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Abstract

Inverter-based distributed generators (DGs), usually a part of microgrids, are incorporated to improve power quality and
reliability when disruptions happen in main grid service. Due to multidirectional power flows caused by DGs, both voltage
stability and frequency synchronization become significant issues when the network interconnections are weak. The weakness
of a link usually means a significant resistive component in its impedance (lossy). In addition, a weak link has a large amount
of power flowing through compared with the rated power level, so that the link is under stress. This paper derives sufficient
conditions for voltage stability and frequency synchronization of a weak power distribution network coupled with inverter-
based DGs. These conditions take the form of inequality constraints on network parameters, load levels and generation control
commands. Simulation tests show that asymptotic voltage stability and frequency synchronization are ensured in a weak
network, even after recovering from disturbances such as load changes and voltage impulses. Simulation also indicates that,

strong network stability conditions, which consider no voltage control, do not apply to truly weak networks.

Key words: Weak networks, inverter-based distributed generator, voltage and frequency stability.

1 INTRODUCTION

Inverter-based distributed generation (DG) sources are
usually a part of microgrids [13], together with oth-
er generation, storage and load units. These microgrid-
s are installed to improve power quality and reliabil-
ity, by supplying power locally during main grid con-
tingency events. Power quality, in the form of voltage
magnitude and network frequency, is the focus of pow-
er network operation. In addition to the lack of inerti-
a of inverter-based DGs, connections of DGs introduce
multidirectional power flows that cause power quality
problems in weak networks. A weak network is typical-
ly defined in the sense of the ratio between resistance
and reactance R/ X, which is greater than one. Network
weakness, however, also means a large power flow com-
pared with the rated power level. From this perspective,
a network weakness parameter called short-circuit ra-
tio (SCR) is defined in [18], as the ratio between a bus’
short-circuit power and its coupled generator’s power
rating. As a consequence of such weakness, dynamics of
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phase angles and voltages are coupled, which makes it d-
ifficult to simultaneously guarantee voltage stability and
frequency synchronization.

Although a long-treated topic, existing stability analysis
approaches are not sufficient to obtain both voltage con-
trol and frequency synchronization conditions in weak
networks, especially with inverter-based DGs connected.
Initial research efforts apply Lyapunov-based methods in
[1] [5] [7] [26] to check transient frequency stability prop-
erties. These works focus on determining regions of sta-
bility in a network of rotating machine based generators.
Although closed-form stability conditions are obtained,
strong networks are assumed without voltage control dy-
namics, not proper for analyzing weak networks. To deal
with weak networks, research works [12] [14] [24] checked
small-signal stability through eigenvalue calculation of
linearized network models. These efforts focus on com-
puting eigenvalues for a large-scale system model, some
taking advantage of sparse system matrices [24]. How-
ever, linearized analysis only applies to small neighbor-
hoods of linearization points and are not in closed-form.
Applying Lyapunov-based method to weak networks, a
Hamiltonian structure-based method checks transient
stability, where nonlinearity is maintained [20] [21]. Al-
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though transient stability is naturally established with
this passivity-based method, it is pointed out in [22] that
not all nonlinear control systems can be transformed to
a Hamiltonian control system, and the transformation
is not trivial to find [21]. There have been no closed-
form stability conditions for weak distribution networks
coupled with DGs, with strong network assumptions re-
laxed. Even weak networks treated in these papers are
merely lossy, where power flow stress is not considered.
As an exception in [18], small-signal stability analysis
shows that an increasing power flow stress leads to in-
stability. A measure of network power flow stress (i.e.
SCR) is used in this paper to treat truly weak networks.

The objective of this paper is to develop a comprehen-
sive framework for assessing voltage stability and fre-
quency synchronization of weak networks coupled with
inverter-based DGs. Earlier work [8] has studied the sta-
bility of relatively strong networks with DGs, but, to
our best knowledge, there has been little work examin-
ing both frequency synchronization and voltage control
conditions for stressed weak networks. Some work [4] has
attempted to address that issue by viewing the network
as a set of coupled nonlinear oscillators, assuming volt-
ages are kept within bounds. In their recent work [9], de-
coupled dynamics are incorporated and no voltage sta-
bility conditions are provided. Another recent paper [17]
discusses frequency stability for an inverter-based mi-
crogrid. Stability is analyzed in a strong network with a
large SCR (above 60). Building upon these prior works,
this paper derives a set of inequality constraints whose
satisfaction assures asymptotic voltage stability and fre-
quency synchronization. Sufficient conditions are on net-
work weakness, voltage control authority, and load lev-
els. Stability analysis in this paper relaxes several key
assumptions in the previous conference paper [25] and
is further examined in a stressed weak network.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the power system background and nota-
tional conventions used throughout this paper. Section
3 presents the weak network model, including voltage
and frequency droop controllers. Section 4 presents the
main results of this paper, i.e. sufficient conditions that
ensure voltage stability and frequency synchronization.
Section 5 demonstrates simulation results showing that
satisfying stability conditions ensures asymptotic stabil-
ity, while conditions derived for strong networks are not
sufficient to stabilize weak networks. Section 6 provides
concluding remarks and identifies future directions.

2 Background and Notations

This section reviews background knowledge, including
power flow relationships and load models. Before the in-
troduction, this paper makes two basic assumptions, i.e.
three-phase balanced operation and per-unit normaliza-
tion. Stability analyses in this paper build upon a bal-

anced three-phase network model. In addition, per-unit
(p-u.) normalization is applied to accommodate various
nominal voltage levels within a network.

In a balanced three-phase network with n buses,
impedance of a link between any bus i and bus j is
Zij = R;j + jX;;. As defined in [2], when Z;; # 0, there
is Y;; = —1/Z;;; otherwise, there is Y;; = 0. The diag-
onal element of YV is then Y;; = — Z;L:Lj# Y;;. This
complex symmetric n-by-n admittance matrix Y, «,, is
also expressed as Y, xn = Gnxn + jBnxn, with conduc-
tance matrix G, x, and susceptance matrix B, «,. For
elements of the two symmetric real matrices {G;;} and
{Bij}, where i,j € {1,2,...,n}:if j =4, then Gj; > 0
and By; < 05 if j # 4, then there are G = Gj; < 0 and
Bi]‘ = Bji > 0.

Admittance matrix Yy, differs between weak and
strong networks. Weak network has the ratio of
|Ri;/Xij| > 1 for the connection link between bus i
and bus j, which is equivalent to |G;;/B;;| > 1. In con-
trast, strong networks are assumed to be with negligible
G;j, then there is a pure imaginary admittance matrix
Ynxn = JBnxn, which simplifies the network model.

Besides a nontrivial real component G;; in each admit-
tance Yj;, from the perspective of power flow stress,
short-circuit ratio (SCR) is defined in [18] to character-
ize network weakness. SCR is the ratio between the short
circuit power at a DG’s point of common coupling and
the DG’s maximum apparent power. A network with an
SCR smaller than 10 is considered to be weak, while one
with SCR larger than 20 is termed as strong.

