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Abstract— An interconnected wireless networked system con-
sists of numerous coupled subsystems that need to exchange
information over wireless communication channels. The use
of these wireless networks induces a great deal of stochastic
uncertainty that often results from deep fades, where a severe
drop in the quality of communication link occurs. Such uncer-
tainty negatively impacts the system’s performance and causes
unexpected safety issues. This paper proposes a distributed
switched supervisory control scheme under which the local
controller is reconfigured in response to the changes of channel
state, to assurealmost sure safety for the interconnected system.
Here, almost sure safety means that the likelihood of the system
state entering a safe region asymptotically goes to one as time
goes to infinity. Sufficient conditions are provided for eachlocal
supervisor to determine when and which controller is placedin
the feedback loop to assurealmost sure safety in the presence
of deep fades.

I. I NTRODUCTION

A distributed wireless networked systems(WNCS) consists
of numerous coupled dynamical subsystems that coordinate
their behaviors by exchanging information over wireless
radio communication (RF) networks. It is well known that
these RF networks are subject to deep fades, where the
network’s quality of service drops precipitously and remains
low for an extended interval of time. These deep fades inject
a great deal of stochastic uncertainty into the system, and
negatively impact the system’s performance and stability
by interfering with the coordination between subsystems.
The loss of coordination may cause serious safety issues
in applications like smart transportation system [1], [2],
unmanned aerial vehicles systems [3] and underwater au-
tonomous vehicles [4]. These issues could be addressed by
developing a distributed switched supervisory control system
that detects such deep fades and adaptively reconfigures its
controller to enforce a minimum safety requirement.

In real application, the safety issue is often examined in a
stochastic setting by discussing the likelihood of a system
state entering a forbidden or unsafe region. Traditionally,
this has been done using mean square concepts in which
the variance of some important system state, such as inter-
vehicle distance, remains bounded. Such a concept is also
analogous to the notion ofstochastic safety in probability
[5]. The common feature of above work is that they bound
the likelihood of unsafe action occurring with a nonzero
value, which still allows a finite probability for the system
to be unsafe. This mean square safety orstochastic safety
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in probability criterion is simply not appropriate for many
safety-critical systems such as smart transportation system
where a small probability of danger can incur catastrophic
failure. This paper suggests using a stronger notion ofalmost
sure safetyto assure the system state asymptotically goes to
a safe equilibrium or a bounded safe set with probability one
as time goes to infinity. In particular,almost sure safetyin
this paper refers to two strong notions of stochastic stability:
almost sure asymptotic stabilityand almost sure practical
stability.

The channel model that is used to attainalmost sure
stability must be carefully specified. Traditionally, this has
been done by modeling channel fading as anindependent
and identical distributed (i.i.d)random process having either
a Rayleigh or Rician distribution. This characterization might
be reasonable for most stationary wireless networks, the use
of i.i.d model is questionable in vehicular communication
since the channel state is functionally dependent on the
vehicle’s physical state [6], [2]. A more realistic fading
channel model was examined in [7], in which the channel
is exponentially bursty and is dependent on the norm of
the physical system’s states. Such model is often referred
to exponentially bounded burstiness(EBB) [8], and is more
general in the sense that it can characterize the i.i.d channels
as well as bursty channels that are often modeled as a two
state Markov chain [9].

By using the EBB model that is functionally dependent
on the physical state, one can develop a distributed switched
supervisory control strategy to assurealmost sure safetyfor
a class of interconnected networked systems. The intercon-
nected system consists of a collection of subsystems that are
connected in a cascaded structure with upper systems driving
the lower systems via their control inputs. This structure
normally exists in vehicular systems, such as the chain
of leader-follower formations discussed in [10]. Assuming
an exponentially bursty channel model, this paper derives
conditions that are sufficient for the entire system to have
almost sure asymptotic stabilityand almost sure practical
stability [11]. These sufficient conditions are used by the
supervisor in each subsystem to decide when and how to
select controller in the presence of deep fades.

The layout of the paper is as follows. Section II intro-
duces mathematical notations. Section III provides a system
description and problem setup. After that, we discuss the
main results in Section IV. Finally, Section V concludes the
paper.



