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1. INTRODUCTION
Many real life systems can be viewed as networked sys-

tems that are composed by interconnected compartments
which exchange mass or energy between each other and with
their environment through fluxes. Such interaction with the
environment make these systems subject to external pertur-
bations that cause systems parameters to vary away from
the nominal values. For nonlinear networked systems, such
parameter variations can change the qualitative behaviors
of the system (i.e. phase portrait or stability) through a bi-
furcation [6]. These changes may result in a regime shifts [8]
in which the system ”flips” from a nominal operating state
to an alternative state. Regime-shifts can be catastrophic
for users who have grown accustomed to the quality of ser-
vices provided by the system prior to the shift. Examples of
this can be found in the eutrophication of shallow lakes as a
result of human-induced nutrient enrichment or the decline
of fisheries due to overfishing practices [8]. Another prime
example occurs when voltage collapses cascade through the
electric power network [4]. Each of these shifts has the po-
tential to disrupt the services that these systems provide
to the society. Forecasting the resilience of these networked
systems to parameter variations is therefore crucial for man-
aging their security and sustainability [1, 5].

Consider networked systems ẋ = f(x, µ) whose equilib-
rium x

⇤ depend on parameter µ. The resilience of a system
under parameter variation can be measured by the distance
� = |µ⇤ � µ

0| between the nominal parameter µ

0 and the
closest critical paramater µ

⇤ at which a bifurcation occur.
The quantity �, often called distance to closest bifurcation,
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is an indicator of how close the system is to a collapse. The
computation of � is generally di�cult since the bifurcation

set containing µ

⇤ is usually unknown. Prior works [2, 4]
have used numerical optimization techniques to search for
the minimum � subject to the constraints that a bifurcation
occurs at µ

⇤. These methods, however, are computation-
ally demanding since the search for minimum � requires the
computation of equilibrium x

⇤ at every iteration.
This paper uses sum-of-square (SOS) relaxation [7] to ob-

tain a lower bound on the global minimum of the ”distance-
to-bifurcation”, �, in networked dynamical system. Our ap-
proach uses algebraic geometry methods [3] to reduce the
size of the constraints and to avoid the computation of equi-
librium x

⇤ at every iteration of the optimization. We have
recently applied this method to a class of non-negative sys-
tems that has a kinetic realization [9]. This paper extends
the method in [9] for dynamical systems which may neither
non-negative nor has a kinetic realization. The method is
illustrated to study voltage collapse in power network [2].

2. NECESSARY BIFURCATION
CONDITIONS

Consider an n-dimensional polynomial system whose state
trajectories x(t, x0) satisfy

ẋ(t) = f(x(t), µ), x(0) = x0, (1)

for all t � 0 in which f(x, µ) 2 Rn(µ)[x] is polynomial in
the unknown x 2 Rn with coe�cient µ 2 Rp. The system’s
equilibria are vectors in Qn(µ) that are zeros of the right
hand side of (1). In other words, x⇤(µ) is an equilibrium if

x

⇤(µ) 2 {x 2 Qn(µ) : f(x, µ) = 0}. (2)

Computing the algebraic expression for x⇤(µ) in high dimen-
sional systems usually requires the use of symbolic methods.
These methods are based on the fact that a set of polyno-
mials generate an ideal in the polynomial ring and that the
zeros of the system of polynomials are equivalent to the zeros
of any Gröbner basis of that ideal [3].

Let J = @f(x,µ)
@x

|x⇤ be the Jacobian matrix of (1) with
characteristic polynomial p(s) = a0s

n+a1s
n�1+· · ·+an�1s+

an, where the coe�cients ai(µ) are function of the param-
eter, µ. For z = 1, . . . , n, let 4z denotes the zth Hurwitz
determinant of p(s). A local bifurcation can be character-
ized in term of the eigenvalue condition of J with some ad-
ditional transversality conditions [6]. Let ⌦SN and ⌦H be
the set of parameters for which a saddle node (also pitchfork



and transcritical) and hopf bifurcations occur. As shown in
[9], these sets are semi-algebraic sets characterized by ai(µ)
and 4z. One may then denote the parameter set for which
at least one type of bifurcation occurs as ⌦ = ⌦SN [ ⌦H

.

