
CRITICAL POINTS OF MULTIDIMENSIONAL RANDOM FOURIER

SERIES: CENTRAL LIMITS

LIVIU I. NICOLAESCU

Abstract. We investigate certain families X~, 0 < ~ � 1, of Gaussian random smooth
functions on the m-dimensional torus Tm~ := Rm/(~−1Z)m. We show that for any cube
B ⊂ Rm of size < 1/2 and centered at the origin, the number of critical points of X~ in

the region ~−1B/(~−1Z)m ⊂ Tm~ has mean ∼ c1~−m, variance ∼ c2~−m/2, c1, c2 > 0, and
satisfies a central limit theorem as ~↘ 0.
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Notation

• We set

N :=
{
n ∈ Z; n > 0

}
, N0 :=

{
n ∈ Z; n ≥ 0

}
.

• 1A denotes the characteristic function of a subset A of a set S,

1A : S → {0, 1}, 1A(a) =

{
1, a ∈ A,
0, a ∈ S \A.
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• For a topological space X we denote by B(X) the σ-algebra of Borel subsets of X.
• We will write N ∼ N(m, v) to indicate that N is a normal random variable with

mean m and variance v.
• For x,y ∈ Rm we set

|x|∞ := max
1≤j≤m

|xj |, (x,y) =
m∑
j=1

xjyj , |x| :=
√

(x,x).

• We denote by Am the affine lattice

Am =

(
1

2
+ Z

)m
.

• For any matrix A, we denote by A> its transpose, and by ‖A‖ its norm

‖A‖ = sup
|x|=1

|Ax|.

• We denote by 1m the identity operator Rm → Rm.
• For any Borel subset B ⊂ Rm we denote by |B| its Lebesgue measure.
• We denote by γ the canonical Gaussian measure on R

γ(dx) =
1√
2π
e−

x2

2 dx,

and by Γ the canonical Gaussian measure on Rm

Γ(dx) = (2π)−
m
2 e−

|x|2
2 dx,

• If C is a symmetric, nonnegative definite m ×m matrix, we write N ∼ N(0, C) to
indicate that N is an Rm-valued Gaussian random vector with mean 0 and covariance
form C.
• If f : Rm → R is a twice differentiable function, and x ∈ Rm, then we denote by
∇2f(x) its Hessian, viewed as a symmetric operator Rm → Rm.

1. The main results

1.1. The problem. We begin by recalling the setup in [23]. For any ~ > 0 we denote by
Tm~ m-dimensional torus Rm/Zm with angular coordinates θ1, . . . , θm ∈ R/Z equipped with
the flat metric

g~ :=

m∑
j=1

~−2(dθj)2.

For a measurable subset S ⊂ Tm we denote by vol~(S) its volume with respect to the metric
g~, and we set vol := vol~ |~=1. Hence

vol~(Tm) = ~−m vol(Tm) = ~−m.

The eigenvalues of the corresponding Laplacian ∆~ = −~2
∑m

k=1 ∂
2
θk

are

λ(k, ~) = ~2λ(k), λ(k) :=
∣∣ 2πk ∣∣2, k = (k1, . . . , km) ∈ Zm.

For θ = (θ1, . . . , θm) ∈ Rm and k ∈ Zm we set

〈k,θ〉 :=
∑
j

kjθj .
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Denote by ≺ the lexicographic order on Rm. An orthonormal basis of L2(Tm~ ) is given by

the functions (ψ~
k)k∈Zm , where

ψ~
k(θ) = ~

m
2 ψk(θ), ψk(θ) :=


1, k = 0√

2 sin 2π〈k,θ〉, k � ~0,√
2 cos 2π〈k,θ〉, k ≺ ~0.

Fix a nonnegative, even Schwartz function w ∈ S(R), set w~(t) = w(~t) so that

w
(√

λ(k, ~)
)

= w~
(√

λ(k)
)
.

Consider the random function given by the random Fourier series

X~(θ) =
∑
k∈Zm

w~
( √

λ(k, ~)
) 1

2 Nkψ
~
k(θ) = ~

m
2

∑
k∈Zm

w~
(√

λ(k)
) 1

2 Nkψk(θ)

= ~
m
2

∑
k∈Zm

w
(
2π~|k|

) 1
2
(
Ak cos(2π〈k,θ〉) +Bk sin(2π〈k,θ〉)

)
,

(1.1)

where the coefficients Ak, Bk, Nk, k ∈ Zm, are independent standard normal random vari-
ables.