II. M ATHEMATICAL PRELIMINARIES

Let Z andR denote the set of integers and real numbers,
respectively. LetZ+ and R+ denote the set of positive
integers and non-negative real numbers, respectively. Let
R

n denote then-dimensional Euclidean vector space. The
∞-norm on the vectorx ∈ R

n is |x| = max|xi | : 1≤ i ≤ n,
and the corresponding induced matrix norm is‖A‖ =
max1≤i≤n∑n

j=1 |A
j
i |. Given a vectorx ∈ R

n, we let xi ∈ R

for i = 1,2, . . . ,n denote theith element of vectorx.
We let f (·) : R→ R

n denote a function mapping the real
line onto vectors inRn. Let f (t) ∈ R

n denote the value that
function f takes at timet ∈ R. Given a time intervalI ,
let ‖ f‖I denote the essential supremum of the functionf
defined over the time intervalI . We let ‖x‖∞ denote the
case whenI =R+. Let {τk}

∞
k=0 denote a strictly monotone

increasing sequence withτk ∈ R+ for all k ∈ Z+ and τk <

τk+1. Then, f (τk) denotes the value of functionf at timeτk.
For brevity, we letf (k) denotef (τk) if its meaning is clear
from the context. The left-hand limit atτk ∈R of a function
f (·) : R→R

n is denoted byf (k−). Similarly, the right-hand
limit of the function f (k) is denoted byf (k+). A function
α(·) : R+ → R+ is of classK function if it is continuous,
strictly increasing withα(0) = 0. It is said to be of class
K∞ if it is classK andα(s)→ ∞ ass→ ∞. In addition, a
function β (·, ·) : R+×R+ →R+ is said to be of classK L

if β (·, t) is classK for each fixedt ≥ 0 andβ (s, t)→ 0 for
each fixeds≥ 0 ast → ∞.

III. SYSTEM DESCRIPTION ANDPROBLEM SETUP

The system under study is a collection of cascaded wire-
less networked subsystems shown in Figure 1. The subsys-
tems are connected in a chain structure in the sense that the
upper systems drive the lower systems through their control
inputs. In the interconnected systems, the upper subsystem
can observe the state of its immediately connected lower
system. Each subsystem consists of three components:Plant,
Wireless NetworkandController.

A. Plant

The plant of the cascaded system satisfies the following
ODEs:

ẋ1 = f1(x1,d)+g1(x1,u1) (1)

ẋi = fi(xi ,ui−1)+gi(xi ,ui), i = 2, . . . ,N (2)

wherexi ∈R
n is the state of subsystemi, ui−1 ∈R

m andui ∈
R

m are respectively the control inputs of subsystemi−1 and
i, i = 2,3, . . . ,N. d(·) : R+ → R

l is the external disturbance
to the cascaded system. We assume internal control signals
ui(·), i = 1,2, . . . ,N are piecewise continuous functions and
are Lebesgue measurable and locally bounded. The functions
fi(·, ·) :Rn×R

m→R
n andgi(·, ·) :Rn×R

m→R
n are locally

Lipschitz and satisfy the following assumption.
Assumption 3.1:Let Xi ⊂ R

n, Ui−1 ⊂ R
m and Ui ⊂ R

m

be compact sets.∀xi ∈ Xi ⊂R
n, ui−1 ∈ Ui−1 ⊂R

m andui ∈

Ui ⊂ R
m compact sets, there exist Lipschitz constantsLi1,

Li2 andLgi such that

| fi(xi ,ui−1)− fi(x̂i ,0)| ≤ Li1|xi − x̂i|+Li2|ui−1|

|gi(xi ,ui)−gi(x̂i ,ui)| ≤ Lgi |xi − x̂i|

B. Wireless Network

As shown in Figure 1, the system states of each subsystem
must be transmitted over a wireless communication channel
to its Controller. The information about the system’s states
are limited by the following two constraints,

• The state measurementxi(t) is only taken at a sequence
of discrete time instants{τk}

∞
k=0, with τk < τk+1, k =

0,1, . . . ,∞.
• The sampled dataxi(τk) is quantized with a finite

number of blocksR̄i by the Encoder. Each block
containsn number of bits with each bit representing
the information for each dimension of the states.R̄i

blocks of bits are transmitted over an unreliable wireless
channel with only the firstRi(τk) blocks (Ri(τk) ≤ R̄i)
being received at theDecoderside.

We assume a noiseless feedback channel, with each suc-
cessfully received bit being acknowledged to theDecoder.
This allowsDecoderto use traditional dynamic quantization
methods [12], [13] to construct an estimate of the sampled
state. Letxq

i (τk) denote the state estimate at timeτk with
Ri(k) blocks of bits received. LetU i(k) represent the length
of a n dimensional hypercubeHi(k) with xq

i (τk) as its
center. The pair{xq

i (τk),U i(k)} characterizes the information
structure that is available to the control system, and is
constructed such that the sampled statexi(τk) is guaranteed
to lie in the hypercubeHi(k) at each sampling time instant.

