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Abstract— An interconnected wireless networked system con-

in probability criterion is simply not appropriate for many

sists of numerous coupled subsystems that need to exchangesafety-critical systems such as smart transportatioresyst

information over wireless communication channels. The use
of these wireless networks induces a great deal of stochasti
uncertainty that often results from deep fades, where a severe
drop in the quality of communication link occurs. Such uncer
tainty negatively impacts the system’s performance and caes
unexpected safety issues. This paper proposes a distribute
switched supervisory control scheme under which the local
controller is reconfigured in response to the changes of charel
state, to assurealmost sure safety for the interconnected system.
Here, almost sure safety means that the likelihood of the system
state entering a safe region asymptotically goes to one asng
goes to infinity. Sufficient conditions are provided for eachiocal
supervisor to determine when and which controller is placedn
the feedback loop to assurealmost sure safety in the presence
of deep fades.

I. INTRODUCTION

A distributed wireless networked systems(WNCS) consisps :
of numerous coupled dynamical subsystems that coordina
their behaviors by exchanging information over wireless
radio communication (RF) networks. It is well known that
these RF networks are subject to deep fades, where t
network’s quality of service drops precipitously and rensai
low for an extended interval of time. These deep fades inje
a great deal of stochastic uncertainty into the system, an
negatively impact the system’s performance and stabilitg
by interfering with the coordination between subsystems.

where a small probability of danger can incur catastrophic
failure. This paper suggests using a stronger noticalrmbst
sure safetyto assure the system state asymptotically goes to
a safe equilibrium or a bounded safe set with probability one
as time goes to infinity. In particulagimost sure safetin

this paper refers to two strong notions of stochastic stgbil
almost sure asymptotic stabilitgnd almost sure practical
stability.

The channel model that is used to attalmost sure
stability must be carefully specified. Traditionally, this has
been done by modeling channel fading asimatependent
and identical distributed (i.i.djandom process having either
a Rayleigh or Rician distribution. This characterizatioignt
e reasonable for most stationary wireless networks, the us
f i.i.d model is questionable in vehicular communication
since the channel state is functionally dependent on the
vehicle’s physical state [6], [2]. A more realistic fading
%kéannel model was examined in [7], in which the channel
IS exponentially bursty and is dependent on the norm of
tLEe physical system’s states. Such model is often referred
‘f‘% exponentially bounded burstine@SBB) [8], and is more
eneral in the sense that it can characterize the i.i.d @igann
s well as bursty channels that are often modeled as a two
state Markov chain [9].

The loss of coordination may cause serious safety issues

in applications like smart transportation system [1], [2],

By using the EBB model that is functionally dependent

unmanned aerial vehicles systems [3] and underwater agh the physical state, one can develop a distributed svdtche
tonomous vehicles [4]. These issues could be addressed d)pervisory control strategy to asswenost sure safetfor

developing a distributed switched supervisory controteays

a class of interconnected networked systems. The intercon-

that detects such deep fades and adaptively reconfiguresyitscted system consists of a collection of subsystems that ar

controller to enforce a minimum safety requirement.

connected in a cascaded structure with upper systems glrivin

In real application, the safety issue is often examined in fhe lower systems via their control inputs. This structure
stochastic setting by discussing the likelihood of a systeformally exists in vehicular systems, such as the chain
state entering a forbidden or unsafe region. Traditionallyf |eader-follower formations discussed in [10]. Assuming
this has been done using mean square concepts in whigh exponentially bursty channel model, this paper derives
the variance of some important system state, such as intebnditions that are sufficient for the entire system to have
vehicle distance, remains bounded. Such a concept is algnost sure asymptotic stabilitgnd almost sure practical
analogous to the notion adtochastic safety in probability stapility [11]. These sufficient conditions are used by the

[5]. The common feature of above work is that they boundupervisor in each subsystem to decide when and how to
the likelihood of unsafe action OCCUrring with a nonzergelect controller in the presence of deep fades.

value, which still allows a finite probability for the system

to be unsafe. This mean square safetystmchastic safety
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The layout of the paper is as follows. Section Il intro-
duces mathematical notations. Section Il provides a syste
description and problem setup. After that, we discuss the
main results in Section IV. Finally, Section V concludes the

paper.



