime shift’s MFPT is
less than the specified deadline of T = 5.

One may also compare our proposed management frame-
work with the method used in [2]. The approach in [2] uses
an analytical formula to compute the MFPT for a lineariza-
tion of (12). Since [2] does not provide a way to compute
PE for a given (µ,λ ), we ran a Monte Carlo simulation
to compute PE for all these possible parameters and then
singled out a parameter pair giving the smallest PE . The

minimizing pair was (µ = 0.055,λ = 1) with an extinction
probability of PE = 0.174 and a MFPT of 6.4008± 0.083,
which clearly violates the specified MFPT deadline.

VI. CONCLUDING REMARKS

This paper presented a computational method to character-
ize eco-system regime shifts under stochastic environmental
forces. SOS programming was used to characterize the first
passage times of a jump diffusion process. When used as
a basis for managing regime shifts in eco-systems, our
approach performs better than prior work that relies on
model linearization. The models used in this work assume a
spatially homogeneous eco-system. Future work will extend
the proposed framework to spatially heterogeneous eco-
systems.
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