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Abstract

Distributed generations (DG’s), based on both synchronous generators (SG’s) and fast inverters, are

incorporated to improve power quality and reliability of power grids. These DG’s, however, may cause

voltage and frequency stability issues due to weakness in power distribution networks. Weakness not only

means significant ratios between resistance and reactance components in impedances (lossy), but also

large power flow compared with rated power level (stressful). Weak networks complicate voltage stability

and frequency synchronization analysis, because of coupled network dynamics. Additionally, droop

controlled rotational and electronic DG’s have different dynamics, making a comprehensive stability

analysis even more difficult. This paper derives sufficient conditions for voltage stability and frequency

synchronization of a weak power distribution network coupled with droop-controlled DG’s, which are

based on both fast inverters and SG’s. These conditions are inequality constraints on network parameters,

load levels and generation control commands. Simulation tests show that asymptotic voltage stability

and frequency synchronization are ensured in a weak network, in both a modified 37-node test feeder

and a rural electrification network model. Moreover, these stability conditions also provide guidance in

robustly integrating DG’s into existing power distribution networks.

I. INTRODUCTION

Distributed generators (DG’s) are usually organized in microgrids and installed to improve

power quality and reliability in power distribution networks, by supplying power locally during

main grid contingency events [1]. Power quality, measured in voltage magnitude and network
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frequency, is the primary concern of power network operations, especially for weak networks.

Networks that are lossy may not be weak. Typically, a lossy network has its ratio between

resistance and reactance R/X (equivalently G/B) greater than one. Weak networks, however,

have a large amount of power flow compared with the rated power level, described in a short-

circuit ratio (SCR) in [2]. Connections of DG’s, based on both fast inverters and synchronous

generators (SG’s), introduce multidirectional power flows that cause power quality problems

in weak networks. Due to network weakness, dynamics of voltage and frequency are coupled,

making it difficult to simultaneously guarantee voltage stability and frequency synchronization.

Stability analysis of power networks is a long-treated topic, but existing stability analysis

approaches are not sufficient to analyze weak networks’ voltage control and frequency synchro-

nization conditions. Initial research efforts apply Lyapunov-based methods in [3], [4], [5], [6]

to transient frequency stability analysis. Although closed-form stability conditions are obtained,

strong networks are assumed without voltage control dynamics, improper for analyzing weak

networks. To treat weak networks, research works in [7], [8], [9] checked small-signal stability

using eigenvalue calculation of linearized network models. Not only linearized analysis applies

to small neighborhoods of linearization points, there have also been no closed-form stability

conditions for weak distribution networks coupled with DG’s. Some work [10] attempts to address

this issue by viewing the network as a set of coupled nonlinear oscillators, assuming voltages

are kept within bounds. In their recent work [11], decoupled dynamics are incorporated and no

voltage stability conditions are provided. Another recent paper [12] discusses frequency stability

for a inverter-based microgrid, which is a lossy network with an large short-circuit ratio (above

60). As an exception, small-signal stability analysis in [2] shows that an increasing power flow

stress leads to instability. A measure of power flow stress (i.e. SCR) is used in this paper to

characterize truly weak networks.

The stability analysis problem is further complicated by a hybrid network model including

both rotational and electronic DG’s. As in [13], such a hybrid network is treated as a multirate

Kuramoto model to analyze frequency synchronization, but conditions there are hard to check.

An equivalence is pointed out, in [14], of the dynamics of a synchronous generator and a

fast inverter with low pass filters. This equivalence allows stability of a network with both

rotational and electronic DG’s being treated as a traditional multi-machine network. Building

upon those prior works, this paper derives a set of inequality constraints whose satisfaction
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assures asymptotic voltage stability and frequency synchronization. Sufficient conditions are on

network weakness, voltage control authority, and load levels, so that network states converge to

an isolated equilibrium point within regulatory limits of power quality.

The remainder of this paper is organized as follows. Section II reviews the power system

background and notations used throughout this paper. Section III presents the weak network

model, with droop-controlled rotational and electronic DG’s. Section IV presents the main results

of this paper, i.e. sufficient conditions that ensure voltage stability and frequency synchronization.

Section V demonstrates simulation results showing that sufficient conditions ensure asymptotic

stability of voltage and frequency, providing guidance in how DG’s should integrate into existing

networks. Section VI provides concluding remarks and identifies future directions in weak

network stability analysis.

II. BACKGROUND AND NOTATIONS

Power flow relationships among buses and general load models are reviewed in this section.

Before introducing those models, three-phase balanced operation and per-unit (p.u.) normalization

are clarified as basic assumptions. Stability analyses in this paper build upon a balanced three-

phase network model, which makes the analysis also applicable to single-phase cases. In addition,

p.u. normalization is applied to accommodate various nominal voltage levels in a network.

Admittance matrix Y is defined as in power system analysis textbooks [15], whose ij-th

component is expressed as

Yij =

⎧⎨
⎩

− 1
Zij

if bus i and j are connect,

0 else,

Yii =
n∑

j=1,j �=i

−Yij,

where Zij is the impedance between bus i and j for all i, j ∈ {1, 2, . . . , n}. The admittance

matrix Y is also expressed in real and imaginary parts as Yn×n = Gn×n + jBn×n, where Gn×n

is the conductance matrix and Bn×n is the susceptance matrix.

Weak networks and lossy networks are different, and their differences must be clarified. Lossy

networks simply have |Gij/Bij| ≥ 1 for any i �= j in the admittance matrix Yn×n, which is

equivalent to |Rij/Xij| ≥ 1. In contrast, lossless networks are assumed to be with negligible

Gij , then there is a pure imaginary admittance matrix Yn×n = jBn×n, which brings about
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simplicity in network analysis. Weak networks, nevertheless, should be characterized from the

perspective of power flow stress, such as the short-circuit ratio (SCR) defined in [2]. SCR is

the ratio between the short circuit power at a generator’s point of common coupling and the

maximum apparent power of this generator. As indicated in [2], a network with SCR ≤ 10 is

considered to be weak, while one with SCR ≥ 20 is strong. Connected to any bus i, there is a

iPP iQ

gen,iPP gen,iQ load,iPP
load,iQ

Bus i iE i

Fig. 1. Power Balance at Bus i

controlled generator and a synthesized load, as shown in Figure 1. At bus i in Figure 1, Ei is

voltage magnitude and δi is phase angle; Pi and Qi are the injected powers; Pgen,i and Qgen,i are

the total powers generated; Pload,i and Qload,i denote the real and reactive loads. Powers injected

into bus i are

Pi = Pgen,i − Pload,i, (1)

Qi = Qgen,i −Qload,i. (2)

Especially, pure load bus j has Pj + Pload,j = 0 and Qj +Qload,j = 0.

Power balance relationships depict power exchanges between buses, derived from S = P +

jQ = V I∗ = V (Yn×nV )∗. In this equation: P and Q are n-dimensional real and reactive power

vectors; V and I are complex voltage and current vectors. Real power injection Pi and reactive

power injection Qi at bus i depend on states of neighboring buses, captured in the so called

power balance relationships

Pi =
n∑

j=1

EiEj(Gij cos(δi − δj) + Bij sin(δi − δj)), (3)

Qi =
n∑

j=1

EiEj(Gij sin(δi − δj)− Bij cos(δi − δj)). (4)
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The real and reactive power vectors are closely coupled through sinusoidal functions in equations

(3,4). With trivial {Gij} and phase shifts between buses, power balance relations are simplified

as Pi ≈
∑n

j=1 EiEjBij(δi − δj) and Qi ≈ −∑n
j=1 EiEjBij . This simplified linear relations are

the reason that many analysis efforts took this assumption, i.e. the strong network assumption.

Nevertheless, for weak distribution networks coupled with DG’s, system dynamics are coupled as

in equations (3,4). This coupling nature in weak networks makes controlling DG’s a challenging

task. For example, injecting real power from DG’s downstream a distribution feeder would not

only change phase angles, but also increase voltage magnitudes at these DG’s, which is the

so-called “voltage-rise problem”.

To incorporate various types of loads into Pload,i and Qload,i, a ZIP model is applied [16]. The

ZIP model is a polynomial load model that combines constant impedance (Z), constant current

(I) and constant power (P) components. The actual loads are defined as a function of voltage

magnitudes {Ei} in p.u., which is

Pload,i = E2
i Pload,a,i + EiPload,b,i + Pload,c,i,

Qload,i = E2
i Qload,a,i + EiQload,b,i +Qload,c,i,

where Pload,a,i and Qload,a,i are nominal constant impedance loads, e.g. incandescent light bulbs

and resistance heaters; Pload,b,i and Qload,b,i are nominal constant current loads, usually represent-

ing active motor controllers; Pload,c,i and Qload,c,i are nominal constant power loads, generally a

result of active power control. Using second-order polynomials, this ZIP load model approximates

a variety of load types.