Il. MATHEMATICAL PRELIMINARIES % C R™ compact sets, there exist Lipschitz constants

. Li, andLg such that
Let Z andR denote the set of integers and real numbers,

respectively. LetZ, and R, denote the set of positive Ifi(xi,ui—1) — fi(%,0)] < Lig|x — %]+ Li,|ui—1]
integers and non-negative real numbers, respectively. Let gi(x,u) —gi(®,u)| < Lglx— K|

R" denote then-dimensional Euclidean vector space. The - '

co-norm on the vectox € R" is |x] = max|x|:1<i<n, B. Wireless Network

and the corresponding induced matrix norm |8\ =
maxlsignz’j‘:ﬂAH. Given a vectorx € R", we letx € R
fori=1,2,...,n denote thdth element of vectok.

We let f(-) : R — R" denote a function mapping the real
line onto vectors iMR". Let f(t) € R" denote the value that
function f takes at timet € R. Given a time interval?,
let ||f||.» denote the essential supremum of the functfon
defined over the time interval’. We let ||x|| denote the
case when? =R, . Let {1}, denote a strictly monotone
increasing sequence wittk € Ry for all ke Z, and 1y <
Tk+1- Then, f(1¢) denotes the value of functiohat time ty.
For brevity, we letf (k) denotef (1) if its meaning is clear
1) B s B o denoted byt (€ ). Simil, he rightnand  Channel with only the firsR (1) blocks (1) < R)

limit of the function f (k) is denoted byf (k*). A function being received at thBecoderside. _
a(): Ry — R, is of class.# function if it is continuous, We assume a noiseless feedback channel, with each suc-

strictly increasing witha(0) = 0. It is said to be of class cessfully received bit being acknowledged to thecoder
e if it is class.# and a(s) — © ass— c. In addition, a This allowsDecoderto use traditional dynamic quantization
function B(-,-) : Ry x Ry — R is said to be of class? ¥ methods [12], [13] to construct an estimate of the sampled

if B(-t) is classK for each fixedt > 0 andB(st) — O for State. Letx'(ts) denote the state estimate at time with
each fixeds> 0 ast — co. Ri(k) blocks of bits received. Ldl;(k) represent the length

of a n dimensional hypercubex (k) with x'(tx) as its
center. The paifx(ty),U;(k)} characterizes the information
structure that is available to the control system, and is

The system under study is a collection of cascaded wirgonstructed such that the sampled statey) is guaranteed
less networked subsystems shown in Figure 1. The subsye-lie in the hypercube#(k) at each sampling time instant.
tems are connected in a chain structure in the sense that the

As shown in Figure 1, the system states of each subsystem
must be transmitted over a wireless communication channel
to its Controller. The information about the system’s states
are limited by the following two constraints,

« The state measuremexft) is only taken at a sequence
of discrete time instant$ 1.}y o, With T < Tiyq, k=
0,1,...,00,

« The sampled data;(7c) is quantized with a finite
number of blocksR, by the Encoder Each block
containsn number of bits with each bit representing
the information for each dimension of the stat&s.
blocks of bits are transmitted over an unreliable wireless

Ill. SYSTEM DESCRIPTION ANDPROBLEM SETUP

upper systems drive the lower systems through their contr '

inputs. In the interconnected systems, the upper subsyste '

can observe the state of its immediately connected lowe l T

system. Each subsystem consists of three comporfeiats;, f= A+ 805 | o) Encoder - )

Wireless Networkand Controller.
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The plant of the cascaded system satisfies the followin ¥ ()

1l Controller Decoder

# Kot ¢

ODEs: -
Ta=fa (&,].LL_)Jrg;,,(x,,]:u,,,)% Encoder |- — - Ir ”””””””” }
o= fi(x,d)+0(x,un) 1) ] | |
% o= fiqu ) +g06u), i=2...,N (2 | ,_____ P —
=K i) : !
wherex € R" is the state of subsysteimu;_1 € R™ anduy; € RO RCHTRCI VR DA ! SupervisoE 3
R™ are respectively the control inputs of subsysteni and 4 l T

i,i=23,...,N.d(-) : R, = R is the external disturbance '

to the cascaded system. We assume internal control signiu. '