Note that if w ≡ 1 in a neighborhood of 1, then the random function ~−m/2X~ converges
to a Gaussian white-noise on Tm and, extrapolating, we can think of the ~→ 0 limits in this
paper as white-noise limits.

The random function X~(θ) is. a.s. smooth and Morse. For any Borel set B ⊂ Tm we
denote by Z(X~,B) the number of critical points of X~ in B. In [23] we have shown that
there exist constants C = Cm(w) > 0, S = Sm(w) ≥ 0 such that, for any open set O ⊂ Tm,

E
[
Z(X~,O)

]
∼ Cm(w)~−m vol(O) as ~→ 0.

var[Z(X~,O)
]
∼ Sm(w)~−m vol(O) as ~→ 0.

In [23] we described the constants Cm(w) and Sm(w) explicitly as certain rather complicated
Gaussian integrals, and we conjectured that Sm(w) is actually strictly positive.

In this paper we will show that indeed Sm(w) > 0, and we will prove a central limit
theorem stating that, as ~→ 0, the random variables

ζ~(O) :=

(
~

vol(O)

)m
2 (

Z(X~,O)− E
[
Z(X~,O)

] )
converge in law to a nondegenerate normal random variable ∼ N

(
0, Sm(w)

)
. Our approach

relies on abstract central limit results of the type pioneered by Breuer and Major [7]. This
requires placing the the problem within a Gaussian Hilbert space context. To achieve this
we imitate the strategy employed by Azäıs and León [5] in a related 1-dimensional problem.

1.2. The Wiener chaos setup. Let x = (x1, . . . , xm) denote the standard Euclidean coor-
dinates on Rm. For p0 ∈ Rm and R > 0 we set

B̂R(p0) :=
{
x ∈ Rm; |x− p0|∞ ≤

R

2

}
, B̂R = B̂R(0) =

[
−R

2
,
R

2

]m
.

For r ∈ (0, 1) and denote by Br the image of the cube B̂r in the quotient Rm/Tm. Thus,
Br is a cube on the torus centered at 0. We identify the tangent space T0Tm~ with Rm and
we denote by exp~ the exponential map exp~ : Rm → Tm~ defined by the metric g~. In the
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coordinates x on Rm and θ on Tm, this map is decribed by θ = ~x mod Zm. Using this map
we obtain by pullback a (~−1Z)m-periodic random function on Rm,

Y ~(x) := (exp∗~X
~)(x) = ~m/2

∑
k∈Zm

w
(
2π~|k|

) 1
2
(
Ak cos(2π~〈k,x〉) +Bk sin(2π~〈k,x〉)

)
.

We denote by Z(Y ~,B) the number of critical points of Y ~ in the Borel set B ⊂ Rm. Note
that

Z
(
X~, Br

)
= Z

(
Y ~, B̂~−1r

)
. (1.2)

To investigate Z
(
Y ~, B̂~−1`0

)
it is convenient to give an alternate description to the random

function Y ~.
A simple computation shows that the covariance kernel of Y ~ is

K~(x,y) = ~m
∑
k∈Zm

w~(2π~|k|) cos 2π~〈k,y − x〉

= ~m
∑
k∈Zm

w(2π~|k|) exp
(
−2π~i〈k, τ 〉

)
.

(1.3)

Define
φ : Rm → C, φ(ξ) := e−i〈ξ,τ 〉w(|ξ|).

Using the Poisson formula [14, §7.2] we deduce that for any a > 0 we have∑
k∈Zm

φ

(
2π

a
k

)
=
( a

2π

)m ∑
ν∈Zm

φ̂(aν),

where for any u = u(ξ) ∈ S(Rm) we denote by û(x) its Fourier transform

û(x) =

∫
Rm

e−i〈ξ,x〉u(ξ)|dξ|. (1.4)

If we let a = ~−1, then we deduce

K~(x,y) =
1

(2π)m

∑
ν∈Zm

φ̂
(
~−1ν

)
.

Define V : Rm → R by

V (x) :=
1

(2π)m
ŵ(x) =

1

(2π)m

∫
Rm

e−i〈ξ,x〉w(|ξ|) |dx|. (1.5)

Then

φ̂(x) = V
(
x+

1

~
τ
)

= V
(
x+

1

~
(ϕ− θ)

)
.

Hence, if we set z := y − x, we deduce

K~(x,y) =
∑
ν∈Zm

V

(
1

~
z +

1

~
ν

)
.

