
BEAD SLIDING AND SCHUR INEQUALITIES

LIVIU I. NICOLAESCU

ABSTRACT. We analyze a simple game of beads on a rod and relate it to some classical convex in-
equalities.

1. INTRODUCTION

We consider distributions (or configurations) of n beads on the real semiaxis [µ,∞), where µ is a
fixed real number. Any bead in such a distribution is capable of sliding to the right (in the positive
direction) but not allowed to slide to the left. We indicate such a distribution of beads by a vector

~A = (A1, . . . , An), µ ≤ A1 < A2 < · · · < An,

where the coordinates Ai indicate the positions of the beads. The i-th bead is the bead located at Ai.
A distribution is called monotone if

A1 − µ ≤ A2 −A1 ≤ · · · ≤ An −An−1. (M)

In other words, as we move along the rod, the beads are further and further apart. We denote by
Bn = Bn(µ) the collection of monotone distributions of n beads on the semiaxis [µ,∞).

We will indicate the elements of Bn(µ) using capital letters ~A, ~B etc. A configuration ~A ∈ Bn(µ)
can be identified with a point in Rn, and the inequalities (M) show that we can indentify Bn(µ) with
a convex subset of Rn. To a configuration ~A we associate the vector of differences ~a := ∆ ~A,

~a = (a1, . . . , an), a1 := A1 − µ, . . . , ak := Ak −Ak−1,∀k = 2, . . . , n.

We have a natural partial order on Bn(µ)

~A ≤ ~B⇐⇒Ak ≤ Bk, ∀k = 1, . . . , n.

Let e1, . . . , en denote the canonical basis of Rn. Given a bead distribution ~A ∈ Bn(µ) we define
a monotone bead slide to be a transformation ~A 7→ ~A′ = ~A + δek, where δ ≥ 0, 1 ≤ k ≤ n and
the distribution ~A′ is monotone. Intuitively, this means that we slide to the right by a distance δ the
k-th bead of the distribution ~A. The monotonicity of the move means that the resulting distribution
of beads continues to be monotone.

We define a new partial order relation � on Bn(µ) by declaring ~A � ~B if the distribution ~B can
be obtained from ~A via a finite sequence of monotone bead slides. When ~A � ~B we say that we can
slide the distribution ~A to the distribution ~B.

The partial order � can be given a very simple geometric interpretation. If we think of Bn(µ) as
a closed convex set in Rn and ~A, ~B ∈ Bn(µ), then ~A � ~B if and only if we can travel from ~A to ~B,
inside Bn(µ), along a positive zig-zag, i.e., a continuous path consisting of finitely many segments
parallel to the coordinate axes and oriented in the positive directions of the axes.

The first goal of this note is to investigate when we can monotonically slide one mononote distri-
bution of beads to another monotone distribution. Clearly, if we can slide ~A to ~B, then ~A ≤ ~B.
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Remark 1.1. The converse implication is true if n = 1, 2, but false if n ≥ 3. Indeed if n ≥ 3, and
~B ∈ Bn(µ) is an equidistant distribution, i.e.,

B1 − µ = B2 −B1 = · · · = Bn −Bn−1

then there is no distribution ~A ≺ ~B. To see this observe that there is no distribution ~A such that ~B is
obtained from ~A by a single admissible bead slide. ut

The example presented in the above remark is essentially the only obstruction to sliding one con-
figuration to another. This is the content of the next theorem which is the key technical result of this
paper.

Theorem 1.2. Let µ ∈ R, fix ~B ∈ Bn(µ) and set

b1 := B1 − µ, bk := Bk −Bk−1, ∀k ≥ 2.

Then the following statements are equivalent

(a) bk > bk−2, ∀k ≥ 3.
(b) If ~A ∈ Bn(µ) satisfies ~A ≤ ~B, then ~A � ~B.

ut

Remark 1.3. The condition (a) signifies that no four consecutive beads of the the distribution ~B are
equidistant. ut

The second goal of this note is to show that Theorem 1.2 implies the Schur majorization inequal-
ities. We refer to [2, 2.19-20] and [3, Chap. 13] for an in depth discussion of these inequalities and
their surprising connections with other ares of mathematics.