U(-),i=12,...,N are piecewise continuous functions an_q:ig. 1. Distributed supervisory switching control struetufor serial

are Lebesgue measurable and locally bounded. The functiag@@nected wireless networked system

fi(-,) :R"xR™— R" andgi(-,-) : R"x R™— R" are locally

Lipschitz and satisfy the following assumption. We adopt an exponential bounded burstiness (EBB) [8]
Assumption 3.11et Zi CR", % _1 CR™ and% C R™ model to characterize the stochastic changesR¢k) in

be compact set&ix; € 2i CR", ui_1 € %_1 Cc RMandu; € the fading channel. EBB characterizations can be used to



describe a wide range of channel models including tradifion A supervisory in each subsystem consists of two compo-
i.i.d models as well as two-state Markov chain models. Iments:Monitor and Switcher
particular, leth(-) and y(-) denote continuous, positive and Monitor: A dynamic system whose inputs are local system
monotone increasing functions froRy. to R... Assume the estimated(y), local channel stat® (k) and system estimate
probability of successfully receivingRi(k)} blocks of bits xqu(rk) from subsysteni+ 1 at time instantry, and whose
satisfies output is a set{nt,n?,....,n{,...,n""}. Each element of

Pr{Ri (k) < h(jx(t)|) — o} < e V(x(w)l)o A3) the set nf : 4 — R, denotes amonitoring signgl that

. . characterizes performance level that can be achieved by a

for o € [0, h(|xi(Ti)[)]. The functionh(|xi(t)|) is a threshold controller K/ (-) based on the available information. Such
for a low bit rate region that is varied as a function of theharacterization will be clear in Section V.
system state nornfxi(ti)|. The exponent associated with  syitcher A logic system whose inputs are timeonitor-
exponential decrease is represented by a fungtioa(ti)|).  jng signals {n{})",, and output is a piecewise continuous
The two functions play different roles in the EBB mOde"switching signals () 5RT — % that determines the control

The functionh(|x(1)|) characterizes the fact that as the,y, The logic system could be simply a function that outputs
norm of the system state increases, the low bit rate thréshal -qniroller index with the minimurmonitoring signal

shrinks and moves toward the origin. On the other hand,
the functiony(|xi(1«)|) in the exponential bound models the
fact that the likelihood of exhibiting lower bit rate than
the thresholdh(|xi(1x)|) increases as the system state is The main results of this paper provide sufficient conditions
away from the origin. Such relationship exists, for examplego assurealmost sure asymptotic stabilignd almost sure

in Vehicle to Vehicle applications [2] where large inter-practical stabilityfor a cascaded wireless networked system
vehicle distance and velocity yield low bit rate, or in wae$ in equations (1-2). Subsection IV-A gives a state dependent
mobile communication systems where the relative oriemtati dwell time function that is used to determine the switching
changes on the transmitter and receiver may cause a deagpe. Under the dwell time result, subsections IV-B and IV-
fade. C present sufficient conditions on the selection of corgroll

to assurealmost sure asymptotic stabilitgnd almost sure
practical stability respectively for each subsystem.