III. SYSTEM MODEL

This section obtains system models of weak networks coupled with both rotational and

electronic DG’s. The equivalence is explained between dynamics of a rotational DG and a

fast inverter with a low pass filter. Using the unified model, conditions are derived to establish

an isolated equilibrium point. Phase angle dynamic equations of a network are then constructed

in the form of nonlinear oscillators. With respect to the equilibrium point, voltage error dynamic

equations are obtained. Definitions of both asymptotic frequency and voltage stability are then

provided as objectives of stability analysis problems.
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In this paper, inverter-based controllers are based on the CERTS (Consortium for Electric

Reliability Technology Solutions) droop control mechanisms [1], which are modified versions

of conventional droop controllers. For a total of m inverter based DG’s, the associated phase

angle and voltage dynamic equations at the ith inverter based DG are

δ̇i = mP (Pref,i − Pgen,i) + ω0 = mP (Pref,i − Pi − Pload,i) + ω0, (5)

Ėi = KQ(Eref,i − Ei)−mQQgen,i = KQ(Eref,i − Ei)−mQ(Qi +Qload,i), (6)

for all i ∈ {1, 2, . . . ,m}, where mP is the droop slope of P -f droop controller; ω0 is the nominal

angular frequency; KQ and mQ are the voltage control gain and the droop slope of Q-E droop

controller, respectively. In equations above, Pref,i and Eref,i denote the commanded real power

and voltage levels in the controller at the ith bus.

Dynamics of synchronous generators are typically described in swing equations. For the ith

rotational DG, the dynamic equation of phase angles is

Miδ̈i +Diδ̇i = Pref,i − Pgen,i = Pref,i − Pi − Pload,i (7)

where Mi is inertia of the machine and Di is damping of the rotator at bus i. It is assumed that

voltages of these DG’s are regulated by a similar mechanism used in equation (6).

As pointed out in [14], phase angle dynamics of a rotational DG are equivalent to a inverter-

based DG with low pass filters. These low pass filters are included in DG controllers through real

and reactive power measurements. Dynamics of these low-pass filters at the ith inverter-based

DG are

τS,iṖ
m
gen,i(t) = −Pm

gen,i(t) + Pgen,i(t), (8)

τS,iQ̇
m
gen,i(t) = −Qm

gen,i(t) +Qgen,i(t), (9)

where τS,i is the time constant of power measurement at bus i; Pm
i and Qm

i are measured powers

used by inverter-based controllers.

These low-pass filters have different impacts on dynamics of phase angle and voltage. For

6



phase angle dynamics, low-pass filters transform first-order equations to swing equations.

d

dt
δ̇i(t) = −mP Ṗ

m
gen,i(t),

= −mP

τS,i
(−Pm

gen,i(t) + Pgen,i(t)),

=
mP

τS,i
(Pref,i − 1

mP

δ̇i(t) +
1

mp

ω0 − Pgen,i(t)).

The second-order dynamics of phase angle are rewritten as

τS,i
mP

δ̈i(t) +
1

mP

δ̇i(t) = Pref,i +
1

mp

ω0 − Pgen,i(t),

which has exactly the same form as equation (7). With mP = π for CERTS droop controllers,

the time constant τS,i cannot be neglected. For voltage dynamics, the impact of low-pass filters

also leads to a second-order equation for the ith bus connected to an inverter-based DG.

d

dt
Ėi(t) = −KQĖi(t))−mQQ̇

m
gen,i(t),

= −KQĖi(t))− mQ

τS,i
(−Qm

gen,i(t) +Qgen,i(t)),

= −KQĖi(t)) +
KQ

τS,i
(Eref,i − Ei(t))− 1

τS,i
Ėi(t)− mQ

τS,i
Qgen,i(t),

which is rewritten as

τS,iËi(t) + (KQτS,i + 1)Ėi(t) +KQEi(t) = KQEref,i −mQQi(t).

Time constants τS,i’s are small compare with large KQ, so that the dynamics can be simplified

to the original first-order form as

Ėi(t) = KQ(Eref,i − Ei(t))−mQQgen,i(t).

As a result, all analysis hereafter will be based on the second-order phase angle dynamics in

equation (7) and first-order voltage dynamics in equation (6). To simplify our analysis, the

following assumption is made about parameters in the second-order phase angle model.

Assumption 1: Dynamics of both inverter-based and rotating machine-based DGs are with

the same parameters. This means that for a total of m inverter-based DG coupled buses and g

SG-based DG coupled buses, there are
τS,1
mP

= . . . =
τS,m
mP

= M1 = . . . = Mg and 1
mP

= . . . =

1
mP

= D1 = . . . = Dg.

To define equilibrium points of the complete system model in equations (3,4,6,7), a change

of variable is necessary for phase angles. There is one surplus degree of freedom (DOF) in
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phase angles {δi}. In a network with n DG-coupled buses, to remove this additional DOF in

{δi}, phase angles of the first (n − 1) buses refer to a common bus, i.e. the nth bus. Define

phase angle difference θi = δi − δn for all i ∈ {1, 2, . . . , n− 1}, hence θn = 0. The equilibrium

is expressed as (Pequ, Qequ, θequ, Eequ, ωequ), which is a zero point of the dynamic equations.

Corresponding to a total number of 2n unknown states (Eequ, θequ, ωequ), there are 2n equations

f(t) = [f1; f2; f3]
T = 0, where f1, f2, and f3 are as follows

f1,i = KQ(Eref,i − Eequ,i)−mQ(Qequ,i(Eequ, θequ) +Qload,i(Eequ,i)), i ∈ {1, 2, . . . , n} (10)

f2,i =
1

M
(Pref,i − Pequ,i(Eequ, θequ)− Pload,i(Eequ,i))

− 1

M
(Pref,n − Pequ,n(Eequ, θequ)− Pload,n(Eequ,n)), i ∈ {1, 2, . . . , n− 1} (11)

f3 = −D

M
ωequ − 1

M
(Pref,n +Dω0 − Pequ,n(Eequ, θequ)− Pload,n(Eequ,n)). (12)

As long as the equilibrium point is an isolated solution to the nonlinear equations, asymptotic

stability can be discussed with respect to it. By analyzing the Jacobian matrix of the nonlinear

equations f(t), the following lemma establishes the existence of an isolated equilibrium point:

Lemma 1: For any given real power {Pref,i} and voltage {Eref,i} commands, if Jacobian

matrices ∂f1
∂Eequ

, ∂f2
∂θequ

, as well as matrices (I− ( ∂f1
∂Eequ

)−1 ∂f1
∂θequ

( ∂f2
∂θequ

)−1 ∂f2
∂Eequ

) and (I− ( ∂f2
∂θequ

)−1

∂f2
∂Eequ

( ∂f1
∂Eequ

)−1 ∂f1
∂θequ

) are full rank, then there is an isolated equilibrium point (Pequ, Qequ, θequ, Eequ, ωequ)

for the complete system model in equations (3,4,10,11,12).

Proof: Jacobian of f(t) = [f1; f2; f3]
T in equations (10,11,12) is as follows:

J =

⎛
⎜⎜⎜⎝

∂f1
∂Eequ

∂f1
∂θequ

0

∂f2
∂Eequ

∂f2
∂θequ

0

∂f3
∂Eequ

∂f3
∂θequ

− D
M

⎞
⎟⎟⎟⎠ ,

whose determinant is det( ∂f1
∂Eequ

) det( ∂f2
∂θequ

) det(I−( ∂f2
∂θequ

)−1 ∂f2
∂Eequ

( ∂f1
∂Eequ

)−1 ∂f1
∂θequ

) or equivalently

det( ∂f2
∂θequ

) det( ∂f1
∂Eequ

) det(I − ( ∂f1
∂Eequ

)−1 ∂f1
∂θequ

( ∂f2
∂θequ

)−1 ∂f2
∂Eequ

). The Jacobian maintains its rank, if

and only if matrix ∂f1
∂Eequ

, ∂f2
∂θequ

, as well as matrices (I− ( ∂f1
∂Eequ

)−1 ∂f1
∂θequ

( ∂f2
∂θequ

)−1 ∂f2
∂Eequ

) and (I−
( ∂f2
∂θequ

)−1 ∂f2
∂Eequ

( ∂f1
∂Eequ

)−1 ∂f1
∂θequ

) are full rank. From implicit function theorem in [17], within a

small neighborhood where the Jacobian is full rank, (Pequ, Qequ, θequ, Eequ, ωequ) is isolated.