Power balance relationship is defined using Y}, «,, de-
picting power exchanges between buses. Complex power
vector S is defined as

S =P +JQ =VIt= V(KLX7LV)*7 (1)

in which P and @Q are n-dimensional real and reactive
power vectors; V and I are complex voltage and current
vectors. Based on the power relation in equation (1), real
power injection P; and reactive power injection @Q; at
bus i depend on states of neighboring buses, captured in
the so called power balance relationships

Pi = Z E.L'Ej (GZJ COS((Si - (SJ) + Bij sin((Si — 5]'))’ (2)

j=1

Qi = Z EZEJ (GIL] sin(& — (5]) — Bij COS(&@ — (5]‘)), (3)

j=1

in which E; is voltage magnitude and J; is phase an-
gle at bus ¢. In weak networks, as shown in equation-
s (2,3), the real and reactive power vectors are closely
coupled through sinusoidal functions. In contrast, with



trivial {G;;} and phase shifts between buses, power bal-
ance relations in strong networks are simplified as P; =
Z?:l EiEjBij sin(éi 75]') ~ Z?:l EiEjBij ((5Z — (SJ) and
Qi = — Z?:l EZE]B,J COS((SZ‘ — 5]) ~ — Z?:l EZEJBU

Many research efforts take the simplified linear relation-
s for simplicity. Nevertheless, DG-coupled distribution
networks are weak, whose dynamics are coupled as in e-
quations (2,3). This coupling nature in weak networks
makes controlling DGs a challenging task, such as the
“voltage rise problem” when DGs inject real power into
a weak network.

J_ BUSiJ.J_ Eidi J_
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Pgen‘ngen,i T WQPIDMJ
(f ) load,i

Fig. 1. Power Balance at Bus i

On any bus 4, there is a controlled generator and a syn-
thesized load, as shown in Figure 1. Pyey, ; and Qgen,; are
the total powers generated at bus i. Poqq,; and Qioad,i
denote the real and reactive loads at bus i. Therefore the
powers injected into bus i are

]Di, = Pgen,i - Hoad,h (4)
Qi = Qgen,i - Qload,i- (5)

Pure load bus i has P; 4+ Pioqq,; = 0 and Q; + Qioad,s = 0.

A ZIP model is applied to approximate various types
of loads [15] using a 2nd-order polynomial load model
of voltage magnitudes {£;} in per units that com-
bines constant impedance (Z), constant current (I)
and constant power (P) components. Within expres-
sions }Dload,i = EiQPload,a,i + Ei}Dload,b,i + Boad,c,i and
Qload,i = E'?Qload,a,i + Einoad,b,i + Qload,c,i7 Boad,a,i
and Qoad,a,i are nominal constant impedance loads, e.g.
incandescent light bulbs and resistance heaters; Pioqd,p,i
and Qjoqd,p,i are nominal constant current loads, usu-
ally representing active motor controllers; Pjoqq,c,; and
Qload,c,i are nominal constant power loads, generally a
result of active power control.

3 System Model

This section obtains system models of DG-coupled weak
networks. As the first step, conditions are derived to es-
tablish an isolated equilibrium point. Phase angle dy-
namic equations of a network are then constructed as
nonlinear oscillators. With respect to the equilibrium
point, voltage error dynamic equations are obtained.
Definitions of frequency synchronization and voltage sta-
bility are then provided.

In this paper, inverter based controller designs are drawn
from the CERTS (Consortium for Electric Reliability
Technology Solutions) droop controller concepts [13],
modified from conventional droop controllers. These
controllers take advantage of differences between control
commands and desired equilibrium points to balance
power flows among multiple DGs. For m inverter-based
DGs, the associated phase angle and voltage dynamic
equations at the ith inverter-based DG are

52’ - mP(Pref,i - Pge'rm) + wo, (6)
Ei = KQ (Eref,i - Ez) - mQQgen,i7 (7)

for all i € {1,2,...,m}, where mp is the droop slope of
P-f droop controller; wy is the nominal angular frequen-
cy; Kg is the voltage control gain of )-E droop con-
troller; mg is the droop slope of Q- E droop controller. In
equations, Py ; and E,..y; denote the commanded real
power and voltage levels of the controller. The complete
system model is obtained in equations (2-7).

To define equilibrium points of the complete sys-
tem model in equations (2-7), a change of variable
is necessary to remove one surplus degree of freedom
(DOF) in phase angles {6;}. In a network with m
DG-coupled buses, phase angles of the first (m — 1)
buses refer to a common bus, i.e. the mth bus. De-
fine phase angle difference 0, = §; — §,, for all
i € {1,2,...,m — 1} and 6,, = 0. The equilibrium is
expressed as (Pequ, Qequs Oequs Pequ, Wequ), which is a
zero point of the dynamic equations. Corresponding to
a total number of 2m unknown states (Eegy, Oequs Wequ),
there are 2m equations f(t) = [f1; f2; f3]7 = 0, where
f1, f2, and f3 are as follows

fl,i = KQ (Eref,i - Eequ,i) —mq (Qequ,i + Qload,i)7 (8)
1e{l,...,m}

f27z‘ = mP[(Pref,i - Pequ,z' - Hoad,i)
7(Pref,m - Pequ.,m - ]Jload,m)]: (9)
ie{l,...,m—1}

fS = W0 — Wequ + mP(Pref,m - Pequ,m - Pload,m)~ (10)

Asymptotic stability can be discussed with respect to
(Pequ> Qequ» Oequr Eequ,wWequ), as long as it is isolated.
The following lemma establishes the existence of an iso-
lated equilibrium point through Jacobian matrix of e-
quations (8-10).

Lemma 1 For any given real power { Pycs;} and voltage

) ; ; ; 9f1 Of2
{E,cs:} commands, if Jacobian matrices BB D0hn”

; _ 9f1 —1 0f1 Ofs \—1 _0fs
as well as matr;cfes (I a(faE““gf agequg?eequ) 8Eequ)
-1 -1
and (I — (89e:u) BEezu(aEe:u) 096;) are  ful-
I rank, then there is an isolated equilibrium point
(Pequs Qequ, Oequs EequsWequ) for the complete system
model in equations (2,3,8-10).




Proof 1 Jacobian of the monlinear function f(t) =
[f1; fo; f3]T in equations (8-10) is as follows:

Of1
OFcqu cqu 0

— 9f2 Of2

J OFcqu | 00cqu 0 ’
9fs Ofs 1
OFcqu | 00equ

whose determinant is dEt(a?Eilqu) det( 8f2u) det(I —

2] —1 0 0 —1 0 0
(aef:u) laE{iu(aEZu) 1895;)Orequwale”ﬂydet(aef:u)

det( 3f1 )det(If( af1 )71 Of1 ( 9f2 )71 9f2 ) The

OFEcqu Obcqu \ Obequ OFEcqu
Jacobzan maintains its rank, iff matriz aafl s ng , as
u cqu
df1 1 0f1 8f2 —1 _0Ofa
well as matrices (I —
(I = (35..) " 90,y (90.07) " 9Eer)

Ofs \—1_9 Ofi \—1.90
and (I — (89{;) IBE{;(BEQW) 1695;) are full rank.