IV. MAIN RESULTS

C. Distributed Switched Supervisory Control System

Distributed switched supervisor system is a "high-level
deqision system that uses available information includiegy A. Dwell Time Eunction
estimate of local system statf(1y), local channel statg; (k)
and the estimate of system Stﬂf&(Tk) from subsysteni+ Under the assumption that the switching only occurs
1, to orchestrate the switching among a family of candida@t each sampling time, this subsection constructs a state
controllers. The switching supervisor decision decidesnvh dependent dwell time function in terms of the sampling time
and which controller is selected and placed in the feedbadkterval. The sampling time intervd = 71 — T« can be
loop. viewed as a minimum separation for two switches.
Switching only occurs at each transmission time instant ~ The following technical Lemma is used to characterize a
and there is a family of candidate controlle¥s= {K{(-),/ €  class.#" ¢ function in terms of the composition of two class
%} that are selected ahead of time for each subsystem, whe# functions.
% is an index set taking value if1,2,...,M;}. For any Lemma 4.1 ([14]): Assumef(-,-) is a class# ¥ func-
¢ € 4, the controller functiorK(-) is locally Lipschitz with tion. Then, there exist two clas¥., functionsfy(-) and6,(-)
K{(0) = 0. With a selected control functiok(-) C %, the such that
control inputy; over time interval[ty, T, 1) iS generated by

" . T ., B(st) < 6i(e'6s(9))
X = fi(%0)+ai(%K (%), %(w)=x'(tc) 4)
ut) = K'(%)te [t T) (5) forall (r,s) € [0,a) x [0,0) whereac R.
The following Lemma makes use of the technical Lemma
T o s 4.1 to construct a state-dependent dwell time function. The
Let &(t) := %(t) —%(t) denote the estimation error. For dwell time function provides a lower bound on the transmis-
each selected controll&’(-) C %, we assume each closed-

loop subsystemi generated by equations (1-2) and (4) iSS|on time interval for the cascaded system in equationg (1-2

. . and (4).
input to state stablgSS) with respect tay_1 ande. There ) . . . i
exists a corresponding 1SS trip'@ﬁie('a'%Xfl(')asz(')} Lemma 4.2:Consider the interconnected system in equa

such that tions (1-2), Iethk(-) denote the selected controller function

for subsystem at time instantry and Iethk(~,-) represent

% (t)] < B (|xi(T0)|,t — To) + X1 (IUi—1ll[zp1) + Xi2(/&l{ro1)  the corresponding clas# % function in equation (6) with
(6) class% functions@y’(-) and 65%(-) defined in Lemma 4.1,

with ¢=1,2,...,M; andu = d, whereB’(.,) is class #.% 8K(r)

supposebk(-) and 6%(-) satisfy i In —==
function, x{,(-) and x{,(-) are classz, functions. Ppose6y () 2i() fy im0 e

wherex(1y) is the state estimate at ting.

< foo



for A € (0,1),i = 1,2,...,N, if the minimal time interval whereﬁfk(-,-) is class.z".Z function corresponding to the

between two consecutive switches satisfies selected controller functiok*(-) for subsystem.

92£ki(|Xi(Tk)|) } Proof: Consider subsgsterinwith controller defined in
: , (7) equation (4), let functiork;*(-) be the control law that is

Tk = Tkp1 — Tk > max ¢ In
1 6 used to compute the control inpuf(t) over time interval

01
il WA CTETC )
[Tk, Tkr1)- The ISS characterization in inequality (6) implies

then , the control system in equation (4) satisfy
B (ol T < Aixi(ng,i=1,2,....N (8 X o
Proof: By technical Lemma 4.1, we know that for a % (O] < B ()], t = T, t € [T, Tky) (10)
selected controIIerk(-) at time interval[ty, T« 1), its class . fend _ B~
% function B (| (1), Te) can be bounded by Therefore, we haveki(t)] < B *(j%'(T)|, 0). Sincekj*(-) is
, , , locally Lipschitz, there always exists a clas&, function
B (% (Tl Tio) < 8y (& ™65 (1% () ]) k{%(-) such that
L o ek (r) _ 7 3
By condition (7) and assumption limoln —2r— < oo, it IKi (NI < ki (Ir), vr (11)
6,7 (r) ,
is clear that for all subsystein= 1, 2,...7Nl, there exists a By equation (4), we know syp ., [ui(t)] =
dwell time function defined in (7) such that SUPy <17y, |Ki€k(;(i (). By inequalites (10) and (11),
B (% (1], Te) < Aibi(T) i = 1,2....,N we have ) o
holds. B sup Jut) < sup KMR() = K*(BH(X(W)],0))
TSt<Tiyr TSt<Tiyr