Fig. 1. Distributed supervisory switching control structure for serial
connected wireless networked system

We adopt an exponential bounded burstiness (EBB) [8]
model to characterize the stochastic changes ofRi(k) in
the fading channel. EBB characterizations can be used to



describe a wide range of channel models including traditional
i.i.d models as well as two-state Markov chain models. In
particular, leth(·) and γ(·) denote continuous, positive and
monotone increasing functions fromR+ to R+. Assume the
probability of successfully receiving{Ri(k)} blocks of bits
satisfies

Pr{Ri(k)≤ h(|xi(τk)|)−σ} ≤ e−γ(|xi(τk)|)σ (3)

for σ ∈ [0,h(|xi(τk)|)]. The functionh(|xi(τk)|) is a threshold
for a low bit rate region that is varied as a function of the
system state norm|xi(τk)|. The exponent associated with
exponential decrease is represented by a functionγ(|xi(τk)|).
The two functions play different roles in the EBB model.
The function h(|xi(τk)|) characterizes the fact that as the
norm of the system state increases, the low bit rate threshold
shrinks and moves toward the origin. On the other hand,
the functionγ(|xi(τk)|) in the exponential bound models the
fact that the likelihood of exhibiting lower bit rate than
the thresholdh(|xi(τk)|) increases as the system state is
away from the origin. Such relationship exists, for example,
in Vehicle to Vehicle applications [2] where large inter-
vehicle distance and velocity yield low bit rate, or in wireless
mobile communication systems where the relative orientation
changes on the transmitter and receiver may cause a deep
fade.

C. Distributed Switched Supervisory Control System

Distributed switched supervisor system is a ”high-level”
decision system that uses available information includingthe
estimate of local system statexq

i (τk), local channel stateRi(k)
and the estimate of system statexq

i+1(τk) from subsystemi+
1, to orchestrate the switching among a family of candidate
controllers. The switching supervisor decision decides when
and which controller is selected and placed in the feedback
loop.

Switching only occurs at each transmission time instantτk,
and there is a family of candidate controllersKi = {Kℓ

i (·), ℓ∈
Ci} that are selected ahead of time for each subsystem, where
Ci is an index set taking value in{1,2, . . . ,Mi}. For any
ℓ∈ Ci , the controller functionKℓ

i (·) is locally Lipschitz with
Kℓ

i (0) = 0. With a selected control functionKℓ
i (·)⊂ Ki , the

control inputui over time interval[τk,τk+1) is generated by

˙̂xi = fi(x̂i ,0)+gi(x̂i ,K
l
i (x̂i)), x̂i(τk) = xq

i (τk) (4)

ui(t) = K l
i (x̂i), t ∈ [τk,τk+1) (5)

wherexq
i (τk) is the state estimate at timeτk.

Let ei(t) := xi(t)− x̂i(t) denote the estimation error. For
each selected controllerKℓ

i (·)⊂Ki , we assume each closed-
loop subsystemi generated by equations (1-2) and (4) is
input to state stable(ISS) with respect toui−1 andei . There
exists a corresponding ISS triple{β ℓ

i (·, ·),χℓ
i,1(·),χℓ

i,2(·)}
such that

|xi(t)| ≤ β ℓ
i (|xi(τ0)|, t − τ0)+ χℓ

i,1(‖ui−1‖[τ0,t])+ χℓ
i,2(‖ei‖[τ0,t])

(6)

with ℓ= 1,2, . . . ,Mi andu0 = d, whereβ ℓ
i (·, ·) is classK L

function, χℓ
i,1(·) and χℓ

i,2(·) are classK∞ functions.

A supervisory in each subsystem consists of two compo-
nents:Monitor andSwitcher.

Monitor: A dynamic system whose inputs are local system
estimatexq

i (τk), local channel stateRi(k) and system estimate
xq

i+1(τk) from subsystemi+1 at time instantτk, and whose
output is a set{η1

i ,η2
i , . . . ,ηℓ

i , . . . ,η
Mi
i }. Each element of

the set ηℓ
i : Ci → R+ denotes amonitoring signal that

characterizes performance level that can be achieved by a
controller K l

i (·) based on the available information. Such
characterization will be clear in Section IV.

Switcher: A logic system whose inputs are themonitor-
ing signals{ηℓ

i }
Mi
ℓ=1, and output is a piecewise continuous

switching signalsi(·) : RMi
+ → Ci that determines the control

law. The logic system could be simply a function that outputs
a controller index with the minimummonitoring signal.

IV. M AIN RESULTS

The main results of this paper provide sufficient conditions
to assurealmost sure asymptotic stabilityand almost sure
practical stability for a cascaded wireless networked system
in equations (1-2). Subsection IV-A gives a state dependent
dwell time function that is used to determine the switching
time. Under the dwell time result, subsections IV-B and IV-
C present sufficient conditions on the selection of controller
to assurealmost sure asymptotic stabilityand almost sure
practical stability respectively for each subsystem.