We set

V ~(z) :=
∑
ν∈Zm

V

(
z +

1

~
ν

)
. (1.6)

The function V ~ is (~−1Z)m-periodic and we deduce that

K~(x,y) = V ~
(

1

~
z

)
, z := y − x. (1.7)
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The region B̂1/~ is a fundamental domain for the action of the lattice (~−1Z)m on Rm. From

the special form (1.6) of V ~ and the fact that V is a Schwartz function we deduce that for
any positive integers k,N we have

‖V ~ − V ‖
Ck(B̂1/~)

= O(~N ) as ~↘ 0. (1.8)

From (1.3) we deduce that Y ~ is a stationary Gaussian random function on Rm and its
spectral measure is

µ~(dξ) =
1

(2π)m

∑
ν∈(2π~Z)m

(2π~)mw(ν)δν ,

where δν denotes the Dirac measure on Rm concentrated at u. (Recall that the Fourier
transform is normalized as in (1.4).)

Let us observe that, as ~→ 0, the measures µ~(|dξ|) converge to the measure

µ0(|dξ|) :=
1

(2π)m
w
(
|ξ|
)
|dξ|

in the following sense: for any Schwartz function u : Rm → R we have∫
Rm

u(ξ)µ~(|dξ|) =

∫
Rm

u(ξ)µ0(|dξ|).

Denote by Y 0 the stationary, Gaussian random function on Rm with spectral measure
µ0(|dξ|). Its covariance kernel is

K0(x,y) =
1

(2π)m

∫
Rm

e−i〈ξ,y−x〉w
(
|ξ|
)
|dξ| = V (y − x).

From (1.8) we deduce that

V ~ → V in C∞ as ~→ 0

This suggests that the statistics of Y ~ ought to be “close” to the statistics of Y 0.
For the goal we have in mind it is convenient to give a white noise description of these

random functions. Recall (see [16, Chap.7]) that a Gaussian white-noise on Rm is a random
measure W (−) that associates to each Borel set A ∈ B(Rm) a centered Gaussian random
variable W (A) with the property that

E
[
W (A)W (B)

]
= |A ∩B|.

The fact that Z(−) is a random measure is equivalent in this case to the condition

W (A ∪B) = W (A) +W (B), ∀A,B ∈ B(Rm), A ∩B = ∅.
Equivalently, a Gaussian white-noise on Rm is characterized by a probability space (Ω,F,P)
and an isometry

I = IW : L2(Rm, dξ)→ L2(Ω,F,P)

onto a Gaussian subspace of L2(Ω,F,P). More precisely, for f ∈ L2(Rm, dξ) the Gaussian
random variable IW [f ] is the Ito integral

IW (f) =

∫
Rm

f(ξ)W (dξ).

The isometry property of the Ito integral reads

E
[
IW (f)IW (g)

]
=

∫
Rm

f(ξ)g(ξ) dξ.
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In particular
W (A) = IW [1A], ∀A ∈ B(Rm).

The existence of Gaussian white noises is a well settled fact, [12].
Fix two independent Gaussian white-noises W1,W2 on Rm defined on the the probability

space (Ω,F,P). Let I1 and respectively I2 their associated Ito integrals,

I1, I2 : L2(Rm, dξ)→ L2(Ω,F,P).

The independence of the white noises W 1 and W 2 is equivalent to the condition

E
[
I1(f)I2(g)

]
= 0, ∀f, g ∈ L2(Rm, dξ).

This shows that we have a well defined isometry

I : L2(Rm, dξ)× L2(Rm, dξ)︸ ︷︷ ︸
H

→ L2(Ω,F,P), I(f1 ⊕ f2) = I1(f1) + I2(f2). (1.9)

whose image is a Gaussian Hilbert subspace X ⊂ L2(Ω,F,P). The map I describes an
isonormal Gaussian process parametrized by H. We will use I to give alternate descriptions
to the functions Y ~, ~ ≥ 0.

For each λ0 ∈ Rm and r > 0 we denote by Cr
(
λ0
)

the cube1 of size r centered at λ0 i.e.,

Cr
(
λ0

)
=
{
ξ ∈ Rm; |ξ − λ0|∞ ≤

r

2

}
,

For k ∈ Zm we set Ck := C1(k). For each x ∈ Rm and ~ > 0 we set

Ỹ ~(x) :=
∑
k∈Zm

∫
Rm

√
w(2π~|k|) cos 2π~〈k,x〉1~Ck

(ξ)W1(dξ)

+
∑
k∈Zm

∫
Rm

√
w(2π~|k|) sin 2π~〈k,x〉1~Ck

(ξ)W2(dξ) ∈X .

The isometry property of I shows that

E
[
Ỹ ~(x)Ỹ ~(y)

]
= K~(x,y).