Based on implicit function theorem in [6], within a small
neighborhood where the Jacobian is full rank, there is an
isolated equilibrium (Pequ, Qequs Yequs Eequs Wequ)-
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achieved through commands {Prcf;} and {E,;}, des-
ignated to droop controllers. This equilibrium point is
usually determined as a solution to some optimal pow-
er flow (OPF) problems. Based on equations (8-10),
voltage and real power reference commands are then
determined as

Erefz _Eequz + (Qequz +Qload z( equ))7 (11)
1
Pref,i = Lequ,i + Pload,i(Eequ) + 7(wequ - w0)7 (12)
mp

for all i € {1,2,...,m}. The following assumption is
about the existence of an isolated equilibrium point:

Assumption 1 Fach (Pegu, Qequ, Hequ, Eequ,Wequ), as
a solution to some OPF problem, is assumed to satisfy
the conditions in Lemma 1, so that it is an isolated equi-
librium point in a small neighborhood.

To derive a more general model for frequency synchro-
nization analysis, phase angle dynamics in equation (6)
are formulated as nonlinear oscillators. By inserting e-
quations (2,4) into equation (6), there is

0; =mp(Prefi — Pi — Ploga,i) + wo,
=wp + mP(Prcf,i — E?Gn - Pload,i(E’i))
n

—mp Z EZE](G” COS((SZ' - (SJ) + Bij sin(5i - 5]‘)),

=1
=w;—mp Y EEj|Yi|sin(6; — 5; + ¢ij), (13)
J=1,j#i
for all 7 € {1,2,...,m}, where the natural frequency is

wi =wo+mp(Prefi — E2Gii — Pioaai(E;)); phase shift
between bus i and j, ¢;; = ¢;; = tan_l( ij/Bij) €
[, 0]; the diagonal terms are |Y;;| = 0 and ¢y = 0

A typical n-bus distribution network includes m DG-
coupled buses and [ pure load buses, which is modeled
as a hybrid network as follows

Si =Ww; —mp Z EZE]‘Y;J‘ sin(éi — 6]' + d)i]’)v
j=1,j#i
ie{l,...,m}
Z] 1_]7£ZEE ‘Y;J‘COS( §j +¢l])5j
Z] 1];&1EE‘ ‘COS(5175J+¢2]) '
ie{m+1,....m+1}

5 =

where w; = wo +mp(Preg,i — E2Gii — Pioaai(E)) is the
natural frequency at bus 7. Based on the hybrid net-
work of nonlinear oscillators above, frequency synchro-
nization is defined as asymptotic convergence of network
frequency, as follows

Definition 2 The power distribution network has fre-
quency synchronization if there are two open subsets of
Qr1,Q 1 C R" containing the origin such that if any
EZ(O) € QEJ and any 91(0) = ((51(0) — 6n(0)) € 99’1
then limy_s o 51(75) = ... = limp_ oo 5n(t) = Wequ, when
the inpﬂis Pref; I')load,ay ]Dload,by Pload,c; Eref’ Qload,aa
Qload,bs Qload,c are constant.

Voltage control dynamic model is based on the isolat-
ed equilibrium point that satisfies conditions in Lemma
1. Given an isolated equilibrium point, error states are
defined for phase angle, voltage magnitude and reactive
power error vectors as 0=0-— Ocqu, E=F-— Eequ, and

Q= Qequ — Q. Voltage error dynamics model is:

Ei = Ez - Eequ,z‘,
= _KQEi + mQQz) + mQ(Qload,i(Eequ,i) - Qload,i(

EZ))a

= mQQi - {KQ + mq [Qload,b,i + (Eequ,i + Ei)Qload,a,i]} Eia

~ ~ 2
= mQQ’L - mQQload,a,iEi

K -
7mQ[miz + (Qload,b,i + 2Qload,a,iEequ,i)]Ei7

1€{1,2,...,m}

Qi = C?l()tlol,czA,z'Eﬁz‘2 + (2Qload,a,iEequ,i + Qload,b,i)Ei-
ire{m+1,....m+1}

Equation (15) shows an algebraic relation between volt-
age magnitude and reactive power error vectors for pure
load buses. With respect to the voltage error dynamics
model above, it is possible to define voltage stability of
the power distribution network, as follows



Definition 3 The power distribution network has
voltage stability if there are two open subsets of
Qp2,Q 2 C R™ containing the origin such that if any
E;i(0) € Qg2 and any 0;(0) = (6;(0) — 6n(0)) € Qo2
then limy o0 E1(t) = ... = limy,00 Epn(t) = 0, when
the anUtS Pref; Boad,a; ]Dload,b; ]Dload,cy Qrefz Qload,a;
Qioad,b; Qload,c are constant.

In conclusion, the stability analysis problem treated in
this paper considers both asymptotic frequency synchro-
nization to weq,, and voltage control to F.q,. In section
4, sufficient conditions are derived for stability in Defi-
nition 2 and 3.

4 Main Result

This section derives sufficient conditions for voltage sta-
bility and frequency synchronization in DG-coupled dis-
tribution networks. As long as these conditions are sat-
isfied, the network asymptotically converges to the des-
ignated equilibrium point, within regulatory limits. Sta-
bility analysis is then discussed in a grid-connected net-
work scenario, addressing concerns of how to manage
DGs.

E Voltage |
-

Power (™ Control
FlowP |« E Q
P o »| Power
- Freque_ncy_ 5| FlowQ
Synchronization[ 0

Fig. 2. Complete Model of the Network

The coupling nature of voltage control and frequency
synchronization is solved by segmenting the entire sys-
tem model into four interconnected blocks, as shown in
Figure 2, including a voltage control block, a frequen-
cy synchronization block, and two power balance block-
s. Stability analysis then decouples by first identifying
the existence of voltage magnitude and phase angle in-
variant sets; then proving asymptotic stability of both
phase angle differences and voltages; finally establish-
ing frequency synchronization. Stability analysis in this
paper does not require a DG connected to each bus, as
required in [25].

4.1 Invariant Sets

With no assumption on phase angles’ differences 6, a
positive invariant set of voltage magnitudes Zp is iden-
tified. Only two subsystems, i.e. the “Power Flow Q”
block and the “Voltage Control” block, are involved to
prove bounded voltage magnitudes. Since relationships
are purely algebraic between voltage and reactive pow-
er errors on pure load buses as shown in equation (15),
only dynamics on DG-connected buses are considered.
The following lemma characterizes a positive invariant
set of voltage magnitudes Zp.