Theorem 1.4 (Schur majorization). Suppose b1 ≥ · · · ≥ bn is a nonincreasing sequence of real
numbers and g : R → R is a C1, convex function, i.e. , g′ is nondecreasing. Then for any sequence
a1, . . . , an satisfying

a1 + · · ·+ ak ≥ b1 + · · ·+ bk, k = 1, . . . , n− 1,

and

a1 + · · ·+ an = b1 + · · ·+ bn,

we have

g(a1) + · · ·+ g(an) ≥ g(b1) + · · ·+ g(bn). ut

Remark 1.5. The differentiability assumption on g is not needed. We included it only because it
leads to more transparent proofs. ut

The Schur majorization inequalities are very powerful, yet they are not as widely known. To
illustrate their strength we discuss some problems from mathematical competitions that follow im-
mediately from Schur’s inequalities.
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2. PROOF OF THEOREM 1.2

Define λn : Bn(µ)→ [0,∞) by setting

λn( ~A) := an − a1 = (ak − an−1) + · · · (a2 − a1) + a1,

where we recall that
a1 = A1 − µ, ak = Ak −Ak−1, k > 1.

Clearly λn( ~A) = 0 if and only the beads described by the distribution ~A are equidistant, i.e.,

An −An−1 = · · · = A2 −A1 = A1 − µ.

In other words, λn( ~A) measures how far is ~A from an equidistant distribution. We first prove the
implication (a)⇒ (b), i.e.,

~A ≤ ~B ∈ Bn and bk > bk−2, ∀k ≥ 3 =⇒ ~A � ~B. (Sn)

We argue by induction on n. The cases n = 1 and n = 2 are trivial. Observe next that the assumption
bk > bk−2 for all k ≥ 2 implies λ( ~B) > 0. We have the following key estimate.

Lemma 2.1. If ~A, ~B ∈ Bn+1(µ) are such that ~A ≤ ~B and An+1 = Bn+1 then

λn+1( ~A) ≥ 1
n
λn+1( ~B). (2.1)

Proof. For k = 2, . . . , n+ 1 we set

αk := ak − ak−1, βk := bk − bk−1.

From the equalities

λn+1( ~A) =
n+1∑
k=2

αk, λn+1( ~B) =
n+1∑
k=2

βk, ak = a1 +
k∑
i=2

αi, bk = a1 +
k∑
i=2

βi,

and

(n+ 1)a1 +
n+1∑
k=2

(n− k + 1)αk = An+1 − µ = Bn+1 − µ = (n+ 1)b1 +
n+1∑
k=2

(n− k + 1)βk,

we conclude that
n+1∑
k=2

(n− k + 1)αk = (n+ 1)(b1 − a1) +
n+1∑
k=2

(n− k + 1)βk ≥
n+1∑
k=2

(n− k + 1)βk.

Since αk, βk ≥ 0 we deduce

nλn+1( ~A) = n
n+1∑
k=2

αk ≥
n+1∑
k=2

(n− k + 1)αk ≥
n+1∑
k=2

(n− k + 1)βk ≥
n+2∑
k=2

βk = λn+1( ~B).

ut

Consider two distributions ~A, ~B ∈ Bn+1(µ), ~A ≤ ~B. We slide the last bead of ~A until it reaches
the position of the last bead of ~B.

~A 7→ ~A′ := ~A+
(
Bn+1 −An+1

)
en+1

Clearly this slide is monotone. This shows that it suffices to prove (Sn+1) only in the special case
An+1 = Bn+1. To prove the implication (Sn+1) we will rely on the following simple observation.
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Lemma 2.2. Assume that the implication (Sk) holds for every k ≤ n. If ~A, ~B ∈ Bn+1(µ) are two
distributions such that ~A ≤ ~B, and Ak = Bk for some k ≤ n then ~A � ~B.

Proof. Note that

(A1, . . . , Ak) ≤ (B1, . . . , Bk) and (Ak+1, . . . , An+1) ≤ (Bk+1, . . . , Bn+1).

According to Sk, we can slide the first k-beads of the distribution ~A to the first k beads of the distri-
bution ~B. Using Sn−k+1 we can then slide the last (n− k + 1) beads of the distribution ~A to the last
(n− k + 1) beads of the distribution ~B. ut

Using the above observations we deduce that the implication Sn+1 is a consequence of the follow-
ing result.

Lemma 2.3. Assume that the implication (Sk) holds for every k ≤ n. If ~A, ~B ∈ Bn+1(µ) are
two distributions such that ~A ≤ ~B and An+1 = Bn+1 then we can slide ~A to a configuration
~C ∈ Bn+1(µ) that crosses ~B, i.e.,

(a) ~C ≤ ~B,
(b) Cn+1 = Bn+1,
(c) Ck = Bk for some k ≤ n.