Thus, the random function Ỹ ~ is stochastically equivalent to Y ~. Next define

Ỹ 0(x) =

∫
Rm

√
w(2π|ξ|) cos 2π〈ξ,x〉W1(dξ) +

∫
Rm

√
w(2π|ξ|) sin 2π〈ξ,x〉W2(dξ) ∈X .

Then

E
[
Ỹ 0(x)Ỹ 0(y)

]
=

∫
Rm

w
(

2π|ξ|
)

cos 2π〈ξ,y − x〉dξ

=

∫
Rm

e−2πi〈ξ,y−x〉w
(

2π|ξ|
)
|dξ| = K0(x,y).

Thus, the random function Ỹ 0 is stochastically equivalent to Y 0.
The above discussion shows that we can assume that the Gaussian random variables Y ~(x),

x ∈ R, ~ ≥ 0, live inside the same Gaussian Hilbert space X .

We denote by F̂ the σ-subalgebra of F generated by the random variables I(f1 ⊕ f2),

f1 ⊕ f2 ∈ H and we denote by X̂ the Wiener chaos, [16, 19],

X̂ := L2
(
Ω, F̂,P

)
. (1.10)

1The astute reader may have observed that Cr(λ0) = B̂r(λ
0) and may wonder why the new notation. The

reason for this redundancy is that the cubes B̂ and C live in different vector spaces, dual to each other. The

cube B̂ lives in the space with coordinates x and C lives in the dual frequency space with coordinates ξ.
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1.3. Statements of the main results. In the sequel we will use the notation Q~ = O(~∞)
to indicate that, for any N ∈ N, there exists a constant CN > 0 such that

|Q~| ≤ CN~N as ~↘ 0.

Theorem 1.1. Fix a function N : (0,∞)→ N , ~ 7→ N~ such that

2~N~ ≤ 1, ∀~ > 0. (†)
Then, for any box B ⊂ Rm we have

E
[
Z(Y 0, B)

]
= Z̄0 |B|, Z̄0 =

1√
det(−2π∇2V (0))

E
[
| det∇2Y 0(0)|

]
, (1.11a)

E
[
Z(Y ~, B̂2N~)

]
= E

[
Z(Y 0, B̂N~)

]
+O(~∞) (1.11b)

ut

For simplicity, for any Borel subset B ⊂ Rm, and any ~ ∈ [0, ~0] we set

Z~(B) := Z~(Y ~, B), ζ~(B) = |B|−1/2
(
Z~(B)− E

[
Z~(B)

] )
.

For R > 0 we set

Z~(R) := Z(B̂R), ζ~(R) = ζ~(B̂R). (1.12)

Theorem 1.2. There exists a number S0 > 0 such that, for any function

N : (0,∞)→ N, ~ 7→ N~,

satisfying

2~N~ ≤
1

2
, ∀~ > 0, (‡)

and

lim
~→0

N~ =∞, (∗)

the following hold.

(i) As ~→ 0

var
[
Z~(2N~)

]
∼ S0(2N~)m, var

[
Z0(2N~)

]
.

(ii) The families of random variables{
ζ~(2N~)

}
~∈(0,~0]

and
{
ζ0(2N~)

}
~∈(0,~0]

converge in distribution as ~→ 0 to normal random variables ∼ N(0, S0).

Fix r ∈ (0, 1/2). Recall that Br ⊂ Tm denotes the image of B̂r under the natural projection
Rm → Tm.

Theorem 1.3. Let Z̄0 be as in (1.11a) and S0 be as in Theorem 1.2. Then the following
hold.

(i) As ~→ 0,

E
[
Z(X~, Br)

]
= ~−m

(
Z̄0 vol(Br) + o(~∞)

)
.

(ii) As ~→ 0 we have

var
[
Z(X~, Br)

]
∼ S0~−m vol(Br).
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(iii) As ~→ 0 the random variables(
~
r

)m
2 (

Z(X~, Br)− E
[
Z(X~, Br)

] )
(1.13)

converge in distribution to a random variable ∼ N(0, S0).

Corollary 1.4. Let r ∈ (0, 1/2). Set

Z̄
~
(X~, Br) := ~mZ~(X~, Br).

Let (~n) be a sequence of postive numbers such that, for some p ∈ (0,m) we have∑
n≥1

~pn <∞.

Then

Z̄
~n(X~, Br)→ Z̄0 vol(Br) a.s..

Proof. Set α := m−p
2 so that p = m− 2α. Note that

E
[
Z̄

~n(X~, Br)
]

= Z̄0 vol(Br) +O(~∞)[
Z̄

~n(X~, Br)
]
∼ S0 vol(Br)~m.