Lemma 2 Consider the system model in equations
(2,3,13-15), with |0;| < 27 for any i € {1,2,...,m}.
Given

|Qload,a,i| <a, (16)

Kq/mq >max(by — Quoad,b,i +21/(a — Qload,a,i)C

—b2 — Qoad,p,i + 21/ (Qioad,a,i +a)c), (17)

where
a:(2+47r)|Gii\maz + (4-‘r4’/T)|Bii|»,‘,mz7 (18)
by = ((2 + 87T)|Gii|maz + (4 + 8’”)‘Bz‘i|maw
_QQload,a,i) m?X(Eequ,i)7 (19)
b2 = ((2 + 87T)|Gii|maz + (4 + SW)‘Biilmaz
+2Qload,a,i) m?X(Ecqu,i)u (20)
c= 47T(‘Gii|ma:c + |Bzz ‘max)(mlaX(Ecqu,i))2~ (21)

1If for each voltage magnitude E;,

E_y < Ei(0) — Bequi < By, (22)
then there exists a non-empty set

Ip={E €R™: Enin < E; < Enas, 0 < Enin < Enast,
where there are

Emin= miin(Eeqw) +min(0, E_ ),

Enaz = mzax(Eequ,i) + max(0, E+J),

and
Byw= Kq/mqg + Qioad,pi — b1
7 2(a - Qload,aﬁi)
+ V(b1 = Kg/mg — Quoad,p,i)? — 4(a — Quoad.a,i)C
2(a — Quoad,a,i)
B = Kq/mq + Qioadb,i — b1
7 2(a — Quoad,a,i)
V(1 — Kg/mq — Qioad,,i)?* — 4(a — Quoad,a,i)c
2(0’ - Qload,a,i)
E‘ — KQ/WLQ + Qload,b,i + b2
- 2(Qioad,a,i + @)
+ V(b2 + Kg/mq + Qioad,p,i)? — HQload,a,i + a)c
2(Qioad,a,i + @)
E—,l — _KQ/mQ + Qload,b,i + b2

2(Qload,a,i + CL)
. \/(b2 + KQ/mQ + Qlo(z,d,b,i)2 - 4(anad,a,i + a)c
2(Cgload,a,i + CL) ’




The nonempty set Lg is positively invariant with respect
to equations (2,3,13-15).

Proof 4 Tp will be an invariant set, if for arbitrary i €
{1,2,...m}, | Ey| is non-increasing on the border of I,
with two cases to be considered. When there is E,- =
E; — Ecqu,i > 0. Inserting equation (A.1) into equation

(14) yields

E; < —[Kg +mq(2Eequ;i + E:)Qioad,a,i + Quoaa,n,i| Bi
-‘er(lEEi + ls2m),
=mqc+mqo(—Kq/mq — Quoadp,i + b)E;
+mQ(—Qioad.ai + ) Ej.

E; should be non-positive to make E; non-increasing.
Given the lemma’s hypothesis (16,17), the equation
(—Quoad,a,i +a)2% +(—Kg/mq — Qioad,p,i +b1)z+c =0
has two real solutions, at least one of them being posi-
tive. If E+,l < E; < E'+7u is satisfied, then E; is not

increasing when E; > 0.

The other case is Ei < 0. Similarly,

E; > —[Kg +mq(2Eequ;i + E:)Qoad,a,i + Quoaa,n,i| Ei
—mQ(lEEi + ls2m),
=-mqgc —mq(Kq/mq + Qoad,p,i + bo) E;
—mQ(Quoad,a,i + @) EZ.

E; should be non-negative to make E; non-decreasing.
Given the lemma’s hypothesis (16,17), the equation
(Qioad,a,i + )2+ (Kg/mg+ Qioad,p,i +b2)x+c¢ = 0 has
two real solutions, at least one of them being negative. If

E_; < E; < E~'_7u is satisfied, then E; is non-decreasing
when F; < 0.

Fig. 3. Illustration of Voltage Invariant Set

Existence of an invariant set of voltage is demonstrated
in Figure 3. The x-axis in the figure is the voltage magni-
tude E; at bus i, and the y-azis is the derivative of voltage
error E;. Separated by Eeqy,i, voltage error dynamics are
discussed with both E; < 0 and E; > 0. If conditions in e-
quations (16,17) are satisfied, two quadratic curves cross
the x-axis where Ei = 0. When Ei >0, thefe 1S a4 conver
quadratic curve, with cross points {E} ;, Ey . }. When
FE; < 0, there is a concave quadratic curve, with cross

points {E,vl, E,7u}. If an initial voltage error EZ(O) lies
between either {E+,Z7E+71,,} or {E7’17E77u}, E;(t) ap-
proaches to cross points that are closer to Eeqy,, i.e. with
Ey, and E_ ,, respectively. For anyi € {1,2,...,m}, E;
stays in L once it starts between E,J and EJDU,. There-

fore, the two conditions in equations (22) imply that Tg
1s positively invariant.

Remark 1 Fquation (16) bounds constant impedance
reactive load Qioad,qa,i bY the coupling strength of the net-
work through |Gi|maz and | Bii|maz -

Remark 2 Equation (17) bounds worst-case voltage
control authority Kqg/mq in the form of functions of
reactive loads Qload.qi, voltage states Eeqy i, and network
coupling (in Gy; and By; ). It means that voltage control
authority of DGs must compensate for local reactive
loads and coupling from neighboring buses.

As voltages are bounded within Zg, a condition is deter-
mined for a positive invariant set of phase angles. The
“Power Flow P” block and the “Frequency Synchroniza-
tion” block, in Figure 2, are involved to prove bounded
phase angle differences. The following lemma character-
izes a positive invariant set of phase angle differences
{0;}, drawing upon techniques used in [4][3], based on
consensus of nonlinear oscillators.

Lemma 3 Assume the conditions in Lemma 2 are sat-

isfied.
Define Ay =nEp, min(|5;1),
and Az =max(|w; — wjl) - 2E2,i|Giilmin,
in which w; =wo + mp(Prefi — E?Gyi — Pioad,i(E)),
where Eyin and Enax are from the set Zg in Lemma 2. If
Ajqsin(f) > Ao, (23)
then there exists a non-empty set

Ty ={0 € R™ : max(|0; — 0;]) < 0,0 € [0,7]},
i

which is positively invariant with respect to equations
(2,3,13-15).

Proof 5 Define a positive function Vy(6) : R™ — [0, 7]
for the network with m buses as

1 1
Vo(0) = — max(|0; — 0;|) = — (0 — 6)),

5(0) = moomax(, — 0,) = ~— (6 =)
where the kth bus achieves clockwise maximum 0, and
the lth bus achieves the counterclockwise minimum 6,
with k,l € {1,2,...,m}. Assume that |0;(0) —0;(0)] <0



foranyi,j € {1,2,...,m}, where 0 is arbitrary and 6 €
[0, 7], such that all angles are contained in an arc of length
0. The positive function Vy only takes into account buses
with inverter-based DG's, because pure load buses have
their phase angle dynamics determined by neighboring
buses. Once states on DG-coupled buses are obtained,
states on pure load buses are derived through algebraic
relationships.