Proof. Define
Bn+1( ~B) :=

{
~T ∈ Bn+1(µ); ~T ≤ ~B, Tn+1 = Bn+1

}
.

Note that ~A ∈ Bn+1( ~B). We define a ~B-move, to be a monotone bead slide on a configuration
~T ∈ Bn+1( ~B) that produces another configuration in Bn+1( ~B). We need to prove that by a sequence
of ~B-moves starting with ~A we can produce a configuration ~C ∈ Bn+1( ~B) that crosses ~B. We argue
by contradiction so that we will work under the following assumption.

We cannot produce crossing configurations via any sequence of ~B-moves starting with ~A. (†)

We will prove that (†) implies the existence of a sequence of configurations ~Aν ∈ Bn+1( ~B), ν ≥ 1,
such that

lim
ν→∞

λn+1( ~Aν) = 0.

In view of the assumption λ( ~B) > 0 this sequence contradicts the inequality (2.1).
Denote by Bn+1( ~A, ~B) the set of configurations in Bn+1( ~B) that can be obtained from ~A by a

sequence of ~B-moves. We will produce a real number κ ∈ (0, 1) and a map

T : Bn+1( ~A, ~B)→ Bn+1( ~A, ~B)

such that
λ
(
T( ~X)

)
≤ κλ( ~X), ∀ ~X ∈ Bn+1( ~A, ~B).

The sequence
~Aν := Tν( ~A) = T ◦ · · · ◦ T︸ ︷︷ ︸

ν

( ~A)

will then yield the sought for contradiction. We begin by constructing maps

M1,M2, . . . ,Mn : Bn+1(µ)→ Bn+1(µ)

so that for any k = 1, . . . , n and any ~X ∈ Bn+1(µ) we have

Mk( ~X) =
(
X1, . . . , xk−1,

1
2

(Xk−1 +Xk+1), Xk+1, . . . , Xn+1

)
,
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where for uniformity we set X0 = µ. In other words, Mk( ~X) is obtained from ~X by sliding the k-th
bead of ~X to the midpoint of the interval (Xk−1, Xk). In the new configuration the beads (k − 1), k
and (k + 1) are equidistant.

Now define
T : Bn+1(µ)→ Bn+1(µ), T = M1 ◦M2 ◦ · · · ◦Mn.

Note that
Mn(X1, . . . , Xn+1) =

(
X1, . . . , Xn−1,

1
2

(Xn−1 +Xn+1), Xn+1

)
.

The configuration Mn−1 ◦Mn( ~X) differs from Mn(X) only at the (n− 1)-th component which is
1
2
Xn−2 +

1
4
Xn−1 +

1
4
Xn+1.

The (n− k)-th component of Mn−k ◦ · · · ◦Mn( ~X) is
1
2
Xn−k−1 +

1
4
Xn−k + · · ·+ 1

2k+1
Xn−1 +

1
2k+1

Xn+1.

The first component of ~Y := T( ~X) is

Y1 =
1
2
X0 +

1
4
X1 + · · ·+ 1

2n
Xn−1 +

1
2n
Xn+1.

If we set
x1 := X1 −X0 = X1 − µ, x2 := X2 −X1, . . . , xn+1 := Xn+1 −Xn,

then we deduce

Y1 =
1
2n
Xn+1 +

n−1∑
k=0

1
2k+1

Xk =
1
2n
Xn+1 +

n−1∑
k=0

1
2k+1

(
µ+

k∑
i=1

xi

)

=
1
2n
(
µ+

n+1∑
i=1

xi

)
+ (1− 1

2n
)µ+

n−1∑
k=1

1
2k+1

k∑
i=1

xi

= µ+
1
2n

n+1∑
i=1

xi +
(n−1∑
k=1

1
2k+1

)
x1 +

(n−1∑
k=2

1
2k+1

)
x2 + · · ·+ 1

2n
xn−1

= µ+
1
2
x1 +

1
4
x2 + · · ·+ 1

2n−1
xn−1 +

1
2n
xn +

1
2n
xn+1.

Observe that

λn+1(X) = xn+1 − x1, λn+1(Y ) = yn+1 − y1 = Yn+1 − Yn − Y1 + Y0.