A. Dwell Time Function

Under the assumption that the switching only occurs
at each sampling time, this subsection constructs a state
dependent dwell time function in terms of the sampling time
interval. The sampling time intervalTk = τk+1 − τk can be
viewed as a minimum separation for two switches.

The following technical Lemma is used to characterize a
classK L function in terms of the composition of two class
K∞ functions.

Lemma 4.1 ([14]):Assumeβ (·, ·) is a classK L func-
tion. Then, there exist two classK∞ functionsθ1(·) andθ2(·)
such that

β (s, t)≤ θ1(e
−tθ2(s))

for all (r,s) ∈ [0,a)× [0,∞) wherea∈ R+.
The following Lemma makes use of the technical Lemma

4.1 to construct a state-dependent dwell time function. The
dwell time function provides a lower bound on the transmis-
sion time interval for the cascaded system in equations (1-2)
and (4).

Lemma 4.2:Consider the interconnected system in equa-
tions (1-2), letKℓk

i (·) denote the selected controller function
for subsystemi at time instantτk and letβ ℓk

i (·, ·) represent
the corresponding classK L function in equation (6) with
classK∞ functionsθ ℓk

1,i(·) andθ ℓk
2,i(·) defined in Lemma 4.1,

supposeθ ℓk
1,i(·) and θ ℓk

2,i(·) satisfy limr→0 ln
θ ℓk

2,i (r)

θ ℓk
1,i

−1
(r)

< +∞



for λi ∈ (0,1), i = 1,2, . . . ,N, if the minimal time interval
between two consecutive switches satisfies

Tk = τk+1− τk ≥ max
1≤i≤N






ln

θ ℓk
2,i(|xi(τk)|)

θ ℓk
1,i

−1
(λi |xi(τk)|)

,0






(7)

then

β ℓk
i (|xi(τk)|,Tk)≤ λi |xi(τk)|, i = 1,2, . . . ,N (8)

Proof: By technical Lemma 4.1, we know that for a
selected controllerKℓk

i (·) at time interval[τk,τk+1), its class
K L function β ℓk

i (|xi(τk)|,Tk) can be bounded by

β ℓk
i (|xi(τk)|,Tk)≤ θ ℓk

1,i(e
−Tkθ ℓk

2,i(|xi(τk)|))

By condition (7) and assumption limr→0 ln
θ ℓk

2,i (r)

θ ℓk
1,i

−1
(r)

<+∞, it

is clear that for all subsystemi = 1,2, . . . ,N, there exists a
dwell time function defined in (7) such that

β ℓk
i (|xi(τk)|,Tk)≤ λi |xi(τk)|, i = 1,2, . . . ,N

holds.

B. Almost sure Asymptotic Stability

This subsection presents sufficient conditions to assure
almost sure asymptotic stabilityin the following definition.

Definition 4.3: The cascaded system in (1-2) is said to be
almost sure asymptotically stable, if for arbitraryε > 0 there
exists∆i such that if|xi(0)| ≤ ∆i ,i = 1,2, . . . ,N then

lim
t→+∞

Pr

{

sup
t
|xi(t)| ≥ ε

}

→ 0

for all i = 1,2, . . . ,N.
The following assumption is necessary to assurealmost

sure stability for the system in (1-2), which requires that
the external disturbance to system in equation (1) varnishes
when the system state approaches the equilibrium.

Assumption 4.4:Consider the system in equation (1), for
a given classK∞ function W1(·), the external disturbance
d(t) is upper bounded by

‖d(t)‖[τk,τk+1) ≤W1(|x
q
1(τk)|),k∈ Z+

With Assumption 4.4, Lemma 4.5 provides a switching
rule to restrain upper system’s control input as a function of
lower system’s state.

Lemma 4.5:Consider the closed-loop subsystems formed
by equations (2) and (4), suppose Assumption 4.4 holds,
given a classK∞ functionWi+1(·) and a family of controller
functions {Kℓk

i (·)}Mi
ℓk=1 for subsystemi, if there exists a

controller functionKℓk
i (·) ∈ {Kℓk

i (·)}Mi
ℓk=1, and a correspond-

ing classK∞ function κℓk
i (·) with property that|Kℓk

i (r)| ≤
κℓk

i (|r|),∀r, such that

κℓk
i (β ℓk

i (|xq
i (k)|,0))≤Wi+1(|x

q
i+1(k)|) (9)

holds for allk∈ Z+, then

sup
τk≤t<τk+1

|ui(t)| ≤Wi+1(|x
q
i+1(k)|),k ∈ Z+, i = 1,2, . . . ,N−1

whereβ ℓk
i (·, ·) is classK L function corresponding to the

selected controller functionKℓk
i (·) for subsystemi.