Taking the upper Dini derivative of Vy to deal with dis-
continuity, there is

DTV,
= (wr — w1)
— [Z EkEjBkj sin(ek — 9]) — ZE[E]'B[]' sin(ﬁl — 93)]
j=1 j=1
jk Gl

— [Z EkEijj COS(@k — 9j) — ZElElej COS(Q[ — ej)L

Jj=1 Jj=1
J#k J#l

< max(|w; — w;]) — Eayynmin(|Byj|) sin — 2E2,[Gii|min-
i#] i#]

m

Under the lemma’s assumption in equation (23), it is
clear that D™V, < 0 and therefore Vy is non-increasing.
As a result, Ty is a positively invariant set.

Remark 3 Fquation (23) bounds network weakness in
the form of B;; and Gy;, while the size of phase angle in-
variant set is larger for strong networks than weak ones.
Smaller natural frequency differences lead to easier con-
vergence of phase angle differences.

Existences of these two positive invariant sets Zp and
Ty provide bounded voltage magnitudes and phase an-
gle differences. Asymptotic convergence of phase angle
differences and voltages are then proved, followed by fre-
quency synchronization.

4.2 Asymptotic Stability

Before proving asymptotic stability, the following lem-
ma is established to show that a reduced-ordered Met-
zler matrix [23] with zero row sums still has the same
property. It is used when pure load buses are considered
in frequency synchronization analysis.

Lemma 4 Assume that F' is a Metzler matriz with ze-
ro row sums, if matriz F' is written as a block matrixz as
[Fy Fy; F3 Fyl, in which Fy and F3 have non-zero el-
ements on each row, then the matriz (Fy — F2F471F3) 18
also a Metzler matrix with zero row sums.

Proof 6 Since the matriz F is a Metzler matrixz with

zero Tow sums, then there is

n n
Fi+ Y F;=0, |Fi= Y F;=0.
=1 =1

Based on Gershgorin theorem, matriz F' has all its eigen-
value disks centered at diagonal component values stay
complete in the left-hand-side of the imaginary axis.

Because matriz Fy has non-zero elements on each row,
diagonal block matrices Fy have its row sums as follows

m l
Iy + Z Fii=— Z Fyi5 <0,
J=1,j#i j=1,57#i

|F1,ii‘ > Z Flﬁz'j > 0.

J=1,j#i

Also based on Gershgorin theorem, matriz Fy has all its
eigenvalues with negative real parts. Similarly, matriz
Fy also has all its eigenvalues with negative real parts.
Diagonal block matrices Fy and Fy are both invertible.

Since matriz (—Fy) is a nonsingular matriz with nega-
tive off-diagonal entries, whose eigenvalues all have pos-
itive real parts, then (—Fy) is an M-matriz [16]. Based
on characteristics of M-matrices, its inverse (—Fy) ' is
nonnegative with all its elements nonnegative. Therefore,
matriz Fy is invertible, and all elements of the inverse
matriz Fy ' are negative.

Expressing Fy and F; ' in row vectors {b;} and column
vectors {a; }, respectively, wherei € {1,...,1}. Equation
F4F4_1 = F4_1F4 = I is rewritten as

by 10...0

. bo 01...0
Fy Fy= . (alaz---az): i

b 00...1

then b; 22:1 a; =1 for eachi € {1,2,...,1}. Expressing

F3 in column vectors {c;}, where j € {1,...,m}, then
there is
by
-1 b2
F4 F3: (Clcg...cm):(dldg...dm),
b
whose row sums are b; Y i ¢; for all i € {1,2,...,1}.

Since each column vector ¢; are positive, byc; is negative



for any i and j. Since F is a Metzler matriz with ze-
: l

ro row sums, there is Z;nzl cj + ijl aj = 0 for each

i € {1,2,...,1}, then each row sum has b; Z;n:l ¢ =

—b; Zé-:l a; = —1. Since b; Z;":l ¢;j = —1 and each

bic; is nmegative, then there is —1 < bic; < 0 and ma-

triz Fy ' Fy has all its components negative. With matrix

Fy expressed as row vectors {e;}, where j € {1,...,m},
then there is a square matrix

€1d1 61d2 N eldm

62d1 egdg e egdm
FyF Py =

emdl emdQ N emdm

Since each element of vector d; is between —1 and 0, then
there is 0 < —e;d; < Z;”zl e;. Bxpressing matriz Fy as
row vectors { f;}, then there is

fi eid; eidy ... eidy,
1 f2 €2d1 62d2 A egdm

Fl - F2F4 FB = . - . . . . )
fm emdi emds ... endm

in which each row is fil, — e; Z?;l d; = 0. Since there
18 fiu —eid; < fii + Z;nzl ej < 0, then each diagonal
element (fi; — e;d;) is non-positive and all non-diagonal
elements f;; — e;d; are positive. As a result, the matriz

F — F2F4_1F3 is still a Metzler matriz with zero row
sums.

Building upon the two invariant sets Zg and Zy, asymp-
totic convergence of phase angle differences 6 requires a
stricter condition than the one in Lemma 3. The follow-
ing theorem establishes sufficient conditions for phase
angle differences convergence.

Theorem 7 Under conditions in Lemma 2 and 3, if

A1 Sil’l('ﬂ'/? - alnax) > A27 (24)
in which Ay =nFE?%;, rg&in(le‘jl)v
i#j

and Ay = rgfgjx(\wi —wjl) = 2E2,:,|Glilmin,

where Qumax = max;zj(tan"'(—G,;/B;j)), then each

phase anglelimy_, o 0;(t) = Oequ,i, foralli € {1,2,...,m}.

Proof 8 It is assumed that voltage magnitudes are con-
stants and phase angles are states changing with time.

Deﬁneaij = _d)ij = tanfl(—g—:j) S [0,
ural frequencyw; = wo+mp(Prefi—E?Gii—Pioad,i(Ei))

51. Because nat-

for bus i, it is not a function of phase angles 6;. Taking
voltages as inputs, derivatives of equation (13) are

— meZEE| il cos(8i — 65 — i) (0 — 8;)

J;ﬁz
=mpF(t)),

forie{1,2,...,m}, where F is a matriz whose compo-
nents are
Fi(t ZEE [Yi | cos(d; — 0; — ),

1

2

Fij(t) = EiEj|Yij| cos(d; — 6; — au).

Similarly for pure load buses, since P; + Poqq,; = 0 and
Pioad,i s independent of frequency, then there is

ZE E | |CO§( J a”)(él — (5]) = Fi(t)g,

J#z

fori e {m+1,m+2,...,m+ 1}, where F(t) has the
same form as the fast inverters.

By Lemma & and setting ) = 5 — Qaz, for all0;,0; € Iy
wherei,j € {1,2,...,n}, there is |0; — 0;] = |9, — 0;] <
5 — Qmax- This inequality simply means that cos(d; —0; —
a;;) > 0, then matriz F(t) satisfies: (a) its off-diagonal
elements are nonnegative and (b) its row sums are zero.
As a result, F(t) is a Metzler matriz with zero row sums
for every time instant t.