We have
λn+1(Y ) = Xn+1 −

1
2

(Xn+1 +Xn−1)− Y1 + µ

=
n+1∑
i=1

xi −
1
2

(n+1∑
i=1

xi +
n−1∑
i=1

xi

)
−
( 1

2n
xn+1 +

n∑
k=1

1
2k
xk

)
=

1
2

(xn+1 + xn)−
( 1

2n
xn+1 +

n∑
k=1

1
2k
xk

)
≤
(

1− 1
2n
)
xn+1 −

n∑
k=1

1
2k
xk =

n∑
k=1

1
2k

(xn+1 − xk)
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≤
( n∑
k=1

1
2k
)

(xn+1 − x1) =
(

1− 1
2n
)
λn+1(X).

Hence
λn+1

(
T( ~X)

)
≤ (1− 2−n)λn+1( ~X), ∀ ~X ∈ Bn+1(µ). (2.2)

To conclude the proof it suffices to show that

Mk( ~X) ∈ B( ~B), ∀ ~X ∈ B( ~A, ~B), k = 1, . . . , n. (2.3)

Let ~X = (X1, . . . , Xn+1) ∈ B( ~A, ~B) and set ~Y = Mk( ~X). Then

Yi =

{
Xi, i 6= k
1
2(Xk−1 +Xk+1), i = k.

To prove that ~Y ∈ B( ~A, ~B) we have to prove that Yk ≤ Bk. If this were not the case, then Yk > Bk.
Since Xk < Bk, we deduce (Bk − Xk) < (Yk − Xk). This implies that sliding the k-th bead of
~X by the distance (Bk − Xk) is a monotone slide and it is obviously a ~B-move since the resulting
configuration ~X ′ is in Bn+1( ~B). Clearly, the configuration ~X ′ crosses ~B since X ′k = Bk. This
contradicts the assumption (†) and finishes the proof of Lemma 2.3 and of the implication (a)⇒ (b).

ut

To prove the converse implication (b)⇒ (a) we argue by induction. The cases n = 1, 2 are trivial,
while the case n = 3 follows from Remark 1.1.

For the inductive step suppose ~A ≺ ~B in Bn+1(µ), ∀ ~A < ~B. Then

(B1, . . . , An) ≺ (B1, . . . , Bn) ∈ Bn(µ), ∀(A1, . . . , An) < (B1, . . . , Bn),

and the inductive assumption implies

bk > bk−2, ∀2 ≤ k ≤ n.

To prove that bn+1 > bn−1 we argue by contradiction. Suppose bn+1 = bn−1 so that

bn+1 = bn = bn−1.

The condition bn > bn−2 implies that bn−2 < bn−1. Consider the bead distribution ~C ∈ Bn+1(µ)
described by

Ck = Bk, ∀k ≤ n− 2,

Cn−1 = Cn−2 + bn−2 = Bn−2 + bn−2 < Bn−1,

Cn = Cn−1 + bn−1 < Bn, Cn+1 = Cn + bn < Bn.

Then ~C < ~B, yet arguing as in Remark 1.1 we see that ~C 6≺ ~B. This contradiction completes the
proof of Theorem 1.2.

3. THE SCHUR INEQUALITIES

The partial order � on Bn(µ) is a binary relation and thus can be identified with a subset of
Bn(µ)×Bn(µ). We denote by �t its (topological) closure in Bn(µ)×Bn(µ).

Corollary 3.1. The binary relation �t is a partial order relation. More precisely

~A �t ~B⇐⇒ ~A ≤ ~B.
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Proof. Clearly ~A �t ~B =⇒ ~A ≤ ~B. Conversely, suppose ~A ≤ ~B. For every ε > 0 we define

~B(ε) =
(
B1(ε), . . . , Bn(ε)

)
,

where Bk(ε) = 2kε. Then

Bk+1(ε)−Bk(ε) = bk+1 + 2kε > bk + 2k−1ε = Bk(ε)−Bk−1(ε).

Theorem 1.2 implies that ~A ≺ ~B(ε). Letting ε→ 0 we deduce ~A �t ~B. ut

The above corollary can be used to produce various interesting inequalities. For simplicity we set
Bn := Bn(0). The bead distributions in Bn are described by nondecreasing strings of nonnegative
numbers

~a = (a1, . . . , an), 0 ≤ a1 ≤ · · · ≤ an
To such a vector we associate the monotone bead distribution

~A = (A1, . . . , An), Ak = a1 + . . .+ ak.

The condition ~A ≤ ~B in Bn can then be rewritten as

a1 + · · ·+ ak ≤ b1 + · · ·+ bk, ∀k = 1, . . . , n.