B. Almost sure Asymptotic Stability Then, it is obvious that inequality (9) is a sufficient coratit

This subsection presents sufficient conditions to assuf§ assure the conclusion hold. -
almost sure asymptotic stability the following definition. Remark 4.6:The inequality (9) can be viewed as a switch-

Definition 4.3: The cascaded system in (1-2) is said to b‘?ng rule for the upper systerto react to the changes on
almost sure asymptotically stablié for arbitrary & >0 there e state’s estimate of lower systém 1. The switching rule
existsA; such that if|x(0)| < Aii = 1,2,...,N then is applied over time intervdlr, 1y, 1) and is distributed and

) feasible because it only depends on informabkﬁm) and
Jim Pr{syp|>q(t)| =z 5} —0 x4 (1) available at time instant.

Recall that{x(k),Uj(k) }_, characterizes the information
structure at each time instamt. Under Assumptions 3.1
and 4.4, the following lemma gives a recursive construction
for the sequencéU; (k) }i_, such that the quantization error
Femains bounded bWi(k) for all k > 0. This predictable
; . : ) bound is used to switch controllers to assure almost sure
Assumption 4.4Consider the system in equation (1), forperformance. Note that the technique used to prove Lemma

a giyen class¥e, functionWy(-), the external disturbance 4.7 is similar to traditional dynamic quantization methb®]
d(t) is upper bounded by [15]

foralli=12,...,N.

The following assumption is necessary to assalmost
sure stabilityfor the system in (1-2), which requires that
the external disturbance to system in equation (1) varsish
when the system state approaches the equilibrium.

Hd(t)”[rk-,ml) < Wl(|X(11(Tk)|), keZ, Lemma 4.7:Consider the closed-loop system in equations
With Assumption 4.4, Lemma 4.5 provides a switching1-2) and (4), given the transmission time sequefmgg;_
rule to restrain upper system’s control input as a functibn aand a family of controller functions{ka(-)}f:O, Y €
lower system'’s state. {1,2,...,M;}. Let Ty = Ty, 1 — T and suppose the hypothesis
Lemma 4.5:Consider the closed-loop subsystems formedf Lemma 4.5 holds, the initial information structure pair
by equations (2) and (4), suppose Assumption 4.4 hoId@(I-q(O),Ui (0)} is known to bothEncoderand Decoder and
given a class’#s functionW . 1(-) and a family of controller the initial system state;(0) € [-U;(0),U;(0)]". If the se-
functions {Kf"(-) eMkizl for subsystemi, if there exists a quence{U;j(k)}y_, is constructed by the following recursive

controller functionk.*(-) € {K/*(-) EMkizl, and a correspond- €duation
ing class. % function ka(-) with property that|Ki£k(r)| < — o Rk (T T T 1 Bi(k)
k'%(|r|),vr, such that Uilk+1)=2 Dk ™+ (™ —1)

K (B (1(K)1,0)) < Whpa (1 (KI]) ©)
holds for allk € Z., then

. Li=Li, +Lg
sup ui(t)| <Wha (x4 (K)[), ke Zyi=1,2,... ,N—1 Lo
e : B (K) = LW (X'(K))

(12)

where



then the estimation erre (k) := x (k) —x'(k), i =1,2,...,N Remark 4.9:The functionG(-) in condition (14) is di-
can be bounded as rectly related to the EBB model, and it generates a partition
of the system state. Each partition associates with a tblgsh

Ixi(k) _X'q(k)| <Ui(k),ke Zy (13) n; that characterizes the rate of stochastic changes for the

whereR;(k) is the number of blocks received at time instansequenceU; (k) }_q.
Tk. Remark 4.10:The inequality in (15) characterizes the

Proof: Consider the propagation of the estimation errostochastic changes of the sequefide(k)}i_,. The termn;
e(t) =x(t) —X(t) over time intervalty, Ty 1), we have represents the rate of change resulting from the variation o

. . : local channel state. The terBj(k) characterizes the impact

Gt =x(t) —x() of disturbance from the upper system, and it reflects the

= fi(%, Ui—1) — fi(%,Ui—1) +9i(x, i) — Gi(%, u) coupling strength between subsystems.