With both dynamics of inverter-based DGs and pure load
buses, the complete system model is as follows, .

d <5mx1 > B (iémxl )
dt\ G )\ O
_ (mpF1 mpFy ) <5mx1 )
\ B R dix1 )
For any time instant t, block matrices Fy and Fy are in-
vertible having eigenvalues with pure negative real parts;

Fy and F5 are non-zero matrices. It can be simplified to
an m-dimensional system

d -

%6m - mP(Fl - F2F4_1F3)5m - mPFsim(;nr

Based on Lemma 4, the simplified matriz Fg;,, preserves
this property for any time instant t.

Since Fyip, is still a Metzler matriz with zero row sums,



then the proof of asymptotic frequency synchronization
1s identical for networks either with or without pure load
buses. As long as frequencies at buses tied to inverter-
based DGs converge, pure load buses would average fre-
quencies of neighboring buses to the same value as well.

For the simplicity of notation, the dynamics is written as

%&n = mpF(t)d,,. Taking the mth bus as a reference,

then it is possible to rewrite the m-dimensional system
into a (m — 1)-dimensional one as follows

(;1 — Sm 51 - Sm
d 52 - 5m 52 - Sm
% :mPmel(t) :
5m—1 - 5m 5m—1 - 5m

where each element Fy,_1;; = F;j — Fy,j. Subtracting
non-negative off-diagonal components of the mth row
Fojy forj € {1,2,...,m — 1} shift components on the
other (m — 1) rows to the negative direction. Based on
Gershgorin theorem, matric F,,_1(t) has all its eigenval-
ues with negative real parts for every time instant t. The
time-varying dynamic system above can be rewritten as

(91 91
d 0 )
% = mP-mel(t)
émfl 9.,7171

Define a candidate Lyapunov function V; = 9%,19}”_1,

then it is bounded as ky||0m_1|3 < Vi < o llfm-113,
where ki and ko are positive constants. There is

Vi o= 00 L [(ET_y(t) + Fuea(t) + mp(FL_ () +

Fru1(t)]0m_1. Although symmetric matriz (Fh_y) +

F(n,l)) is not definite, negative definite matrizmp(FL _ (t)+

Fi—1(t)) dominates the weighting function, so that Vj
is bounded by Ve’ < —k3||0m_1||?3 with ks > 0. Since ky,
ko, and ks are all positive constants, according to theo-
rem 4.10 in [11], there is 0; asymptotically converging
to zero, i.e. each 0;(t) = 0;(t) — 0, (t) converges to a
constant value.

Based on the hybrid network model of phase angles, by
applying (8; — 0, for eachi € {1,2,...,m —1}, there is

0; = o = (wi — wim) —mp(D_ EiEy|Yy|sin(8; — 65 + ¢i))

j=1
J#i
m—1
= BB Yo Sin(0m — 0 + bmj)).
j=1

A linearized model for phase angle analysis can be derived
with respect to the equilibrium point O.q,. There is an
(m — 1)-dimensional model as follows

él 91
9~2 52
. =mpFm_1(t)

émfl émfl

where each element Fp,_1 ;; = Fyj — Fy;. For the lin-
earized phase angle difference model above, a Lyapunov
function can be defined as Vz = 0% 10,1, bounded
as ky||Om-1ll3 < V5 < kyllOm-1ll3, where ky and k,
are positive constants. The time deriwative of this Lya-
punov function is Vz = 0L _ [(FL_(t) + Fn-1(t)) +
mp(FE_ (t) + Frn_1(t))]0m_1. Negative definite matriz
mp(FL_ (£)+Fn_1(t)) dominates indefinite (EL_ (t)+
Fp1(1)), leading to a bounded V < — kg || 01 |3 with
ké > 0. Since kll, k;, and ké are all positive constants,
according to theorem 4.10 in [11], there is asymptotic
convergence of phase angle differences 0,,,_1(t) to a zero
vector. Since the linear model is with respect 10 Ocqn,, then
phase angle differences 0,,_1(t) converge asymptotical-
ly to the equilibrium point to Oeqy. Based on asymptotic
stability theorem in [11], the original nonlinear system
model is asymptotically stable with respect to Oeqy, .

Remark 4 Equation (24) bounds the ratio |G;;/Bi;| of
the weakest link within the network. Satisfying this con-
dition ensures phase angle differences 0(t) converging
to Bequ, once phase shifts reduce within the bound of
(g - amam)~

As long as the phase angle differences asymptotically
converge to an equilibrium point 6.4, voltage magni-
tudes of each bus are also asymptotically stabilized. The
proof of Theorem 7 is decoupled from asymptotic volt-
age stability analysis. The following theorem establishes
the asymptotic voltage stability.

Theorem 9 Assume that conditions in Lemma 2 and
8 as well as Theorem 7 hold, then there is phase angle
differences 0 converging to 0.4, and voltage magnitudes
within invariant set Zg. Define By and By as

K .
Bi=—-2+4 min(Qioad,b,i + (Fequ,i + Fi)Quoad,a,i)s

mQ [
B2 =mg.

If there is By > B, (25)

then vector { E;} asymptotically converges to {Eequ.i}-



Proof 10 Because there is an algebraic relationship be-
tween Q; and E; for pure load buses, as shown in equation
(15), it is only necessary to consider only buses with volt-
age droop control mechanisms. Define a positive function
Ve = Zzl 27}@ E2. Taking the derivative of Vg, there is

m 1 - =

Ve=> —EE
E o mo 10
—G"E

~ . K ~
_Eleag(miZ + Qload,b,i + (Eequ,i + Ei)Qload,a,i)E'

Because Lemma 8 and Theorem 7 imply convergence of
vector {0;} to {Ocqu.i}, for any ey there is a time T such
that when t > T there is |9~i|mar = 0; — Ocqu,ilmaz < €0-
Due to Lemma 6, ||Q||2 is bounded above by mp| E||s +
Vmmgeg. As a result, the derivative of Vg is bounded as,

Vi <vmmgeg Y | Ei]
i=1
~ . K
+ Eleag(mE i Qload,b,i —
mqQ

For an arbitrary eg, there is a subset of E’(t) satisfying

2\/ﬁm969

K )
—mpg + mig + Qload,b,i + (Eequ,,i + Ei)Qload,a,i

|E~'Z‘ <

foralli € {1,2,...,m}. Under the theorem’s assumption
in equation (25), the denominator in the equation above is
positive. Once E(t) enters the subset att = T, it stays in
the set thereafter, i.e. the system is uniformly ultimately
bounded. As eg goes to zero, T increases and the size of the
ultimate bound asymptotically goes to a zero vector. This
is sufficient to imply asymptotic convergence of E to zero,
which further implies voltage stability. As a result, the
voltage control block ensures the asymptotic convergence
of voltage magnitudes {E;} to {Eequ.,i}-

Remark 5 Fquation (25) bounds control authorities of
voltage controllers Kq/mg. As long as voltage control
authority is sufficient, voltage magnitudes asymptotically
converge to the unique equilibrium point Feq,.

Theorem 11 Assume that conditions in Lemma 2 and
3, as well as Theorem 7 and 9 hold, then lim;_, o 01(t) =

oo =1imy 00 0 (t) = Wequ SO that there is asymptotic
frequency synchronization.