An equilibrium point (Pequ, Qequ, θequ, Eequ, ωequ) is achieved by designating commands {Pref,i}
and {Eref,i} to droop controllers. This equilibrium point is usually determined as solutions to
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optimal power flow (OPF) problems. Based on equations (10,11,12), voltage and real power

reference commands are then determined. Command Eref,i and Pref,i at bus i are determined by

Eref,i = Eequ,i +
mQ

KQ

(Qequ,i +Qload,i(Eequ)), (13)

Pref,i = Pequ,i + Pload,i(Eequ) +D(ωequ − ω0). (14)

About the existence of an isolated equilibrium point, the following assumption is made:

Assumption 2: Each equilibrium point (Pequ, Qequ, θequ, Eequ, ωequ) is assumed to be a solution

to some OPF problem and to satisfy the conditions in Lemma 1, so that it is an isolated

equilibrium point in a small neighborhood.

To derive a more general model for frequency synchronization analysis, phase angle dynamics

in equation (7) are formulated as nonlinear oscillators. By inserting equations (1) and (3) into

the swing equation, the equation (7) is then written as

Mδ̈i +Dδ̇i = Pref,i − Pi − Pload,i,

= Pref,i − E2
i Gii − Pload,i(E)−

n∑
j=1,j �=i

EiEj(Gij cos(δi − δj) + Bij sin(δi − δj)),

= ω0,i −
n∑

j=1,j �=i

EiEj|Yij| sin(δi − δj + φij), (15)

for all i ∈ {1, 2, . . . ,m+ g}, where the natural frequency is ω0,i = Pref,i − Pload,i(E)− E2
i Gii;

phase shift between bus i and j, φij = φji = tan−1(Gij/Bij) ∈ [−π
2
, 0]; the diagonal terms are

|Yii| = 0 and φii = 0.

Power distribution networks coupled with both inverter-based DG’s and pure loads are modeled

as a hybrid network. An n-bus distribution network includes m buses tied to inverter based DG’s

and l pure load buses. Frequency synchronization model of this hybrid network is as follows

Mδ̈i +Dδ̇i = ω0,i −
n∑

j=1,j �=i

EiEj|Yij| sin(δi − δj + φij),

i ∈ {1, . . . ,m+ g}

δ̇i =

∑n
j=1,j �=i EiEj|Yij| cos(δi − δj + φij)δ̇j∑n
j=1,j �=i EiEj|Yij| cos(δi − δj + φij)

,

i ∈ {m+ g + 1, . . . ,m+ g + l}

where ω0,i = Pref,i − Pload,i(E) − E2
i Gii is the natural frequency of the nonlinear oscillator at
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bus i. Based on the hybrid network of nonlinear oscillators above, frequency synchronization is

defined as asymptotic convergence of network frequency, as follows

Definition 1: The power distribution network has frequency synchronization if there are two

open subsets of ΩE,1,Ωθ,1 ⊂ R
n containing the origin such that if any Ẽi(0) ∈ ΩE,1 and any

θi(0) = (δi(0)− δn(0)) ∈ Ωθ,1 then limt→∞ δ̇1(t) = . . . = limt→∞ δ̇n(t) = ωequ, when the inputs

Pref , Pload,a, Pload,b, Pload,c, Eref , Qload,a, Qload,b, Qload,c are constant.

Voltage control dynamic model is based on the isolated equilibrium point that satisfies con-

ditions in Lemma 1. Based on the isolated equilibrium point corresponding to a given set of

commands, error states are define for phase angle, voltage magnitude and reactive power error

vectors as θ̃ = θ − θequ, Ẽ = E − Eequ, and Q̃ = Qequ −Q. Voltage error dynamics model is:

˙̃Ei = Ėi − Ėequ,i,

= KQ(Eequ,i − Ei) +mQ(Qequ,i −Qi) +mQ(Qload,i(Eequ,i)−Qload,i(Ei)),

= mQQ̃i −
{
KQ +mQ[Qload,b,i + (2Eequ,i + Ẽi)Qload,a,i]

}
Ẽi,

= mQ

{
Q̃i −Qload,a,iẼi

2 − [
KQ

mQ

+ (Qload,b,i + 2Qload,a,iEequ,i)]Ẽi

}
, (16)

i ∈ {1, . . . ,m+ g}

Q̃i = Qload,a,iẼ
2
i + (2Qload,a,iEequ,i +Qload,b,i)Ẽi. (17)

i ∈ {m+ g + 1, . . . ,m+ g + l}

Equation (17) shows an algebraic relation between voltage magnitude and reactive power error

vectors. With respect to the voltage error dynamics model above, it is possible to define voltage

stability of the power distribution network, as follows

Definition 2: The power distribution network has voltage stability if there are two open subsets

of ΩE,2,Ωθ,2 ⊂ R
n containing the origin such that if any Ẽi(0) ∈ ΩE,2 and any θi(0) =

(δi(0) − δn(0)) ∈ Ωθ,2 then limt→∞ Ẽ1(t) = . . . = limt→∞ Ẽn(t) = 0, when the inputs Pref ,

Pload,a, Pload,b, Pload,c, Qref , Qload,a, Qload,b, Qload,c are constant.

IV. MAIN RESULT

This section derives sufficient conditions for voltage stability and frequency synchronization

in a weak power distribution network coupled with both rotational and electronic DG’s. These
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sufficient stability conditions are in the form of network weakness, control authority, and load

levels. As long as these conditions are satisfied, the network asymptotically converges to the

designated equilibrium point (Pequ, Qequ, θequ, Eequ, ωequ). Grid-connected case is then discussed,

addressing concerns of how to manage DG’s without affecting network stability. Voltage control

analyses are the same as in our previous conference paper [18], however, proofs of voltage

stability are included to make this paper self-sufficient. As in [18], the coupled voltage and

Voltage
Control

Frequency
Synchronization

Q
P θ

Power
Flow Q

Power
Flow P

θ

E

E

ω

Fig. 2. Complete Model of the Network

frequency dynamics are solved by segmenting the entire system model into interconnected blocks,

including a voltage control block, a frequency synchronization block, and two power balance

blocks, as shown in Figure 2. Based on the segmented system model, stability analysis decouples

by first identifying the existence of voltage magnitude and phase angle invariant sets; then proving

asymptotic stability of both phase angle difference and voltage; finally establishing frequency

synchronization.

A. Invariant Sets

With no assumption on phase angles differences θ, a positive invariant set of voltage magni-

tudes IE is identified. Since relationships between voltage and reactive power errors on pure load

buses are purely algebraic in equation (17), only dynamics on DG-coupled buses are considered.

The following lemma characterizes a positive invariant set of voltage magnitudes IE .

Lemma 2: Consider the system model in equations (3,4,15,16), with |θ̃i| ≤ 2π for any i ∈
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{1, 2, . . . ,m+ g}. Given

|Qload,a,i| < a, (18)

KQ/mQ > max(b1 −Qload,b,i + 2
√

(a−Qload,a,i)c,

−b2 −Qload,b,i + 2
√

(Qload,a,i + a)c), (19)

where

a = (2 + 4π)|Gii|max + (4 + 4π)|Bii|max, (20)

b1 = ((2 + 8π)|Gii|max + (4 + 8π)|Bii|max − 2Qload,a,i)max
i

(Eequ,i), (21)

b2 = ((2 + 8π)|Gii|max + (4 + 8π)|Bii|max + 2Qload,a,i)max
i

(Eequ,i), (22)

c = 4π(|Gii|max + |Bii|max)(max
i

(Eequ,i))
2. (23)

If for each voltage magnitude Ei,

Ẽ−,l ≤ Ei(0)− Eequ,i ≤ Ẽ+,u, (24)

then there exists a non-empty set

IE = {E ∈ R
m : Emin ≤ Ei ≤ Emax, 0 < Emin < Emax},

where Emin = min
i
(Eequ,i) + min(0, Ẽ−,u) and Emax = max

i
(Eequ,i) + max(0, Ẽ+,l),

where there are,

Ẽ+,u, Ẽ+,l =
KQ/mQ +Qload,b,i − b1

2(a−Qload,a,i)
±

√
(b1 −KQ/mQ −Qload,b,i)2 − 4(a−Qload,a,i)c

2(a−Qload,a,i)
,

Ẽ−,u, Ẽ−,l = −KQ/mQ +Qload,b,i + b2
2(Qload,a,i + a)

±
√

(b2 +KQ/mQ +Qload,b,i)2 − 4(Qload,a,i + a)c

2(Qload,a,i + a)
,

The nonempty set IE is positively invariant with respect to equations (3,4,15,16).