Proof: Consider subsystemi with controller defined in
equation (4), let functionK ℓ̃k

i (·) be the control law that is
used to compute the control inputui(t) over time interval
[τk,τk+1). The ISS characterization in inequality (6) implies
the control system in equation (4) satisfy

|x̂i(t)| ≤ β ℓ̃k
i (|xq

i (τk)|, t − τk), t ∈ [τk,τk+1) (10)

Therefore, we have|x̂i(t)| ≤ β ℓ̃k
i (|xq

i (τk)|,0). SinceK ℓ̃k
i (·) is

locally Lipschitz, there always exists a classK∞ function
κ ℓ̃k

i (·) such that

|K ℓ̃k
i (r)| ≤ κ ℓ̃k

i (|r|),∀r (11)

By equation (4), we know supτk≤t<τk+1
|ui(t)| =

supτk≤t<τk+1
|K ℓ̃k

i (x̂i(t))|. By inequalities (10) and (11),
we have

sup
τk≤t<τk+1

|ui(t)| ≤ sup
τk≤t<τk+1

κ ℓ̃k
i (x̂i(t)) = κ ℓ̃k

i (β ℓ̃k
i (|xq

i (τk)|,0))

Then, it is obvious that inequality (9) is a sufficient condition
to assure the conclusion hold.

Remark 4.6:The inequality (9) can be viewed as a switch-
ing rule for the upper systemi to react to the changes on
the state’s estimate of lower systemi+1. The switching rule
is applied over time interval[τk,τk+1) and is distributed and
feasible because it only depends on informationxq

i (τk) and
xq

i+1(τk) available at time instantτk.
Recall that{xq

i (k),U i(k)}∞
k=0 characterizes the information

structure at each time instantτk. Under Assumptions 3.1
and 4.4, the following lemma gives a recursive construction
for the sequence{U i(k)}∞

k=0 such that the quantization error
remains bounded byU i(k) for all k ≥ 0. This predictable
bound is used to switch controllers to assure almost sure
performance. Note that the technique used to prove Lemma
4.7 is similar to traditional dynamic quantization method[12],
[15].

Lemma 4.7:Consider the closed-loop system in equations
(1-2) and (4), given the transmission time sequence{τk}

∞
k=0

and a family of controller functions{Kℓk
i (·)}∞

k=0, ℓk ∈
{1,2, . . . ,Mi}. Let Tk = τk+1−τk and suppose the hypothesis
of Lemma 4.5 holds, the initial information structure pair
{xq

i (0),U i(0)} is known to bothEncoderandDecoder, and
the initial system statexi(0) ∈ [−U i(0),U i(0)]n. If the se-
quence{U i(k)}∞

k=0 is constructed by the following recursive
equation

U i(k+1) = 2−Ri(k+1)
(

U i(k)e
Li Tk +

(
eLiTk −1

) Bi(k)
Li

)

(12)

where

Li = Li1 +Lgi

Bi(k) = Li2Wi
(
|xq

i (k)|
)



then the estimation errorei(k) := xi(k)−xq
i (k), i = 1,2, . . . ,N

can be bounded as

|xi(k)− xq
i (k)| ≤U i(k),k ∈ Z+ (13)

whereRi(k) is the number of blocks received at time instant
τk.

Proof: Consider the propagation of the estimation error
ei(t) = xi(t)− x̂i(t) over time interval[τk,τk+1), we have

ėi(t) = ẋi(t)− ˙̂xi(t)

= fi(xi ,ui−1)− fi(x̂i ,ui−1)+gi(xi ,ui)−gi(x̂i ,ui)

Using inequality d|ei |
dt ≤ |ėi | and Lipschitz Assumption 3.1,

the dynamic changes of infinity norm of estimation error
|ei(t)| can be bounded as

d|ei |

dt
≤ Li,1|ei |+Li,2|ui−1|+Lgi |ei |

≤ (Li,1+Lgi )|ei |+Li,2Wi(|x
q
i+1(k)|)

The last inequality holds because of Lemma 4.5. Then, using
Gronwall-Bellman inequality over time interval[τk,τk+1)
yields

|ei(t)| ≤ eLi(t−τk)|ei(τk)|+(eLi(t−τk)−1)
Bi(k)

Li

whereLi = Li,1+Lgi andBi(k) = Li,2Wi(|x
q
i+1(k)|). For t →

τk+1, one can get|ei(k+1−)| ≤ eLiTk |ei(τk)|+(eLi Tk −1)Bi(k)
Li

.
Assume that|ei(k)| ≤U i(k), then|ei(k+1−)| ≤ eLiTkU i(k)+
(eLiTk − 1)Bi(k)

Li
. Upon receivingRi(k+ 1) blocks of bits at

time instantτk+1, We know that

|ei(k+1)| ≤ 2−Ri(k+1)|ei(k+1−)|

≤ 2−Ri(k+1)eLiTkU i(k)+ (eLiTk −1)
Bi(k)

Li

holds by uniform quantization method. Then from recursive
equation (12), the final conclusion holds with|ei(k+1)| ≤
U i(k+1).