Proof 12 Since conditions in Lemma 2 and 3, as well
as Theorem 7 and 9 are all satisfied, then there is phase
angle differences 6 converging to Oeq, and voltage mag-
nitudes E converging to Eeq,. Based on power balance

10

X

(Eequ,i + Ei)Qload,a,i)E-

relationships in equations (2,3), real and reactive power
P and @ also converge to P.q, and Qcqu, respectively. S-
ince P — Pegy and E — E.q,,, phase angle dynamics in
equation (6) is written as,

lim 5l(t) =mp(Pref,i —

Pogui — Proad.i(Fegu.i .
oo equ,i load,z( equ,z)) + wo
Bring expression of Prey,; in equation (12), for each bus
i there is

- 1
lim 6;(t) = mp(— (Wequ — wo)) + wWo = Wequ-
mp

t—o0

Frequency at each DG-coupled bus converges to the equi-
librium wegqy. Since frequencies on pure load buses are
averages of their neighboring buses, the all n buses have
limy o0 01(8) = ... = limy—y 0 05 (t) = Wegqu, €. convery-
ing to the same Wegy -

4.8  Eztension to Grid-Connected Scenarios

To extend our analysis from islanded networks to gener-
al grid cases, a grid connection point must be included,
which can be treated as an infinite bus. Different from
a droop-controlled DG, this infinite bus maintains volt-
age and compensates for any real power imbalance. Such
an infinite bus is approximated as a bus tied to inverter
based DGs, whose control strengths of both phase angle
and voltage, represented as m,, and K¢ /m, are infinite.
Stability conditions are then naturally satisfied, with
other buses controlled by droop controllers. Therefore,
our stability analysis extends to grid-connected cases.

5 Simulation Experiments

Simulation tests are conducted in a modified IEEE stan-
dard 37-bus distribution network. Two simulation mod-
els with different SCR values are introduced. One model
has an SCR of around 1000, i.e. a strong network; the
other model is a stressed weak network with its SCR
being around six. Simulation results show that the sta-
bility conditions derived in this paper ensure stability
for stressed weak networks, even after recovering from
disturbances such as load changes and voltage impulses.
Without conditions on voltage control, although strong
networks can recover from impulse disturbances on DG’s
voltage magnitudes, stressed weak networks cannot sta-
bilize anymore. Therefore, stability conditions derived
for strong networks, without considering voltage control,
is not sufficient to assure asymptotic stability of weak
networks.

Based on the standard test feeder in [10], demonstrated
in Figure 4, the 4.8kV strong network has three mod-
ifications: a) the unbalanced network is modified such
that all pure load buses except bus 1 are with 100kW of
three-phase balanced constant impedance load; b) there
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Fig. 4. Simulation 37-bus Test Feeder with 5 Distributed
Generations

are five additional DGs coupled at the ends of distribu-
tion feeders, with a total capacity sufficient to supply all
loads; c¢) cables used to connect inverter-based DGs are
200 feet “724” cables, as defined in [19]. Compared with
the strong network model, the weak network operates at
480V and has its connections cables to DGs extended to
1000 feet.

In the first place, satisfying the sufficient stability condi-
tions ensures that the DG-coupled distribution network
asymptotically converges to an equilibrium point. In the
strong network, equilibrium points conform to regulato-
ry limits of frequency around 60Hz and voltage within
[0.95,1.05] p.u.. An optimal power flow (OPF) problem
is formed to calculate the equilibrium point. The solution
has its frequency weq, = 60Hz, all voltage magnitudes s-
tay between 0.997p.u. and 1.003p.u.. Conditions in Lem-
ma 2 requires that Ko > 111388, with mg = 0.05. The
Jacobian in Lemma 1 is full rank, and conditions in Lem-
ma 3, Theorem 7, and Theorem 9 are all satisfied.

The following simulation test starts from connecting to
the main grid; at ¢ = 50s, the test feeder is islanded from
the main grid by opening the primary switch between
bus 1 and 2; at t = 75s, the load on all pure load buses
increase by 50% for five seconds. Both network frequen-
cy and voltage magnitudes converge to the equilibrium
point, as shown in figure 5.

In the left plot in figure 5, the upper and lower dash
lines are the maximum and minimum voltages among
all buses. The solid line represents the voltage magni-
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Fig. 5. Simulation Result of DG-coupled 37-bus Test Feeder
Response to Changing Loads

tude at bus 2. In the right plot, network frequency is
demonstrated in blue line, with a 60Hz nominal value.
During the islanding operation at ¢ = 50s, the voltage
envelop does not change. Within five seconds after is-
landing, both voltage magnitudes and network frequen-
cy converge to the equilibrium point. After the load in-
crease at ¢t = 75s, the maximum voltage decrease is less
than 0.003p.u., and the network frequency droops by as
much as 3.31 x 10~ %Hz. In less than five seconds after all
loads return to nominal values, network states restore to
the equilibrium point.

The following simulations show network response to
voltage magnitude changes on buses tied to DGs in fig-
ure 6. After the test feeder islands from the main grid
at t = 50s, network states converge to the equilibrium
point in five seconds. At ¢ = 75s, the voltage magni-
tude at DG 1 is decreased by 0.9p.u. and increased by
1.1p.u.. The network response is shown as in figure 6
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Fig. 6. Simulation Result of DG-coupled 37-bus Test Feeder
Response to Voltage Changes at DGs

In the left plot of figure 6, the minimum voltage envelop
drops to 0.102p.u., in response to a 0.9p.u. voltage drop
at DG 1. Voltage magnitudes restore to the equilibrium
point in less than two seconds, so as the network frequen-
cy. In the right plot, the maximum voltage increases to
2.102p.u., after the voltage magnitude at DG 1 increas-
es by 1.1p.u.. Restoration of voltage and frequency takes
less than two seconds.

Both simulation tests demonstrate that satisfying sta-
bility conditions derived earlier, system states of a
DG-coupled power distribution network asymptotical-
ly converge to the equilibrium point designated. Even
after load changes on pure load buses and voltage
magnitude changes on DGs, system states restore to

(chu7 ch’m gcquy Ecq'm wcqu) .



For the strong network, if voltage control condition is
relaxed such that Kq is only 1% of the original value,
system states are still able to restore to the designated
equilibrium point. Voltage impulse disturbances are a-
gain applied to this network, such that the voltage mag-
nitude at DG 1 is decreased by 0.9p.u. and increased by
1.1p.u.. The network response is shown as in figure 7
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Fig. 7. Simulation Result of DG-coupled 37-bus Test Feeder
Response to Voltage Changes at DGs with Decreased Kg

In the left plot of figure 7, the minimum voltage envelop
drops to 0.102p.u., in response to a 0.9p.u. voltage drop
at DG 1. Voltage magnitudes restore to the equilibrium
point in less than two seconds, so as the network frequen-
cy. In the right plot, the maximum voltage increases to
2.821p.u., after the voltage magnitude at DG 1 increases
by 1.1p.u.. Restoration of voltage and frequency takes
less than ten seconds. It is demonstrated that strong
networks can recover from voltage disturbances, even if
stability conditions for voltage control are relaxed.