Proof: IE will be an invariant set, if for arbitrary i ∈ {1, 2, . . .m+g}, |Ẽi| is non-increasing

on the border of IE , with two cases to be considered. When there is Ẽi = Ei − Eequ,i > 0.

Inserting equation (28) into equation (16) yields

˙̃Ei ≤ −[KQ +mQ(2Eequ,i + Ẽi)Qload,a,i +Qload,b,i]Ẽi +mQ(lEẼi + lδ2π),

= mQc+mQ(−KQ/mQ −Qload,b,i + b1)Ẽi +mQ(−Qload,a,i + a)Ẽ2
i .

˙̃Ei should be non-positive to make Ẽi non-increasing. Given the lemma’s hypothesis (18,19),

the equation (−Qload,a,i + a)x2 + (−KQ/mQ − Qload,b,i + b1)x + c = 0 has two real solutions,

12



at least one of them being positive. If Ẽ+,l ≤ Ẽi ≤ Ẽ+,u is satisfied, then Ẽi is not increasing

when Ẽi > 0.

The other case is Ẽi < 0. Similarly,

˙̃Ei ≥ −[KQ +mQ(2Eequ,i + Ẽi)Qload,a,i +Qload,b,i]Ẽi −mQ(lEẼi + lδ2π),

= −mQc−mQ(KQ/mQ +Qload,b,i + b2)Ẽi −mQ(Qload,a,i + a)Ẽ2
i .

˙̃Ei should be non-negative to make Ẽi non-decreasing. Given the lemma’s hypothesis (18,19),

the equation (Qload,a,i + a)x2 + (KQ/mQ + Qload,b,i + b2)x + c = 0 has two real solutions, at

least one of them being negative. If Ẽ−,l ≤ Ẽi ≤ Ẽ−,u is satisfied, then Ẽi is non-decreasing

when Ẽi < 0.

˙̃Ei

0
Eequ

Ẽi Ẽi< 0 > 0

E -,l E -,u

E+,l E+,u

Ei˜ ˜

˜ ˜

Fig. 3. Illustration of Voltage Invariant Set

Existence of an invariant set of voltage is demonstrated in Figure 3. The x-axis in the figure is

the voltage magnitude Ei at bus i, and the y-axis is the derivative of voltage error
˙̃Ei. Separated

by Eequ,i, voltage error dynamics are discussed with both Ẽi < 0 and Ẽi > 0. If conditions

in equations (18,19) are satisfied, two quadratic curves cross the x-axis where
˙̃Ei = 0. When

Ẽi > 0, there is a convex quadratic curve, with cross points {Ẽ+,l, Ẽ+,u}. When Ẽi < 0, there is

a concave quadratic curve, with cross points {Ẽ−,l, Ẽ−,u}. If an initial voltage error Ẽi(0) lies

between either {Ẽ+,l, Ẽ+,u} or {Ẽ−,l, Ẽ−,u}, Ei(t) approaches to cross points that are closer to

Eequ, i.e. with Ẽ+,l and Ẽ−,u respectively. For any i ∈ {1, 2, . . . ,m + g}, Ẽi stays in IE once

it starts between Ẽ−,l and Ẽ+,u, so that equation (24) implies that IE is positively invariant.

As voltages are bounded within IE , a condition is determined for a positive invariant set of

phase angles, such that phase angle differences are kept bounded. The “Power Flow P” block

and the “Frequency Synchronization” block, in Figure 2, are involved to prove bounded phase

angle differences. Drawing upon techniques used in [10][13], the following lemma characterizes

a positive invariant set of phase angle differences {θi}.
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Lemma 3: Assume the conditions in lemma 2 are satisfied. Define

A1 = nE2
min min

i �=j
(|Bij|),

A2 = max
i �=j

(|ω0,i − ω0,j|)− 2E2
min|Gii|min,

with ω0,i = Pref,i − Pload,i(E)− E2
i Gii,

where Emin and Emax are from the set IE in lemma 2. If

A1 sin(θ) ≥ A2, (25)

then there exists a non-empty set

Iθ = {θ ∈ R
m : max

i,j
(|θi − θj|) ≤ θ, θ ∈ [0, π]},

which is positively invariant with respect to equations (3,4,15,16).

Proof: Define a positive function Vθ(θ) : R
(m+g) → [0, π] for the (m+ g)-bus network as

Vθ(θ) =
1

mP

max
i �=j

(|θi − θj|) = 1

mP

(θk − θl),

where the kth bus achieves clockwise maximum θk and the lth bus achieves the counterclockwise

minimum θl, with k, l ∈ {1, 2, . . . ,m + g}. Assume that |θi(0) − θj(0)| ≤ θ for any i, j ∈
{1, 2, . . . ,m+g}, where θ is arbitrary and θ ∈ [0, π], such that all angles are contained in an arc of

length θ. Since pure load buses have their phase angle dynamics determined by neighboring buses,

the positive function Vθ only takes into account buses with DG’s. Once states on DG-connected

buses are determined, pure load buses’ states are derived through algebraic relationships.

Taking the upper Dini derivative of Vθ to deal with discontinuity, there is⎧⎨
⎩

D+Vθ = (ωk − ωl),

(ω̇k − ω̇l) = − D
M
(ωk − ωl) +

1
M
u,

where there is input

u = (ω0,k − ω0,l)

−[
n∑

j=1
j �=k

EkEjBkj sin(θk − θj)−
n∑

j=1
j �=l

ElEjBlj sin(θl − θj)]

−[
n∑

j=1
j �=k

EkEjGkj cos(θk − θj)−
n∑

j=1
j �=l

ElEjGlj cos(θl − θj)],

≤ max
i �=j

(|ωi − ωj|)− E2
minnmin

i �=j
(|Bij|) sin θ − 2E2

min|Gii|min.
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Under the lemma’s assumption in equation (25), there is u ≤ 0, so that the value of (ωk − ωl)

always decreases to negative, whatever its initial (ωk(0)−ωl(0)) is. Since the upper Dini derivative

D+Vθ ≤ 0, then Vθ is non-increasing. As a result, Iθ is a positively invariant set.

Remark 1: Equation (25) bounds network weakness in the form of Bij and Gii, while the

size of phase angle invariant set is larger for strong networks than weak ones. Similarity among

controller natural frequencies {ωi} improves frequency synchronization capability by increasing

the size of phase shift ranges that are kept bounded.

These two positive invariant sets IE and Iθ provide bounded voltage magnitudes and phase

angle differences to start with, asymptotic convergences of phase angle differences, voltages and

the network frequency are then proved in the remainder of this section.

B. Asymptotic Stability

Before proving asymptotic stability, in the sense of voltage control and frequency synchro-

nization, the following lemma is established of maintaining a Metzler matrix with zero row sums

when the system dynamics simplifies to a lower dimension. It is used when pure load buses are

considered in frequency synchronization analysis.

Lemma 4: Assume that F is a Metzler matrix with zero row sums, if matrix F is written as

a block matrix as [F1 F2;F3 F4], in which F2 and F3 have non-zero elements on each row,

then the matrix (F1 − F2F
−1
4 F3) is also a Metzler matrix with zero row sums.

Proof: Since the matrix F is a Metzler matrix with zero row sums, then there is Fii +∑n
j=1,j �=i Fij = 0 and |Fii| =

∑n
j=1,j �=i Fij = 0. Based on Gershgorin theorem, matrix F has all

its eigenvalue disks centered at diagonal component values stay complete in the left-hand-side

of the imaginary axis.

Because matrix F2 has non-zero elements on each row, with n = m + l, diagonal block

matrices F1 have its row sums as follows

F1,ii +
m∑

j=1,j �=i

F1,ij = −
l∑

j=1,j �=i

F2,ij < 0,

|F1,ii| >
n∑

j=1,j �=i

F1,ij > 0.

Also based on Gershgorin theorem, matrix F1 has all its eigenvalues with negative real parts.

Similarly, matrix F4 also has all its eigenvalues with negative real parts. Diagonal block matrices
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F1 and F4 are both invertible.