With the result of Lemma 4.8, Theorem 4.11 states that
;or each candidate controller, there exists a correspgnglin
such that the expectation inequality in (15) holds. Thisiltes
is used in theMonitor of each local supervisor to generate
monitoring signals{n{}}" ;.

Theorem 4.11:Consider the interconnected system in
< (Li,1+Lgi)|a|—i—Li,zV\ll(lx?H(k)l) equations (1) and (2), and suppose the wireless communi-

. . . cation channel satisfies the EBB characterization in eguati
The last inequality holds because of Lemma 4.5. Then, usu‘tg), the sequencéU; (K)}2, is recursively constructed by

Gronwall-Bellman inequality over time intervalr, Tic-1) equation (12). Given the state estimafgk) at time instant

Using inequality% < |&| and Lipschitz Assumption 3.1,

the dynamic changes of infinity norm of estimation erro
l&(t)| can be bounded as
dle

gt S tidlel+Ligluiaf+Lgla|

ield
yiels Tx, for each candidate controllétfk(-) € J selected over
la(t)] < eLi(tfrk)|Q(Tk)| 4 (eLi(tfrk) —1) Bi(k) tirpe interyal[rk,rk+l), there always exists a corresponding
Li ni* >0 with
whereL; = Lj1+ Lg andBj(k) = Li W (|x, ; (k)|). Fort — b b1 _ T
Tit1, ONe can gelig (k+ 1’)|Se'-iTkla(Tk)IJr(e'-iTk_l)%k). T _G(Bi (P (k)|’Tk)+U'(k+1)) & (16)

Assume thata(k)| <Ui(k), then|e (k+17)| < e-&U;j (k) + whereU; (k+1) = Uj (k)eH T + (i Tk — 1) w such that
(€HTk — 1)%‘0. Upon receivingR;(k+ 1) blocks of bits at !

time instantr;, We know that E(Ui(k+1)|Ui(k)) < niékUi(k)+niék(l_e7LiTk)Bi (_k)
la(k+1)| <2 REDjg(k+17)] '@
R R . Bi(k) Proof: Consider the time intervaly, 7. 1), the system
Ri(k+1) gl kT i _ 2\ ks Tk+1
=2 ¢ “Uik) + (eL “-1) L; statex;(k+ 1) at time 11 can be bounded by considering
holds by uniform quantization method. Then from recursive le(k+17) = |x(k+1)—Ki(k+17)|
equation (12), the final conclusion holds with(k+ 1)| < Bi(K)
|

Ui(k+1). u <Ui(k+1) =Uj(k)e-Tk + (e-Tk —1) =
With Lemma 4.7, the following lemma presents a suffi- i
cient condition to ensure that the changes of the estimati@ince xi(k+17) = xj(k+ 1), for each candidate controller
error satisfy a stochastic inequality. The inequality idis ka(-), we have
to prove almost sure asymptotic stability for system in
equrj’:\tions (1-2). Y ’ ’ i (k+21)] < % (k+17[ +Ui(k+1)
Lemma 4.8:Suppose the wireless communication channel < Bfk(|xlq(k)|,Tk) +Ui(k+1) (18)

for each subsystem in equations (1) and (2) satisfies the EBFB L 48 K ha(.) i . .
characterization in (3), given the sequen@® (k)1 o.i = rom Lemma 4.8, we know th&(-) is continuous, positive

1.2 N that is constructed in Lemma 4.7, IB(-) : R, — and monotone increasing function. By inequalities (18), we

R+ be a monotone increasing function taking the form, have if
Gly) = YY) (14 hiy)y(y),y € R, nk=G (Bfk(|xlq(k)|,Tk) +Ui(k+ 1)) LehiTe
for any givenn; > 0, if then
G(x (k+1)]) < mi-e (14) Gl (k+1)]) < e 1T
then, holds. Then, the final conclusion holds. [ |
Bi (k) Remark 4.12:The monitoring signalnfk is constructed