In this notation, a monotone bead slide is a transformation of the form

(a1, . . . , ak, ak+1, . . . , an) 7−→ (a1, . . . , ak + δ, ak+1 − δ, . . . , an), 2δ ≤ ak+1 − ak. (3.1)

Suppose f : [0,∞)→ [0,∞) is a nondecreasing C1 function. We then get a map Tf : Bn → Bn,

(a1, a1 + a2, . . . , a1 + · · ·+ an) 7→
(
f(a1), f(a1) + f(a2), . . . , f(a1) + · · ·+ f(an)

)
.

Theorem 3.2. Suppose f : [0,∞)→ [0,∞) is C1 and nondecreasing. Then the following statements
are equivalent.

(a) The induced map Tf : Bn → Bn preserves the order relation ≤.
(b) The function f is concave, i.e., the derivative f ′ is nonincreasing.

Proof. In view of Corollary 3.1 and the continuity of f we deduce that Tf preserves the order ≤ if
and only if Tf ( ~A) ≤ Tf ( ~B) whenever ~B is obtained from ~A via a single monotone bead slide. Using
(3.1) we see that this means that for any 0 ≤ x ≤ y, 0 ≤ δ ≤ 1

2(y − x) we have

f(x+ δ) ≥ f(x), f(x+ δ) + f(y − δ) ≥ f(x) + f(y).

The first inequality follows from the fact that f is nondecreasing. The second inequality can be
rephrased as ∫ x+δ

x
f ′(t)dt = f(x+ δ)− f(x) ≥ f(y)− f(y − δ) =

∫ y

y−δ
f ′(s)ds,

for any x, y, δ ≥ 0 such that x ≤ x + δ ≤ y − δ ≤ y. This clearly happens if and only if f ′ is
nonincreasing. ut

Remark 3.3. In the above result we can drop the C1 assumption on f , but the last step in the proof
requires a slightly longer and less transparent argument. ut
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Corollary 3.4. Suppose f : [µ,∞) → R is C1, nondecreasing and concave, and (yi)1≤i≤n is a
nondecreasing sequence of real numbers µ ≤ y1 ≤ · · · ≤ yn. Then for any numbers x1, . . . , xn ∈
[µ,∞) such that

x1 + · · ·+ xk ≤ y1 + · · ·+ yk, ∀k = 1, . . . , n
we have

f(x1) + · · ·+ f(xn) ≤ f(y1) + · · ·+ f(yn). (3.2)

Proof. Denote by (x′k) the increasing rearrangement of the numbers x1, . . . , xn. Then

x′1 + · · ·+ x′k ≤ x1 + · · ·+ xk ≤ y1 + · · ·+ yk, ∀k = 1, . . . , n,

f(x′1) + · · ·+ f(x′n) = f(x1) + · · ·+ f(xn),
so it suffices to prove (2.1) in the special case when the sequence (xk) is nondecreasing. Define

ak := xk − µ, bk := yk − µ, 1 ≤ k ≤ n,
Ak = a1 + · · ·+ ak, Bk = b1 + · · ·+ bk, 1 ≤ k ≤ n,

g : [0,∞)→ [0,∞), g(t) = f(t+ µ)− f(µ).
Then (A1, . . . , An) ≤ (B1, . . . , Bn) ∈ Bn, and the function g is C1, nondecreasing and concave. It
follows that the induced map Tg : Bn → Bn is order preserving. In particular, we conclude that

g(a1) + · · ·+ g(an) ≤ g(b1) + · · ·+ g(bn).

This clearly implies (3.2). ut

Example 3.5. Here is a simple application of the above inequalities to a Romanian Olympiad prob-
lem, 1977. Suppose a, b, c, d are nonnegative numbers such that

a ≤ 1, a+ b ≤ 5, a+ b+ c ≤ 14, a+ b+ c+ d ≤ 30.

Then
√
a+
√
b+
√
c+
√
d ≤ 10. This follows from Corollary 3.4 applied to the concave increasing

function f(t) =
√
t, t ≥ 0, n = 4 and bk = k2, k = 1, 2, 3, 4. For a different proof we refer to [1,

p.178]. ut

Corollary 3.6. Suppose f : R → R is a C1, concave function and y1 ≤ · · · ≤ yn. Then for any
sequence x1, . . . , xn such that

x1 + · · ·+ xk ≤ y1 + · · ·+ yk, ∀k = 1, . . . , n− 1,

and
x1 + · · ·+ xn = y1 + · · ·+ yn (3.3)

we have
f(x1) + · · ·+ f(xn) ≤ f(y1) + · · ·+ f(yn). (3.4)

Proof. Choose L > max{xi, yj ; 1 ≤ i, j ≤ n} and define

g : R→ R, g(t) =

{
f(t)− f ′(L)t, t ≤ L
f(L)− f ′(L)L, t > L.