Since matrix (−F4) is a nonsingular matrix with negative off-diagonal entries, whose eigen-

values all have positive real parts, then (−F4) is an M-matrix [19]. Based on characteristics

of M-matrices, its inverse (−F4)
−1 is nonnegative with all its elements nonnegative. Therefore,

matrix F4 is invertible, and all elements of the inverse matrix F−1
4 are negative.

Expressing F4 and F−1
4 in row vectors {bi} and column vectors {ai}, respectively, where

i ∈ {1, . . . , l}. Equation F4F
−1
4 = F−1

4 F4 = I is rewritten as

F−1
4 F4 =

⎛
⎜⎜⎜⎜⎜⎝

b1

b2
...

bl

⎞
⎟⎟⎟⎟⎟⎠

(
a1 a2 . . . al

)
=

⎛
⎜⎜⎜⎜⎜⎝

b1a1 b1a2 . . . b1al

b2a1 b2a2 . . . b2al
...

...
. . .

...

bla1 bla2 . . . blal

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

,

then bi
∑l

i=1 ai = 1 for each i ∈ {1, 2, . . . , l}. Expressing F3 in column vectors {cj}, where

j ∈ {1, . . . ,m}, then there is

F−1
4 F3 =

⎛
⎜⎜⎜⎜⎜⎝

b1

b2
...

bl

⎞
⎟⎟⎟⎟⎟⎠

(
c1 c2 . . . cm

)
=

⎛
⎜⎜⎜⎜⎜⎝

b1c1 b1c2 . . . b1cm

b2c1 b2c2 . . . b2cm
...

...
. . .

...

blc1 blc2 . . . blcm

⎞
⎟⎟⎟⎟⎟⎠

=
(

d1 d2 . . . dm

)
,

whose row sums are bi
∑m

i=1 ci for all i ∈ {1, 2, . . . , l}. Since each column vector ci are positive,

bicj is negative for any i and j. Since F is a Metzler matrix with zero row sums, there is
∑m

j=1 cj+∑l
j=1 aj = 0 for each i ∈ {1, 2, . . . , l}, then each row sum has bi

∑m
j=1 cj = −bi

∑l
j=1 aj = −1.

Since bi
∑m

j=1 cj = −1 and each bicj is negative, then there is −1 ≤ bicj ≤ 0 and matrix

F−1
4 F3 has all its components negative. With matrix F2 expressed as row vectors {ej}, where

j ∈ {1, . . . ,m}, then there is a square matrix

F2F
−1
4 F3 =

⎛
⎜⎜⎜⎜⎜⎝

e1d1 e1d2 . . . e1dm

e2d1 e2d2 . . . e2dm
...

...
. . .

...

emd1 emd2 . . . emdm

⎞
⎟⎟⎟⎟⎟⎠

.
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Since each element of vector dj is between −1 and 0, then there is 0 ≤ −eidi ≤ ∑m
j=1 ej .

Expressing matrix F1 as row vectors {fj}, then there is

F1 − F2F
−1
4 F3 =

⎛
⎜⎜⎜⎜⎜⎝

f1

f2
...

fm

⎞
⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎝

e1d1 e1d2 . . . e1dm

e2d1 e2d2 . . . e2dm
...

...
. . .

...

emd1 emd2 . . . emdm

⎞
⎟⎟⎟⎟⎟⎠

,

in which each row is fi1m − ei
∑m

i=1 di = 0. Since there is fii − eidi ≤ fii +
∑m

j=1 ej ≤ 0, then

each diagonal element (fii − eidi) is non-positive and all non-diagonal elements fij − eidj are

positive. As a result, the matrix F1 − F2F
−1
4 F3 is still a Metzler matrix with zero row sums.

Building upon the two invariant sets IE and Iθ, asymptotic convergence of phase angle

differences θ requires a stricter condition than the one in Lemma 3. Only two blocks are

discussed, i.e. the “Power Flow P” block and the “Frequency Synchronization” block. The

following theorem establishes sufficient conditions for phase angle differences convergence.

Theorem 3: Define A1 = nE2
min mini �=j(|Bij|) and A2 = maxi �=j(|ω0,i−ω0,j|)−2E2

min|Gii|min,

with ω0,i = Pref,i − Pload,i(E)− E2
i Gii. Under conditions in lemma 2 and 3, if

A1 sin(π/2− αmax) ≥ A2, (26)

where αmax = maxi �=j(tan
−1(

−Gij

Bij
)), then there is limt→∞ θi(t) = θequ,i for each i ∈ {1, 2, . . . , n}.

Proof: It is assumed that voltage magnitudes are constants and phase angles are states

changing with time. Define αij = −φij = tan−1(−Gij

Bij
) ∈ [0, π

2
]. Because natural frequency is

ω0,i = Pref,i − Pload,i(Ei) − E2
i Gii for bus i, it is not a function of phase angles δi. Taking

voltages as inputs, derivatives of equation (15) are

M
dδ̈i
dt

+D
dδ̇i
dt

= −
n∑

j=1
j �=i

EiEj|Yij| cos(δi − δj − αij)(δ̇i − δ̇j) = Fi(t)δ̇,

for i ∈ {1, 2, . . . ,m+ g}, where F is a matrix whose components are

Fii(t) = −
n∑

j=1
j �=i

EiEj|Yij| cos(δi − δj − αij) and Fij(t) = EiEj|Yij| cos(δi − δj − αij).

Similarly for pure load buses, since Pi+Pload,i = 0 and Pload,i is independent of frequency, then

there is 0 = −∑n
j=1
j �=i

EiEj|Yij| cos(δi − δj − αij)(δ̇i − δ̇j) = Fi(t)δ̇ for i ∈ {m+ g + 1,m+ g +

2, . . . ,m+ g+ l} with n = m+ g+ l, where F (t) has the same form as the DG-coupled buses.
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By lemma 3 and setting θ = π/2− αmax, for all θi, θj ∈ Iθ where i, j ∈ {1, 2, . . . , n}, there

is |θi − θj| = |δi − δj| < π
2
− αmax. This inequality simply means that cos(δi − δj − αij) > 0,

then matrix F (t) satisfies: (a) its off-diagonal elements are nonnegative and (b) its row sums are

zero. As a result, F (t) is a Metzler matrix with zero row sums for every time instant t.

With both dynamics of DGs and pure load buses, the complete system model is as follows, .

d

dt

⎛
⎜⎜⎜⎜⎜⎝

δ̇(m+g)×1

δ̇l×1

ω̇(m+g)×1

ω̇l×1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 I 0

0 0 0 I

1
M
F1

1
M
F2 − D

M
I 0

F3 F4 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

δ̇(m+g)×1

δ̇l×1

ω̇(m+g)×1

ω̇l×1

⎞
⎟⎟⎟⎟⎟⎠

,

where, for any time instant t, block matrices F1 and F4 both have eigenvalues with pure negative

real parts; F2 and F3 are non-zero matrices. It can be simplified to an (m+g)-dimensional system

M
d

dt
δ̈(m+g)×1 +D

d

dt
δ̇(m+g)×1 = (F1 − F2F

−1
4 F3)δ̇(m+g)×1 = Fsimδ̇(m+g)×1.

Based on lemma 4, the simplified matrix Fsim preserves this property for any time instant t.

Since the pure load buses decouple from other buses in the block matrix above, it is possible to

remove states corresponding to pure load buses

d

dt

⎛
⎝ δ̇(m+g)×1

ω̇(m+g)×1

⎞
⎠ =

⎛
⎝ 0 I

1
M
(F1 − F2F

−1
4 F3) − D

M
I

⎞
⎠

⎛
⎝ δ̇(m+g)×1

ω̇(m+g)×1

⎞
⎠ .

Since Fsim is still a Metzler matrix with zero row sums, then the proof of asymptotic frequency

synchronization is identical for networks either with or without pure load buses. As long as

frequencies at DG-coupled buses converge, pure load buses would take averaged frequencies to

the same value as well.

For the simplicity of notation, the dynamics is written as M d
dt
δ̈n×1+D d

dt
δ̇n×1 = F (t)δ̇n×1 with

n = m+ g. Taking the nth bus as a reference, then it is possible to rewrite the 2n-dimensional

system into a 2(n− 1)-dimensional one, whose lower-left block matrix F(n−1)(t) is as follows

d

dt

⎛
⎝ δ̇(n−1)×1

ω̇(n−1)×1

⎞
⎠ =

⎛
⎝ 0 I

1
M
F(n−1) − D

M
I

⎞
⎠

⎛
⎝ δ̇(n−1)×1

ω̇(n−1)×1

⎞
⎠ ,

F(n−1)(t) =

⎛
⎜⎜⎜⎝

F11 − Fn1 · · · F1(n−1) − Fn(n−1)

...
. . .