E (Ui(k+1)[Ti(K)) < niTi(K) 4+ ni(1— e*LiTk)T (15) based on the local informatiodl(k) andU; (k) at time instant

Proof: The proof follows the same line in lemmasd T« and the controller functioka(-). In order to guarantee
of [7], and is omitted here. m the almost convergence of sequerts (k)}p o, nf“ must



be sufficiently small. This suggests that the controller musides of the resulting expectation inequalities yields
be reconfigured in response to the changes of information _
Xiq(k) andUgi(k). . g E[Ui(k—F 1)+ [Ri(k+ 1)”

With the state-dependent dwell time function and the < (Ai+(1_2§i+nieLiTk)(e|—iTk_1)i) E[|% (K)|]
monitoring signalsgenerated in (16), the following theo- Li
rem provides a sufficient condition on the selection of the (Ui +eLiTk(1_2§a)) E[U; (k)]
controller to assure almost sure asymptotic stability far t _ R
system in equations (1-2). < GE[Ui(k) + [%i(K)]

Theorem 4.13:Consider the interconnected system inthe second inequality holds by condition (19). Then, we
equations (1-2). Suppose wireless communication channglye
condition in each subsystem satisfies the EBB characteriza- . . ) kil e .
tion in equation (3). Let the hypothesis of Theorem 4.11&E[Ui(k+ D+ Ri(k+1)[] < lim (&) (Ui(0) + [%(0)])
and Lemma 4.2 hold, suppose the coupling between the R _ o
subsystems is sufficiently weak, i.e. there exists a constaainc® X(K)| < [%(k)| + Ui(k), it is clear that
positive values; such tha; (k) = Lj,W (|x?(k)|) < &x(K)], Ilmk%ooIE[_|xi(k)|] — 0. Because of the Iocglly Lipschitz
and if there exists a candidate controll@ff‘(-) with nfk such Assumption 3.1, we _furth_er know that th_e trajectory between
that for a givend € (0,1), we have each transmission time intervéy, 7. 1) is bounded, then

the subsystem is almost sure asymptotical stable. Since
the indexi is arbitrary, the whole interconnected system is
guaranteed to be almost sure asymptotical stable. =
Remark 4.14:The inequality in (19) can be used in the
Switcherof local supervisor to determine which controller is
F= nf"—i—eLiTk(l—Z*ﬁ) se_zlected and p!acgd in_the Iooek. "\I;Iihe input of Bwitcher
B _ . . e will be the monitoring signals{n, }Ek:_l that are _generated
Ji=Ai+(1-2RqpnlketiTy@E@k_1)2 by Theorem 4.11, and the output will be the index of the
Li controller that satisfies condition (19).

max{Ti,Ji} < & (19)

where

and R_. is the total number of blocks that are transmittedC. Almost sure practical stability

at each time instant. Then the interconnected system in This subsection presents sufficient conditions that assure

equations (1-2) i§ almost _sure asymptotically stable almost sure practical stabilitfor the cascaded system in
Proof: Consider time intervaltk. 7. 1), by Lemma 4.7, (1-2).

we know that Definition 4.15: The interconnected system is said to be
R _ almost sure practical stabilityfor arbitrary € > 0 if there
X (k) =% (k)| < Ui(k) exists (A, AF) with A* > A; > 0 such that if|x(0)| < 4,
. then
then | (k)| < |%(K)| +Uj(k). Let Ej(k+1) = %i(k+ 1) —
%i(k+17), then tlrp Prisup|xi(t)| —AN>e;—0
® t
Theorem 4.16:Consider the interconnected system in

Xi(k+1)] < [%i(k+17)[ + [Ei(k+1)| equations (1-2), Suppose the Assumption 4.4 holds, let the
hypothesis of the Lemma 4.2 and Theorem 4.11 hold, and
Since [Ei(k + 1)] < (Uj(k)e-iTk + (eHTk — 1)%@)(1 —  given the sequencflJ;(k)}i_, constructed by equation (12)
2-R(k+1)) then we have and positive valued;. If there exists a candidate controller
ka(-) with nf“ such thatr; <1 fori=1,2,...,N and