With Lemma 4.7, the following lemma presents a suffi-
cient condition to ensure that the changes of the estimation
error satisfy a stochastic inequality. The inequality is used
to prove almost sure asymptotic stability for system in
equations (1-2).

Lemma 4.8:Suppose the wireless communication channel
for each subsystem in equations (1) and (2) satisfies the EBB
characterization in (3), given the sequence{U i(k)}∞

k=0, i =
1,2, . . . ,N that is constructed in Lemma 4.7, letG(·) : R+ →
R+ be a monotone increasing function taking the form,

G(y) = e−h(y)γ(y) (1+h(y)γ(y)),y∈R+

for any givenηi > 0, if

G(|xi(k+1)|)≤ ηi ·e
−LiTk (14)

then,

E
(
U i(k+1)|U i(k)

)
≤ ηiU i(k)+ηi(1−e−LiTk)

Bi(k)
Li

(15)

Proof: The proof follows the same line in Lemma 4.4
of [7], and is omitted here.

Remark 4.9:The functionG(·) in condition (14) is di-
rectly related to the EBB model, and it generates a partition
of the system state. Each partition associates with a threshold
ηi that characterizes the rate of stochastic changes for the
sequence{U i(k)}∞

k=0.
Remark 4.10:The inequality in (15) characterizes the

stochastic changes of the sequence{U i(k)}∞
k=0. The termηi

represents the rate of change resulting from the variation of
local channel state. The termBi(k) characterizes the impact
of disturbance from the upper system, and it reflects the
coupling strength between subsystems.

With the result of Lemma 4.8, Theorem 4.11 states that
for each candidate controller, there exists a corresponding ηi

such that the expectation inequality in (15) holds. This result
is used in theMonitor of each local supervisor to generate
monitoring signals{ηℓ

i }
Mi
ℓ=1.

Theorem 4.11:Consider the interconnected system in
equations (1) and (2), and suppose the wireless communi-
cation channel satisfies the EBB characterization in equation
(3), the sequence{U i(k)}∞

k=0 is recursively constructed by
equation (12). Given the state estimatexq

i (k) at time instant
τk, for each candidate controllerKℓk

i (·) ∈ Ki selected over
time interval [τk,τk+1), there always exists a corresponding
ηℓk

i ≥ 0 with

ηℓk
i = G

(

β ℓk
i (|xq

i (k)|,Tk)+Ui(k+1)
)

·eLiTk (16)

whereUi(k+1) =U i(k)eLiTk +
(
eLiTk −1

) Bi(k)
Li

, such that

E
(
U i(k+1)|U i(k)

)
≤ ηℓk

i U i(k)+ηℓk
i (1−e−LiTk)

Bi(k)
Li

(17)
Proof: Consider the time interval[τk,τk+1), the system

statexi(k+1) at timeτk+1 can be bounded by considering

|ei(k+1−)|= |xi(k+1−)− x̂i(k+1−)|

≤Ui(k+1) =U i(k)e
LiTk +

(
eLiTk −1

) Bi(k)
Li

Since xi(k+1−) = xi(k+ 1), for each candidate controller
Kℓk

i (·), we have

|xi(k+1)| ≤ |x̂i(k+1−|+Ui(k+1)

≤ β ℓk
i (|xq

i (k)|,Tk)+Ui(k+1) (18)

From Lemma 4.8, we know thatG(·) is continuous, positive
and monotone increasing function. By inequalities (18), we
have if

ηℓk
i = G

(

β ℓk
i (|xq

i (k)|,Tk)+Ui(k+1)
)

·eLiTk

then

G(|xi(k+1)|)≤ ηℓk
i e−LiTk

holds. Then, the final conclusion holds.
Remark 4.12:The monitoring signalηℓk

i is constructed
based on the local informationxq

i (k) andU i(k) at time instant
τk, and the controller functionKℓk

i (·). In order to guarantee
the almost convergence of sequence{U i(k)}∞

k=0, ηℓk
i must



be sufficiently small. This suggests that the controller must
be reconfigured in response to the changes of information
xq

i (k) andU i(k).
With the state-dependent dwell time function and the

monitoring signalsgenerated in (16), the following theo-
rem provides a sufficient condition on the selection of the
controller to assure almost sure asymptotic stability for the
system in equations (1-2).