...

F(n−1)1 − Fn1 · · · F(n−1)(n−1) − Fn(n−1)

⎞
⎟⎟⎟⎠ .
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Subtracting non-negative off-diagonal components of the nth row Fnj for j ∈ {1, 2, . . . , n− 1}
shift components on the other (n − 1) rows to the negative direction. Based on Gershgorin

theorem, matrix Fn−1(t) has all its eigenvalues with negative real parts for every time instant t.

The time-varying dynamic system above can be rewritten as

d

dt

⎛
⎝ θ̇(n−1)×1

ω̇(n−1)×1 − ω̇n1(n−1)×1

⎞
⎠ =

d

dt

⎛
⎝ θ̇(n−1)×1

ω̇(n−1)×1

⎞
⎠ =

⎛
⎝ 0 I

1
M
F(n−1)(t) − D

M
I

⎞
⎠

⎛
⎝ θ̇(n−1)×1

ω̇(n−1)×1

⎞
⎠ ,

where ωi = ωi − ωn for any i ∈ {1, 2, . . . , (n− 1)}.

Define a candidate Lyapunov function, with positive definite weighting matrices, as

V[θ̇,ω̇] =
(

θ̇T(n−1)×1 ω̇
T

(n−1)×1

)⎛
⎝ k( D

M
)2I k D

M
I

k D
M
I I

⎞
⎠

⎛
⎝ θ̇(n−1)×1

ω̇(n−1)×1

⎞
⎠

+
1

M
θ̇T(n−1)×1(−F T

(n−1) − F(n−1))θ̇(n−1)×1,

where 0 ≤ k ≤ 1. With symmetric matrix (F T
(n−1) + F(n−1)) being negative definite for any

time instant t, the function above is bounded as k1‖[θ̇, ω̇]‖2 ≤ V[θ̇,ω̇] ≤ k2‖[θ̇, ω̇]‖2, where

k1 and k2 are both positive constants. Derivative of this candidate Lyapunov function is then

V̇[θ̇,ω̇] =
1
M
θ̇T(n−1)×1[−(Ḟ T

(n−1) + Ḟ(n−1)) +
k
τS
(F T

(n−1) + F(n−1))]θ̇(n−1)×1 +
k−1
τS

ω̇
T

(n−1)×1ω̇(n−1)×1.

Although symmetric matrix (Ḟ T
(n−1) + Ḟ(n−1)) is not definite, if the time constant τS is small

enough, it is still able to bound V̇[θ̇,ω̇] with V̇[θ̇,ω̇] ≤ −k3‖[θ̇, ω̇]‖2, where k3 is a positive constant.

According to theorem 4.10 in [20], the dynamical system is asymptotically stable with respect

to its origin, so that frequency synchronizes to a single value, i.e. frequency synchronization. As

a result, there is θ̇i asymptotically converging to zero, i.e. each θi(t) = δi(t) − δn(t) converges

to a constant value.

Based on the hybrid network model of phase angles, by applying (δ̇i − δ̇n) for each i ∈
{1, 2, . . . , n− 1}, there is

M(ω̇i − ω̇n)−D(δ̇i − δ̇n)

= (ω0,i − ω0,n)− (
n∑

j=1,j �=i

EiEj|Yij| sin(δi − δj + φij)−
n−1∑
j=1

EnEj|Ynj| sin(δn − δj + φnj)).

A linearized model for phase angle analysis can be derived with respect to the equilibrium point

θequ. There is an 2(n− 1)-dimensional model as follows⎛
⎝ ˙̃θ(n−1)×1

˙̃ω(n−1)×1 − ˙̃ωn1(n−1)×1

⎞
⎠ =

⎛
⎝ ˙̃θ(n−1)×1

˙̃ω(n−1)×1

⎞
⎠ =

⎛
⎝ 0 I

F(n−1)(t) − D
M
I

⎞
⎠

⎛
⎝ θ̃(n−1)×1

ω̃(n−1)×1

⎞
⎠ ,
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where ω̃i = ω̃i − ω̃n for any i ∈ {1, 2, . . . , (n− 1)}.

Define another candidate Lyapunov function for this linearized system model as

V[θ̃,ω̃] =
(

θ̃T(n−1)×1 ω̃
T

(n−1)×1

)⎛
⎝ k

′
( D
M
)2I k

′ D
M
I

k
′ D
M
I I

⎞
⎠

⎛
⎝ θ̃(n−1)×1

ω̃(n−1)×1

⎞
⎠

+
1

M
θ̃T(n−1)×1(−F T

(n−1) − F(n−1))θ̃(n−1)×1,

where 0 ≤ k
′ ≤ 1. The function above is bounded as k

′
1‖[θ̃, ω̃]‖2 ≤ V[θ̃,ω̃] ≤ k

′
2‖[θ̃, ω̃]‖2, where

k
′
1 and k

′
2 are both positive constants. Derivative of this candidate Lyapunov function is then

V̇[θ̃,ω̃] =
1
M
θ̃T(n−1)×1[−(Ḟ T

(n−1) + Ḟ(n−1)) +
k
′

τS
(F T

(n−1) + F(n−1))]θ̃(n−1)×1 +
k
′−1
τS

ω̃
T

(n−1)×1ω̃(n−1)×1.

If the time constant τS is small enough, it is still able to bound V̇[θ̃,ω̃] ≤ −k
′
3‖[θ̃, ω̃]‖2, where

k
′
3 is a positive constant. The original dynamical system is asymptotically stable with respect

to its origin, so that there is asymptotic convergence of phase angle differences θ̃n−1(t) to a

zero vector. Since the linear model is with respect to θequ, then phase angle differences θn−1(t)

converge asymptotically to the equilibrium point to θequ. Based on asymptotic stability theorem

in [20], the original nonlinear system model is asymptotically stable with respect to θequ.

Remark 2: Equation (26) bounds the ratio |Gij/Bij| of the weakest link within the network.

Satisfying this condition ensures phase angle differences θ(t) converging to θequ, once phase

shifts reduce within the bound of (π/2− αmax).

As long as the phase angle differences asymptotically converge to an equilibrium point

θequ, voltage magnitudes of each bus are also asymptotically stabilized. The following theorem

establishes the asymptotic voltage stability.

Theorem 4: Assume that conditions in lemma 2 and 3 as well as theorem 3 hold, then there

is phase angle differences θ converging to θequ and voltage magnitudes within invariant set IE .

Define B1 and B2 as

B1 =
KQ

mQ

+min
i
(Qload,b,i + (Eequ,i + Ei)Qload,a,i),

B2 = mE.

If there is

B1 > B2, (27)

then vector {Ei} asymptotically converges to {Eequ,i}.
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Proof: Because there is an algebraic relationship between Q̃i and Ẽi for pure load buses, as

shown in equation (17), it is only necessary to consider only buses with voltage droop control

mechanisms. Define a positive function VE =
∑m+g

i=1
1

2mQ
Ẽ2

i . Taking the derivative of VE

V̇E =

m+g∑
i=1

1

mQ

Ẽi
˙̃Ei,

= Q̃T Ẽ − ẼTdiag(
KQ

mQ

+Qload,b,i + (Eequ,i + Ei)Qload,a,i)Ẽ.

Because Lemma 3 and Theorem 3 imply convergence of vector {θi} to {θequ,i}, for any εθ there

is a time T such that when t > T there is |θ̃i|max = |θi−θequ,i|max < εθ. Due to Lemma 6, ‖Q̃‖2
is bounded above by mE‖Ẽ‖2 +√

m+ gmθεθ. As a result, the derivative of VE is bounded as,

V̇E ≤ √
m+ gmθεθ

m∑
i=1

|Ẽi|

+ ẼTdiag(mE − KQ

mQ

−Qload,b,i − (Eequ,i + Ei)Qload,a,i)Ẽ.