% (k-+ 1) R T N
< Bi£k(|)zi(k)|aTk) Bi(k) = Li,W (I (k)[) < 3 min{ A7, x' (k)| +U (k) }
LT e 40 BiK) R (21)
+ (Ul(k)eLT + (e —1)T) (1—2 R‘(Hl)) where
< Ail%i(K)| + (Ui (k)eLiTk + (el-iTk — 1)@) (1_ 2*'5&) r = max{niék + eLiTk(l— Z*R),/\i}
(20) J:u_zﬁ+#wﬂmxéﬁ_ni

|
where R, is the number of blocks(packets) that are transthen the system in equations (1-2) is almost sure practical
mitted at each time instanf,. The second inequality holds stable with respect to a compact set definedby= {xi(t) :
because of Lemma 4.2, weak coupling property &tt+  [xi(t)| <A}
1) <R for any k € Z. Taking expectation on both sides Proof: By Theorem 4.11, we know that for a selected
of the inequality (20) and inequality (15), and adding both:ontrollerka(-), there exists a correspondim;ﬁk such that



given available informations (k) = {Ui(k),x!(k)} at time
instantty

B (0i(k+ 11400) < 00+ (e %) 2 (22)

Similar to the proof of Theorem 4.13, we have followingThe proof is complete.

conditional expectation with available information at ¢éim
instantty,

E[|%(k+1)[-#i(K)]
< Ail%i(K)| + (Ui (K)eH Tk 4 (eHTk — 1)%@) (1_ 24@)

(23)
then, by adding inequalities (22-23) yields
E (Ui(k+1) + [%i(k+ 1)||-4(K))
< max{n*+e-T(1—27R), A} Ui (k) + [x(K)))
+ (nfke*LiTk +1- 2*R) Call 1)% Bi(k) (24)

J

Let Vi(k) = Uj(k) + |x'(k)|, and consider the functio (k)
as a candidate Lyapunov function. It is clear thigk) > 0

transmission time intervaty, 7. 1) for allk e Z.. Therefore,
for arbitrarye > 0, we have

tLlrJrngr{sinpq(t)| —A > e} -0

[ |
Remark 4.17:As expected, the sufficient conditions in
Theorem 4.16 to assur@most sure practical stabilityare
weaker than the conditions in Theorem 4.13 faimost
sure asymptotic stabilitySuch weakness lies in two aspects.
First, the results in Theorem 4.16 do not require weak
coupling assumption between subsystems. Instead, itsrelie
on controller reconfiguration to ensure a weaker condition
(21) holds. Secondly, the condition< 1 in Theorem 4.16
is weaker than condition (19) in Theorem 4.13. In fact, it
only requiresn® + €-T(1—27R) < 1 holds sinceA; < 1
always holds by Lemma 4.2.

V. CONCLUSION

This paper studies thalmost sure safetproperty of a
cascaded networked system in the presence of deep fades
that exhibit exponentially bounded burstiness. Tdimost
sure safetyis assured by developing a distributed switched
supervisory control strategy under which the local coitrol
is reconfigured online to guarante¢most sure asymptotic

for anyk € Z. Then, we can rewrite conditional inequality gtapility and almost sure practical stabilitySufficient con-

(24) into
EM (k+1)M(K)] < EMi(k+1)[.7 (k)]
<riVi(k) + JBi(k)
Furthermore, if the controller functioka(-) is selected to
assurerj < 1 and condition (21), then we have
EM (k+1)Mi(K)]
<Vi(K) = [(1=ri)Vi(k) - JiBi(K)]
<V(K)+ (1 - 1) min{a; —Vi(k),0}

=Vi(k) — (1 —ri) max{Vi(k) — A, 0} (25)

It is clear from inequality (25) that it preserves the super—[

martingale property whe¥i (k) lies in the compact se®; =

ditions are derived for the supervisor in each subsystem to
decide when and which controller is selected and placed in
the feedback loop, to assuatmost sure safetfor the entire
networked system. The application of this paper’s resolts t
a leader follower formation control problem is discussed in
our companion paper [10].
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