In the weak network, whose SCR is as small as six, satis-
fying the sufficient stability conditions ensures that the
DG-coupled distribution network asymptotically con-
verges to an equilibrium point. The equilibrium point
is still at 60Hz, while voltage regulatory limits of +£5%
are relaxed. An OPF problem is formed to calculate the
equilibrium point, whose voltage magnitudes stay be-
tween 0.73p.u. and 1.33p.u.. Conditions in Lemma 2 re-
quires that Kg > 1476, with mg = 0.05. The Jacobian
in Lemma 1 is full rank, and conditions in Lemma 3,
Theorem 7, and Theorem 9 are all satisfied. Both load
level and voltage magnitude disturbances are applied to
the weak network, using the same procedure as in the
strong network.

In response to load level changes, both network frequen-
cy and voltage magnitudes converge to the equilibrium
point, as shown in figure 8.

In the left plot in figure 8, the upper and lower red dash
lines are the maximum and minimum voltages among all
buses. The blue line represents the voltage magnitude
at bus 2. In the right plot, network frequency is demon-
strated in blue line, with a 60Hz nominal value. During
the islanding operation at ¢ = 50s, the voltage envel-
op does not change. Within five seconds after islanding,
both voltage magnitudes and network frequency con-
verge to the equilibrium point. After the load increase
at t = 7bs, the maximum voltage decrease is less than
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Fig. 8. Simulation Result of Weak Network Response to
Changing Loads

0.15p.u., and the network frequency droops by as much
as 7.63 x 10~*Hz. In less than five seconds after all loads
return to nominal values, network states restore to the
equilibrium point.

In response to voltage magnitude changes at DG 1, the
weak network response is shown as in figure 9
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Fig. 9. Simulation Result of Weak Network Response to Volt-
age Changes at DGs

In the left plot of figure 9, the minimum voltage envelop
drops to 0.368p.u., in response to a 0.9p.u. voltage drop
at DG 1. Voltage magnitudes restore to the equilibrium
point in less than two seconds, so as the network frequen-
cy. In the right plot, the maximum voltage increases to
2.368p.u., after the voltage magnitude at DG 1 increas-
es by 1.1p.u.. Restoration of voltage and frequency takes
less than two seconds.

It is demonstrated that, asymptotic stability and fre-
quency synchronization are ensured in stressed weak net-
works, after load changes and voltage impulses on DG-
coupled buses. By reducing voltage control Kg from
1476 to 200, the weak network is not able to recover from
voltage magnitude disturbances. Stability conditions in
weak networks are not as conservative as in strong ones.
This phenomenon matches our stability analysis, where
strong network assumptions are relaxed for weak net-
works with small SCR values. Stability conditions de-
rived for strong networks, without considering voltage
control, is not sufficient to assure asymptotic stability of
weak networks.

6 Summary and Future Work

Asymptotic stability conditions are derived for DG-
coupled power distribution networks, when the net-
work interconnections are weak. These conditions take



the form of inequality constraints on various network
parameters, loads and generation control commands.
These conditions can therefore be easily incorporated
into optimal dispatch problems.

These stability conditions have the advantage of ensur-
ing stability under stochastic load and generation situa-
tions for weak networks. By incorporating these stability
conditions with OPF problems, intermittent renewable
DGs can be efficiently managed. Asymptotic voltage sta-
bility and frequency synchronization are ensured, with-
out the computational burden of applying model predic-
tive control algorithms. Relevant work will be demon-
strated in another paper.
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A Lemmas

In the Appendix, Lemma 5 and Lemma 6 establish
bounds on norms of @ as functions of voltage and phase
angle error vectors, i.e. £ and 6.

Lemma 5 Defined lg andly as

lE = Q(mia“X(Eequ,i) + |Ei|max)(|Giz‘|max + 2|Bii|max)7
le = Q(m?X(Eequ,i) + |Ei|maz)2(|Gii|maz + |Bii|maz)7



then absolute value of the reactive power error \QZ| is Remark 6 Absolute value of reactive power error|@i| is

bounded by bounded as a function of equilibrium voltage magnitude
Eegu,i, network link parameters G;; and By, as well as
|Qi| <1e|Eilmaz +lo - 27. (A1) mazimum voltage error |E;|.

Proof 13 With the help of its Jacobian 0Q/OE and Lemma 6 Define mg and my as
0Q/00, Q 18 linearized as Q Q— Qegu = ag‘ (E —
equ
equ+39‘ 6 eequ 72% E+%7§
equ

infinite vector norms on both sides, there is

mp =max{V\ : X is an eigenvalue of (9Q/E)*(0Q/IE)},
0. Taking me =max{VA : A is an eigenvalue of (9Q/90)*(9Q/0)},

equ

then two-norm of the reactive power error vector Q is

R

. H H H o] I1Qllz < melEll2 + v/nmo b max- (A2)

Proof 14 If system frequency synchronizes to weq,, and
max(|Q;|) < H max (|B]) + H H max(|9 D, phase shifts are within the invariant set Iy, then for any
! i € {1,2,...,n} there is a bounded |0;|. Within the in-
variant set Lg, applying vector two-norm and its induced

where || aQ lloo and ||%HOO are bounded as following matriz two-norm, there is
%Q Gl = 152 B + 526
- 2—HfE+f9H2’
192 "
= 3 Gy 0~ )~ By st =) <)% E||2 e eua
&’E(G 0 B e 00 255 NIl Bl + 1152 1/ mess(1]).
+ i(Gigsm(0; — ;) — Dyjcos(Vy —05)) — 285y,
=1 ng\|E||2+fm9max(\9i|).
i#i !
<|2E;Bj;| + 2 Z |Ei(Gijsin(0; — 6;) — Byjcos(6; — 0;))], Remark 7 Magnitude of reactive power error vector
j‘? |Qll2 is bounded as a weighted combination of voltage
i a
! magnitude error vector magnitude ||E| 2 and the maxi-
= ZmiaXﬂEiDHB”'m” + m?X(ZUGi” +1Bi;)], mum phase angle error \51|
j=1
J#i

As a result of Lemma 5 and Lemma 6, it is possible to
bound co-norm and 2-norm of error states of reactive
power . These bounds take forms of inequalities of volt-
age error and phase angle error magnitudes, which are
used later in deriving stability conditions.

< Q(maX(Eequ,i) + m.aX(|EiD)(|Gii‘mam =+ 2|Bii‘mam) =g,

155 e

= | Z EZE] (GU cos(Hi — 93) + Bij sin(&i — (9]))‘
=1
T#i
+ Z |E1EJ (G” cos(&i — Hj) + Bij sin(Gi — 93))|,
j=1
7
<2 Z |E1EJ (G” cos(&i — (9]) + Bij sin(Gi — 93))|,
j=1
7
< 2(max(| E;))* miaX(ZUGiﬂ +[Bi1),
=1
T#i

< 2(max(Eegu,) + m?X(|EiD)2(\Gu|mam + |Biilmaz) = lo-
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