For an arbitrary εθ, there is a subset of Ẽ(t) satisfying

|Ẽi| < 2
√
m+ gmθεθ

−mE +
KQ

mQ
+Qload,b,i + (Eequ,i + Ei)Qload,a,i

,

for all i ∈ {1, 2, . . . ,m+g}. Under the theorem’s assumption in equation (27), the denominator in

the equation above is positive. Once Ẽ(t) enters the subset at t = T , it stays in the set thereafter,

i.e. the system is uniformly ultimately bounded. As εθ goes to zero, T increases and the size of

the ultimate bound asymptotically goes to a zero vector. This is sufficient to imply asymptotic

convergence of Ẽ to zero, which further implies voltage stability. As a result, the voltage control

block ensures the asymptotic convergence of voltage magnitudes {Ei} to {Eequ,i}.

Theorem 5: Assume that conditions in lemma 2 and 3, as well as theorem 3 and 4 hold, then

limt→∞ δ̇1(t) = . . . = limt→∞ δ̇n(t) = ωequ so that network frequency asymptotically converges

to the equilibrium frequency ωequ.

Proof: Since conditions in lemma 2 and 3, as well as theorem 3 and 4 are all satisfied, then

there is phase angle differences θ converging to θequ and voltage magnitudes E converging to

Eequ. Based on power balance relationships in equations (3,4), real and reactive power P and

Q also converge to Pequ and Qequ, respectively. Since P → Pequ and E → Eequ, phase angle

dynamics in equation (5) is written as,

lim
t→∞

δ̇i(t) =
1

D
(Pref,i +Dω0 − Pequ,i − Pload,i(Eequ,i)).
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Bring expression of Pref,i in equation (14), for each DG-coupled bus i there is limt→∞ δ̇i(t) =

1
D
(Dωequ) = ωequ. Since frequencies on pure load buses are averages of their neighbors, the all

n buses have limt→∞ δ̇1(t) = . . . = limt→∞ δ̇n(t) = ωequ, i.e. converging to the same ωequ.

C. Extension to Grid-Connected Cases

To extend our analysis from islanded networks to general grid cases, a grid connection point

must be included, which can be treated as an infinite bus. Different from a DG, this infinite

bus maintains voltage and compensates for any real power imbalance. Such an infinite bus is

approximated as a bus tied to a generator, whose control strengths of both phase angle and

voltage are infinite. This fact makes stability conditions naturally satisfied, so that our stability

analysis extends to grid-connected cases.

V. SIMULATION EXPERIMENTS

Our stability conditions not only ensure stability in weak power distribution networks coupled

with both rotational and electronic DG’s, but also provide guidance in how to connect these DG’s

to existing feeders. Simulation tests are conducted in two different models, one is a modified

IEEE 37-bus distribution network and the other is a network based on a rural electrification

project in Africa. The simulation result in the 37-bus test feeder shows how rotational DGs

impact system stability under disturbances. These disturbances include load variations, as well

as impulsive voltage changes, such as voltage sags caused by short-circuit faults and voltage

surges due to machine start-ups. Simulating a network model used in the rural electrification

project indicates how stability conditions are used in connecting multiple DG’s to provide reliable

power services to a larger area.

Simulation of the modified standard test feeder is done with both rotational and electronic

DG’s as shown in Figure 4, and it is compared to the case of a distribution network only tied to

inverter-based DG’s. Both networks are modified to be under power flow stress, so that they are

weak networks. Four modifications are made to the standard test feeder in [21]: a) all load buses

except bus 1 are with 100kW three-phase balanced constant impedance load; b) five additional

DG’s coupled at the ends of distribution feeders, whose total capacity is sufficient to supply all

loads; c) DG’s are connected through 1000 feet “724” cables, as defined in [22]; d) the weak

network operates at 480V.
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Fig. 4. Simulation 37-bus Test Feeder with 5 Distributed Generations

In the weak network, whose SCR is as small as four, the sufficient stability conditions ensures

that the DG-coupled distribution network asymptotically converges to an equilibrium point. The

equilibrium point is at 60Hz, while the usual voltage regulatory limits of ±5% are relaxed.

An OPF problem is formed to calculate the equilibrium point, whose voltage magnitudes stay

between 0.69p.u. and 1.44p.u.. Conditions in Lemma 2 requires that KQ ≥ 1600, with mQ = 0.05.

The Jacobian in Lemma 1 is full rank, and conditions in Lemma 3, Theorem 3, and Theorem

4 are all satisfied. Both load level and voltage magnitude disturbances are applied to the weak

network, which is coupled with both rotational and electronic DG’s.

The following simulation test starts from connecting to the main grid; at t = 50s, the test

feeder is islanded from the main grid by opening the primary switch between bus 1 and 2;

at t = 75s, the load on all pure load buses increase by 40% for five seconds. Both network

frequency and voltage magnitudes converge to the equilibrium point, as shown in figure 5.
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Fig. 5. Simulation Result of Weak Network Response to Changing Loads

In the left plot in figure 5, the upper and lower dash lines are the maximum and minimum

voltages among all buses. The solid line represents the voltage magnitude at bus 2. In the right

plot, the network frequency is demonstrated in solid blue line, with a 60Hz nominal value. During

the islanding operation at t = 50s, the voltage envelop does not change. Within five seconds after

islanding, both voltage magnitudes and network frequency converge to the equilibrium point.

After the load increase at t = 75s, the maximum voltage decrease is less than 0.14p.u., and the

network frequency droops by as much as 9.51×10−4Hz. In less than five seconds after all loads

return to nominal values, network states restore to the equilibrium point. Under the same load

level increase situation, the network coupled with only inverter-based DG’s behaves similarly as

shown in figure 5.

The following simulations show network response to voltage magnitude changes on buses tied

to DG’s, demonstrated in figure 6. After islanding from the main grid at t = 50s, network states

converge to the equilibrium point in five seconds. At t = 75s, the voltage magnitude at SG 1 is

decreased by 0.9p.u. and increased by 1.1p.u.. The network response is shown as in figure 6

In the left plot of figure 6, the minimum voltage envelop drops to 0.52p.u., in response to

a 0.9p.u. voltage sag at SG 1. Voltage magnitudes restore to the equilibrium point in less than

two seconds, so does the network frequency. In the right plot, the maximum voltage increases to

2.52p.u., after the 1.1p.u. voltage surge at SG 1. Restoration of voltage and frequency takes less

than two seconds. Going through the same voltage magnitude disturbances happened to SG 1, the
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Fig. 6. Simulation Result of Weak Network Response to Voltage Changes at DGs

weak network tied only to inverter-based DG’s also converge asymptotically to the equilibrium

point. Their transients, however, are different due to dissimilar dynamics of DG’s. In the figure 7,

74.5 75 75.5 76 76.5 77 77.5 78
59.9999

60

60.0001

60.0002

60.0003
Network Frequency Transients

τ = 0.01
τ = 0.05

(time
  /sec)

Fig. 7. Frequency Transients Comparison with Different DGs

the two weak networks behave differently during transients after the voltage surge at t = 75s.

The network coupled with only inverter-based DG’s oscillates and converges to 60Hz within five

seconds, represented in a solid line. The frequency transients, shown in dashed lines, converge

much faster than the prior case. With a time constant τ = 0.01, the network frequency restores
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in 0.2 second with no oscillation. With a larger time constant τ = 0.05, the response is slower,

but still reaching the equilibrium point frequency within 0.5 second. Consequently, with the

second-order dynamics in swing equations of rotational DG’s, the frequency oscillation caused

by voltage magnitude disturbances is damped. As the time constant of power measurement units

τ decreases, this damping effect becomes stronger. This additional low-pass filter, however, may

have adverse impact on how the weak network can sustain load variations.

The African rural electrification project intends to provide reliable electric power to refugee

camps where a national power grid is unavailable. Currently, distributed microgrids consist of

diesel generators and solar panels are connected to provide electricity to schools, as shown in

figure 8. The single-phase microgrids operate at 230V and 50Hz. Generation units include a

6.5kW diesel generator, a 28.8kWh battery bank, and 1250W solar panels. There are three load

buses, including an office (550W), an entrepreneurship center (570W), and dorms (240W). Links

connecting all components within a microgrid are “724” cables, as defined in [22].

Diesel
Genset
6.5 kW

230V, 50Hz

Battery
28.8 kWh

Solar Panel
1250 W

Office
550 W

Training
Center
570 W

Dorms
240 W

External Connection

Fig. 8. Illustration of a Power Service Region

The next step is to expand power service areas by connecting several such microgrids together.

The fundamental problem is wether such interconnections have an adverse impact on network

stability. Sufficient stability conditions apply to this single-phase network and provide rule

of thumbs in connecting multiple microgrids robustly. Assuming three similar microgrids are

connected to a single node, which can be tied to a national grid in the future. Links between this

node and all three regions are one-mile cables. The corresponding simulation network model is

shown in Figure 9.