Theorem 4.13:Consider the interconnected system in
equations (1-2). Suppose wireless communication channel
condition in each subsystem satisfies the EBB characteriza-
tion in equation (3). Let the hypothesis of Theorem 4.11
and Lemma 4.2 hold, suppose the coupling between the
subsystems is sufficiently weak, i.e. there exists a constant
positive valueεi such thatBi(k) = Li2Wi

(
|xq

i (k)|
)
≤ εi |x

q
i (k)|,

and if there exists a candidate controllerKℓk
i (·) with ηℓk

i such
that for a givenδi ∈ (0,1), we have

max{r i ,Ji}< δi (19)

where

r i = ηℓk
i +eLiTk(1−2−R̄i)

Ji = λi +(1−2−R̄i +ηℓk
i e−LiTk)(eLi Tk −1)

εi

Li

and R̄i is the total number of blocks that are transmitted
at each time instantτk. Then the interconnected system in
equations (1-2) is almost sure asymptotically stable

Proof: Consider time interval[τk.τk+1), by Lemma 4.7,
we know that

|xi(k)− x̂i(k)| ≤U i(k)

then |xi(k)| ≤ |x̂i(k)|+U i(k). Let Ei(k+ 1) = x̂i(k+ 1)−
x̂i(k+1−), then

|x̂i(k+1)| ≤ |x̂i(k+1−)|+ |Ei(k+1)|

Since |Ei(k + 1)| ≤ (U i(k)eLi Tk + (eLiTk − 1)Bi(k)
Li

)(1 −

2−Ri(k+1)), then we have

|x̂i(k+1)|

≤ β ℓk
i (|x̂i(k)|,Tk)

+

(

U i(k)e
LiTk +(eLiTk −1)

Bi(k)
Li

)(

1−2−Ri(k+1)
)

≤ λi|x̂i(k)|+

(

U i(k)e
LiTk +(eLiTk −1)

εi |x̂i(k)|
Li

)(

1−2−R̄i

)

(20)

where R̄i is the number of blocks(packets) that are trans-
mitted at each time instantτk. The second inequality holds
because of Lemma 4.2, weak coupling property andRi(k+
1) ≤ R̄i for any k ∈ Z+. Taking expectation on both sides
of the inequality (20) and inequality (15), and adding both

sides of the resulting expectation inequalities yields

E
[
U i(k+1)+ |x̂i(k+1)|

]

≤

(

λi +(1−2−R̄i +ηie
−LiTk)(eLi Tk −1)

εi

Li

)

E[|x̂i(k)|]

+
(

ηi +eLiTk(1−2R̄i)
)

E[U i(k)]

≤ δiE
[
U i(k)+ |x̂i(k)|

]

The second inequality holds by condition (19). Then, we
have

lim
k→∞

E
[
U i(k+1)+ |x̂i(k+1)|

]
≤ lim

k→∞
(δi)

k+1(U i(0)+ |x̂i(0)|
)

Since |xi(k)| ≤ |x̂i(k)| + U i(k), it is clear that
limk→∞E[|xi(k)|] → 0. Because of the locally Lipschitz
Assumption 3.1, we further know that the trajectory between
each transmission time interval[τk,τk+1) is bounded, then
the subsystemi is almost sure asymptotical stable. Since
the indexi is arbitrary, the whole interconnected system is
guaranteed to be almost sure asymptotical stable.

Remark 4.14:The inequality in (19) can be used in the
Switcherof local supervisor to determine which controller is
selected and placed in the loop. The input of theSwitcher
will be the monitoring signals{ηℓk

i }Mi
ℓk=1 that are generated

by Theorem 4.11, and the output will be the index of the
controller that satisfies condition (19).

C. Almost sure practical stability

This subsection presents sufficient conditions that assure
almost sure practical stabilityfor the cascaded system in
(1-2).

Definition 4.15: The interconnected system is said to be
almost sure practical stability, for arbitrary ε > 0 if there
exists (∆i ,∆∗

i ) with ∆∗
i > ∆i > 0 such that if |xi(0)| ≤ ∆i ,

then

lim
t→+∞

Pr

{

sup
t
|xi(t)|−∆∗

i ≥ ε
}

→ 0

Theorem 4.16:Consider the interconnected system in
equations (1-2), Suppose the Assumption 4.4 holds, let the
hypothesis of the Lemma 4.2 and Theorem 4.11 hold, and
given the sequence{U i(k)}∞

k=0 constructed by equation (12)
and positive values∆∗

i . If there exists a candidate controller
Kℓk

i (·) with ηℓk
i such thatr i < 1 for i = 1,2, . . . ,N and

Bi(k) = Li2Wi
(
|xq

i (k)|
)
≤

1− r i

Ji
min{∆∗

i , |x
q
i (k)|+U(k)}

(21)

where

r i = max{ηℓk
i +eLiTk(1−2−Ri ),λi}

Ji = (1−2−R̄i +ηℓk
i e−LiTk)(eLiTk −1)