Then g is C1, nondecreasing and concave and Corollary 3.4 implies that

f(x1) + · · ·+ f(xn)− f ′(L)
n∑
k=1

xk ≤ f(y1) + · · ·+ f(yn)− f ′(L)
n∑
k=1

yk.
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The inequality (3.4) now follows by invoking the equality (3.3). ut

Corollary 3.6 implies the Schur majorization inequalities in Theorem 1.4. Indeed, it suffices to use
Corollary 3.6 with the sequences xk = −ak, yj = −bj and f(t) = −g(−t). The Schur majorization
inequalities can be strengthened a bit. More precisely, we have the following convex version of
Corollary 3.4.

Corollary 3.7. Suppose (bn)n≥1 is a nonincreasing sequence of real numbers and g : R → R is a
nondecreasing C1, convex function, i.e. , g′ is nondecreasing. Then for any sequence of real numbers
(an)n≥1 satisfying

n∑
k=1

ak ≥
n∑
k=1

bk, ∀n ≥ 1,

we have
n∑
k=1

g(ak) ≥
n∑
k=1

g(bk), ∀n ≥ 1. (3.5)

Proof. Fix n ≥ 1. If
∑n

k=1 ak =
∑n

k=1 bk, then (3.5) follows from Theorem 1.4. If
n∑
k=1

ak >

n∑
k=1

bk,

then let a′n < an be such that

a1 + . . .+ an−1 + a′n = b1 + · · ·+ bn.

Since g is nondecreasing we deduce

g(a1) + · · ·+ g(an−1) + g(an) ≥ g(a1) + · · ·+ g(an−1) + g(a′n) ≥ g(b1) + · · ·+ g(bn).

ut

Example 3.8. As a simple application of the the Schur inequalities (3.5) we consider the following
US Olympiad problem, 1995. Let (an)n≥1 be a sequence of positive real numbers such that

n∑
k=1

ak ≥
√
n, ∀n ≥ 1. (3.6)

Then
n∑
k=1

a2
k ≥

1
4

(
1 +

1
2

+ · · ·+ 1
n

)
. (3.7)

Consider the sequence bn :=
√
n −
√
n− 1, n ≥ 1. The sequence (bn)≥1 is decreasing since the

function h(x) =
√
x, x ≥ 0 is strictly concave. The convex function g(t) = t2 is nondecreasing for

t ≥ 0. The inequality (3.6) shows that the assumptions of Schur’s inequalities are satisfies and we
deduce

n∑
k=1

a2
k ≥

n∑
k=1

b2k, ∀n ≥ 1.

To obtain the inequality (3.7) it suffices to observe that

bk =
1√

k +
√
k − 1

>
1

2
√
k
.

For a different proof of (3.7) we refer to [1, p. 180]. ut
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Corollary 3.9. Suppose that (xn)n≥1 and (yn)n≥1 are two sequences of positive real numbers such
that

y1 ≥ y2 ≥ · · · ≥ yn ≥ · · · , (3.8a)
n∏
k=1

xk ≥
n∏
k=1

yk, ∀n ≥ 1. (3.8b)

Then
x1 + · · ·+ xn ≥ y1 + · · ·+ yn, ∀n ≥ 1. (3.9)

Proof. The inequalities (3.9) follow from the Schur inequalities applied to the sequences

an = log xn, bn = log yn
and the convex increasing function g(t) = et. ut

Example 3.10. Corollary 3.9 has a special case a problem proposed by France at the 20th Interna-
tional Mathematical Olympiad 1978. Suppose that φ : Z>0 → Z>0 is an injective function from the
set of positive integers to itself. Then

n∑
k=1

φ(k)
k2
≥

n∑
k=1

1
k
, ∀n ≥ 1. (3.10)

Consider the sequences

xn =
φ(n)
n2

, yn =
1
n
, n ≥ 1.

The sequence (yn)n≥1 is obviously decreasing so (3.8a) is satisfied. Note that since φ is injective we
conclude that

n∏
k=1

φ(k) ≥ n! so that
n∏
k=1

φ(k)
k2
≥ 1
n!

=
n∏
k=1

yk.

This shows that (3.8b) is satisfied. The inequalities (3.10) now follow from Corollary 3.9. For a
different proof of (3.10) we refer to [1, p. 180-181]. ut
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