Local generation units are able to supply local loads within the microgrid in figure 8. Moreover,
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to consider future expansions, the load level on each bus is doubled. Simulation tests are

conducted to check responses to voltage magnitude disturbances at SG 1. Two types of cables,

“722” and “724” in [22], are chosen to link bus 2 with bus 3, bus 6, and bus 12, i.e. a load bus

in each region, respectively. Using “722” cables, an equilibrium point is solved from an OPF

problem, which commands all loads to be supplied by the local generator. The equilibrium point

has a frequency of 50Hz, and voltage magnitudes between 0.977p.u. and 1.026p.u.. Conditions

in Lemma 3, Theorem 3, and Theorem 4 are all satisfied. Response of voltage magnitudes and

frequencies to a 1.1p.u. voltage surge at SG 1 is shown in Figure 10.
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Fig. 10. Response of Rural Electrification Network to Voltage Changes at SG 1
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In the left plot of figure 10, the upper and lower dash lines are the maximum and minimum

voltages among all buses. The solid line represents the voltage magnitude at bus 2. In the right

plot, network frequency is demonstrated in a solid line, with a 50Hz nominal value. During the

islanding operation at t = 50s, the voltage envelop does not change. Within five seconds after

islanding, both voltage magnitudes and network frequency converge to the equilibrium point.

After the voltage increase at t = 75s, the maximum voltage increases to about 2.11p.u., and

the network frequency droops by as much as 7.18 × 10−4Hz. In less than five seconds after

the disturbance, network states restore to the equilibrium point. This simulation shows that the

sufficient stability conditions are applicable to single-phase network models.

In contrast to the previous case, using “724” cables, it is not able to obtain an equilibrium

point that satisfies stability conditions, especially conditions in Lemma 3 and Theorem 3. This

is mainly due to the lossy property of cables that are used to connect these geographically

distributed microgrids. Although there is little power flow through each cable during normal

operations, coupled voltage and frequency dynamics drive the weak network to instability after

voltage disturbances.

Lessons learned from simulations above include: i) although the second-order dynamics in

swing equations help to smooth weak networks’ responses to voltage disturbances of DG’s, the

delay may have an adverse impact on the networks’ ability to sustain load variations; ii) in

the rural electrification project, simply connecting multiple microgrids using lossy cables will

not guarantee robust power service to a larger area; iii) thick cables should be used to connect

distributed regions to ensure stability, even though the generation capacity of each microgrid is

much less than the power rating of such cables.

VI. SUMMARY

Asymptotic stability conditions are derived for weak power distribution networks, to which

both rotational and electronic DG’s are coupled. These conditions take the form of inequality

constraints on various network parameters, loads and generation control commands. Together

with optimal power flow problems, network states are ensured to asymptotically converge to an

equilibrium point. Simulation of a modified IEEE 37-node test feeder shows that these weak

networks can sustain load variations and voltage magnitude disturbances of DG’s. Furthermore,

these sufficient stability conditions guide the connection of multiple microgrids to provide reliable

28



power services to a large area in a rural electrification project in Africa.

APPENDIX

In the Appendix, Lemma 5 and Lemma 6 establish bounds on norms of Q̃ as functions of

voltage and phase angle error vectors, i.e. Ẽ and θ̃.

Lemma 5: Defined lE and lθ as

lE = 2(max
i

(Eequ,i) + |Ẽi|max)(|Gii|max + 2|Bii|max),

lθ = 2(max
i

(Eequ,i) + |Ẽi|max)
2(|Gii|max + |Bii|max),

then absolute value of the reactive power error |Q̃i| is bounded by

|Q̃i| ≤ lE|Ẽi|max + lθ · 2π. (28)

Proof: With the help of its Jacobian ∂Q/∂E and ∂Q/∂θ, Q̃ is linearized as Q̃ = Q−Qequ =

∂Q
∂E

∣∣∣
equ

(E−Eequ)+
∂Q
∂θ

∣∣∣
equ

(θ− θequ) =
∂Q
∂E

∣∣∣
equ

Ẽ+ ∂Q
∂θ

∣∣∣
equ

θ̃. Taking infinite vector norms on both

sides, there is

‖Q̃‖∞ ≤
∥∥∥∥∂Q∂E Ẽ +

∂Q

∂θ
θ̃

∥∥∥∥
∞

≤
∥∥∥∥∂Q∂E Ẽ

∥∥∥∥
∞
+

∥∥∥∥∂Q∂θ θ̃
∥∥∥∥
∞
,

≤
∥∥∥∥∂Q∂E

∥∥∥∥
∞

∥∥∥Ẽ∥∥∥
∞
+

∥∥∥∥∂Q∂θ
∥∥∥∥
∞

∥∥∥θ̃∥∥∥
∞
,

max
i

(|Q̃i|) ≤
∥∥∥∥∂Q∂E

∥∥∥∥
∞
max

i
(|Ẽi|) +

∥∥∥∥∂Q∂θ
∥∥∥∥
∞
max

i
(|θ̃i|),

where ‖∂Q
∂E

‖∞ and ‖∂Q
∂θ
‖∞ are bounded as following

‖∂Q
∂E

‖∞ =
∑
j=1
j �=i

|Ei(Gij sin(θi − θj)− Bij cos(θi − θj))|

+ |
∑
j=1
j �=i

Ei(Gij sin(θi − θj)− Bij cos(θi − θj))− 2EiBii|,

≤ |2EiBii|+ 2
∑
j=1
j �=i

|Ei(Gij sin(θi − θj)− Bij cos(θi − θj))|,

≤ 2max
i

(|Ei|)|Bii|max + 2max
i

(|Ei|)max
i

(
∑
j=1
j �=i

(|Gij|+ |Bij|)),

≤ 2(max
i

(Eequ,i) + max
i

(|Ẽi|))(|Gii|max + 2|Bii|max) = lE,
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‖∂Q
∂θ

‖∞ = |
∑
j=1
j �=i

EiEj(Gij cos(θi − θj) + Bij sin(θi − θj))|

+
∑
j=1
j �=i

|EiEj(Gij cos(θi − θj) + Bij sin(θi − θj))|,

≤ 2
∑
j=1
j �=i

|EiEj(Gij cos(θi − θj) + Bij sin(θi − θj))|,

≤ 2(max
i

(|Ei|))2 max
i

(
∑
j=1
j �=i

(|Gij|+ |Bij|)),

≤ 2(max
i

(Eequ,i) + max
i

(|Ẽi|))2(|Gii|max + |Bii|max) = lθ.

Remark 3: Absolute value of reactive power error |Q̃i| is bounded as a function of equilibrium

voltage magnitude Eequ,i, network link parameters Gii and Bii, as well as maximum voltage error

|Ẽi|. These expressions of lE and lθ bound the derivative of voltage magnitude error
˙̃Ei with a

second order polynomial inequality.

Lemma 6: Define mE and mθ as

mE = max{
√
λ : λ is an eigenvalue of (∂Q/∂E)∗(∂Q/∂E)},

mθ = max{
√
λ : λ is an eigenvalue of (∂Q/∂θ)∗(∂Q/∂θ)},

then two-norm of the reactive power error vector Q̃ is bounded by

‖Q̃‖2 ≤ mE‖Ẽ‖2 +
√
nmθ|θ̃i|max. (29)

Proof: If system frequency synchronizes to ωequ and phase shifts are within the invariant set

Iθ, then for any i ∈ {1, 2, . . . , n} there is a bounded |θ̃i|. Within the invariant set IE , applying

vector two-norm and its induced matrix two-norm, there is

‖Q̃‖2 = ‖∂Q
∂E

Ẽ +
∂Q

∂θ
θ̃‖2,

≤ ‖∂Q
∂E

Ẽ‖2 + ‖∂Q
∂θ

θ̃‖2,

≤ ‖∂Q
∂E

‖2‖Ẽ‖2 + ‖∂Q
∂θ

‖2
√
nmax

i
(|θ̃i|),

≤ mE‖Ẽ‖2 +
√
nmθ max

i
(|θ̃i|).
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Remark 4: Magnitude of reactive power error vector ‖Q̃‖2 is bounded as a weighted combi-

nation of voltage magnitude error vector magnitude ‖Ẽ‖2 and the maximum phase angle error

|θ̃i|. The expressions of mE and mθ are used to prove asymptotic voltage stability in section IV,

by providing an ultimate uniform bound for voltage magnitude errors {Ẽi}.
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