1
Li

then the system in equations (1-2) is almost sure practical
stable with respect to a compact set defined byΩi = {xi(t) :
|xi(t)| ≤ ∆∗

i }.
Proof: By Theorem 4.11, we know that for a selected

controllerKℓk
i (·), there exists a correspondingηℓk

i such that



given available informationIi(k) = {U i(k),x
q
i (k)} at time

instantτk

E
(
U i(k+1)|Ii(k)

)
≤ ηℓk

i U i(k)+ηi(1−e−LiTk)
Bi(k)

Li
(22)

Similar to the proof of Theorem 4.13, we have following
conditional expectation with available information at time
instantτk,

E[|x̂i(k+1)||Ii(k)]

≤ λi |x̂i(k)|+

(

U i(k)e
Li Tk +(eLiTk −1)

Bi(k)
Li

)(

1−2−R̄i

)

(23)

then, by adding inequalities (22-23) yields

E
(
U i(k+1)+ |x̂i(k+1)||Ii(k)

)

≤ max{ηℓk
i +eLiTk(1−2−Ri ),λi}

︸ ︷︷ ︸

r i

(U i(k)+ |xq
i (k)|)

+
(

ηℓk
i e−LiTk +1−2−Ri

)

(eLiTk −1)
1
Li

︸ ︷︷ ︸

Ji

Bi(k) (24)

Let Vi(k) =U i(k)+ |xq
i (k)|, and consider the functionVi(k)

as a candidate Lyapunov function. It is clear thatVi(k) ≥ 0
for any k∈ Z+. Then, we can rewrite conditional inequality
(24) into

E[Vi(k+1)|Vi(k)]≤ E[Vi(k+1)|Ii(k)]

≤ r iVi(k)+ JiBi(k)

Furthermore, if the controller functionKℓk
i (·) is selected to

assurer i < 1 and condition (21), then we have

E[Vi(k+1)|Vi(k)]

≤Vi(k)− [(1− r i)Vi(k)− JiBi(k)]

≤Vi(k)+ (1− r i)min{∆∗
i −Vi(k),0}

=Vi(k)− (1− r i)max{Vi(k)−∆∗
i ,0} (25)

It is clear from inequality (25) that it preserves the super-
martingale property whenVi(k) lies in the compact setΩi =
{Vi(k) : Vi(k) ≤ ∆∗

i } which guarantees the invariance of set
Ωi . When Vi(k) lies out of the setΩi , Vi(k) will decease
almost surely until the system’s state reaches the setΩi . This
condition can be viewed as a stochastic version of the LaSalle
Theorem in discrete time system. It is worth noting that using
condition (25) to prove almost sure convergence to a compact
set is not new, and it is well studied in [16], [17]. With
condition (25), we can prove that for arbitraryε > 0, the
following almost sure convergenceproperty forVi(k) with
respect to setΩi holds

lim
k→+∞

Pr

{

sup
k

Vi(k)−∆∗
i ≥ ε

}

→ 0

Since|xi(k)| ≤ |xq
i (k)|+U i(k) =Vi(k), the almost sure con-

vergenceproperty forVi(k) leads toalmost sure convergence
for |xi(k)| with respect to setΩi . By ISS assumption in
(6), the state trajectories will remain bounded within each

transmission time interval[τk,τk+1) for all k∈Z+. Therefore,
for arbitraryε > 0, we have

lim
t→+∞

Pr

{

sup
t
|xi(t)|−∆∗

i ≥ ε
}

→ 0

The proof is complete.
Remark 4.17:As expected, the sufficient conditions in

Theorem 4.16 to assurealmost sure practical stabilityare
weaker than the conditions in Theorem 4.13 foralmost
sure asymptotic stability. Such weakness lies in two aspects.
First, the results in Theorem 4.16 do not require weak
coupling assumption between subsystems. Instead, it relies
on controller reconfiguration to ensure a weaker condition
(21) holds. Secondly, the conditionr i < 1 in Theorem 4.16
is weaker than condition (19) in Theorem 4.13. In fact, it
only requiresηℓk

i + eLiTk(1− 2−Ri ) < 1 holds sinceλi < 1
always holds by Lemma 4.2.

V. CONCLUSION

This paper studies thealmost sure safetyproperty of a
cascaded networked system in the presence of deep fades
that exhibit exponentially bounded burstiness. Thealmost
sure safetyis assured by developing a distributed switched
supervisory control strategy under which the local controller
is reconfigured online to guaranteealmost sure asymptotic
stability and almost sure practical stability. Sufficient con-
ditions are derived for the supervisor in each subsystem to
decide when and which controller is selected and placed in
the feedback loop, to assurealmost sure safetyfor the entire
networked system. The application of this paper’s results to
a leader follower formation control problem is discussed in
our companion paper [10].
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