Thus, system (1) will not have a bifurcation if ⌦ is empty.
When system (1) is non-negative and has a kinetic real-

ization, the bifurcation set can be expressed only in terms
of the parameters, rather than the parameters and the equi-
libria. As a result, this parameterization can simplifies the
computation of the distance-to-bifurcation [9].

3. DISTANCE-TO-BIFURCATION
The previous section suggests that the non-existence of

a particular bifurcation is equivalent to the emptiness of
the corresponding bifurcation set. In general, checking the
emptiness of ⌦SN can be di�cult. In recent years, however,
it has proven fruitful to consider convex relaxations of the
problem [7] in which one checks for the emptiness of the set
⌦̃(�)\⌦SN , where ⌦̃(�) is a semi-algebraic set defined by a
positive semi-definite certificate function V (µ). In particu-
lar, let � be a real constant and let ↵(|µ� µ0|) be a class K
function in which µ is the parameter set and µ0 is a known
initial parameter. The certificate set is defined as

⌦̃(�) = {µ 2 Rp : ↵(|µ� µ0|)  �} . (3)

Given a specific � > 0, if the intersection ⌦̃(�) \ ⌦SN = ;,
then the distance to a saddle node bifurcation cannot be less
than ↵

�1(�). The key point is that verifying whether the set
⌦̃(�)\⌦SN is empty or not can be done using SOS program.
By defining the certificate function as V (µ) = ↵(|µ�µ0|), a
bound � for the minimum distance to a saddle node bifur-
cation can be obtained by the following SOS program [9].

maximize �̄

such that a

2
n�1(µ)(V (µ)� �̄) + r(µ)an(µ) is SOS.

A similar result would also hold for the Hopf bifurcation.

4. THE VOLTAGE COLLAPSE PROBLEM
Consider a simple power network [2] in figure 1 whose

underlying di↵erential equations are given by

!̇ =
1
M

[Pm � Pe1(�, V )�DG!]

�̇ = ! � 1
DL

[Pe2(�, V )� Pd]

V̇ =
1
⌧

[Qe(�, V )�Qd]

(4)

where � = �1 � �2, Pe1 = G � V (G cos � � B sin �), Pe2 =
�V

2
G+V (G cos �+B sin �), Qe = �V

2(B�Bc)�V (G sin ��
B cos �), G = R/[R2 + (XL �Xx)

2], B = (XL �Xx)/[R
2 +

(XL �Xx)
2
. We will use the methods in previous section to

Figure 1: A simple power network [2].

determine the distance to saddle node bifurcation (i.e. volt-
age collapse). We pose the problem in term of parameters
k = (Pd, Qd) (the load powers) and compute the minimum
� = |k⇤ � k

0| such that the equilibrium and the bifurcation
conditions are satisfied. Assuming ! = 0, Xc = Bc = 0, R =
0.1, XL = 0.5 and letting x = sin � and y = cos �, one can
verify that these conditions satisfy the following equations.

0 = �V

2
G+ V Gy + V Bx� Pd,

0 = �V

2
B � V Gx+ V By �Qd,

0 = B

2 +G

2 � 2B2
V y � 2G2

V y

0 = x

2 + y

2 � 1.

For simplicity, let’s assume a constant power factor of Qd =
0.25Pd. Computing a Gröbner basis, G, for the ideal gener-
ated by the above polynomials yield a single polynomial

G = B

4 �B

3
Pd + 2B2

G

2 � 4B2
GPd � 4B2

P

2
d �BG

2
Pd

+ 2BGP

2
d +G

4 � 4G3
Pd � 0.25G2

P

2
d ,

and the minimum distance to bifurcation can be recasted as

maximize: �

such that: (P ⇤
d � P

0
d )

2 + (Q⇤
d �Q

0
d)

2 � � + r(µ)G is SOS.

The SOSTOOLS [7] were used to solve the above SOS pro-
gram and found a minimum � = 0.443 which corresponds to
µ

⇤ = (0.6661, 0.1665). These are the same results obtained
in [2], but the underlying optimization problem is much sim-
pler than that used in [2] as it only uses a single constraint.
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