From Chebyshev’s inequality we deduce

P
[ ∣∣Z̄~n(X~, Br)− Z̄0 vol(Br)

∣∣ ≥ hαn] = O(~pn
)
.

Then ∑
n≥1

P
[ ∣∣Z̄~n(X~, Br)− Z̄0 vol(Br)

∣∣ ≥ hαn] <∞,
and the first Borel-Cantelli lemma implies the desired conclusion. ut

Remark 1.5. The constant Z̄0 in (1.11a) depends only on m and w, Z̄0 = Z̄0(w,m) an
represents the expected density of critical points per unit volume of the random function Y 0.
We set

Ik(w) :=

∫ ∞
0

w(r)rkdr. (1.14)

We have (see [22])

(2π)m/2sm =
2π

m
2

Γ(m2 )
Im−1(w), (2π)m/2dm =

2π
m
2

mΓ(m2 )
Im+1(w),

(2π)m/2hm =
1

3

∫
Rm

x41w(|x|)dx =
2π

m
2

m(m+ 2)Γ(m2 )
Im+3(w).

(1.15)

Denote by Sm the Gaussian Orthogonal Ensemble of real symmetric m×m matrices A with
independent, normally distributed entries (aij)1≤i,j≤m with variances

E[a2ii] = 2, E[a2ij ] = 1, ∀1 ≤ i 6= j ≤ m

As explained in [24], we have

Z̄0(w,m) =

(
hm

2πdm

)m
2

ESm

[
| detA|

]
=

(
Im+1(w)

2π(m+ 2)Im+3(w)

)m
2

ESm

[
|detA|

]
. (1.16)
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In [22, Cor.1.7] we have shown that, as m→∞, we have

Z̄0(w,m) ∼ 8√
πm

Γ

(
m+ 3

2

)(
2Im+3(w)

π(m+ 2)Im+1(w)

)m
2

. (1.17)

The asymptotic behavior of Z̄0(w,m) as m→∞ depends rather dramatically on the size of
the tail of the Schwartz function w: the heavier the tail, the faster the growth. For example,
in [22, Sec.3] we have shown the following.

• If w(t) ∼ exp(− log t) log(log t) ) as t→∞, then

log Z̄0(w,m) ∼ m

2
em+2(e2 − 1) as m→∞.

• If w(t) ∼ exp
(
−(log t)

p
p−1

)
as t→∞, p > 1, then, for some explicit constant Cp > 0,

we have

log Z̄0(w,m) ∼ Cpmp, as m→∞

• If w(t) ∼ e−t2 as t→∞, then

log Z̄0(w,m) ∼∼ m

2
logm, as m→∞.

(b) The constant S0 in Theorem 1.2 seems very difficult to estimate. As the proof of Theorem
1.2 will show, the constant S0 is a sum of a series with nonnegative terms

S0 =
∑
q≥1

S̄0
q ,

where the terms S̄0
q are defined explicitly in (2.22). In [24] we have proved that S0 > 0 by

showing that

S̄0
2 =

∫
Rm

∣∣P (ξ1, . . . , ξm)w(|ξ|)
∣∣2dξ,

where P (ξ1, . . . , ξm) is a certain nonzero polynomial. The constant S̄0
2 depends on w and m.

In [24, Appendix A] we described methods of producing asymptotic estimates for S̄0
2(w,m)

as m→∞, but the results are not too pretty. ut

1.4. Outline of proofs. The strategy of proof is inspired from [5, 11]. As explained earlier,
the Gaussian random variables Y ~(x), x ∈ Rm, ~ ≥ 0, are defined on the same probability
space (Ω,F,P ) and inside the same Gaussian Hilbert space X .

Using the Kac-Rice formula and the asymptotic estimates in [23] we show in Subsection 2.1
that, for any ~ ≥ 0 sufficiently small, and any box B, the random variables Z~(B) belongs to

the Wiener chaos X̂ and we describe its Wiener chaos decomposition. The key result behind
this fact is Proposition 2.1 whose rather involved technical proof is deferred to Appendix A.
The Wiener chaos decomposition of Z~(B) leads immediately to (1.11a) and (1.11b).

To prove that the random variables ζ~(2N~) and ζ0(2N~) converge in law to normal random
variable ζ̄0(∞) and respectively ζ0(∞) we imitate the strategy in [11, 24] based on the very
general Breuer-Major type central limit theorem [26, Thm. 6.3.1], [25, 27, 28, 29].

The case of the variables ζ0(N~) is covered in [24] where we have shown that there exists
S0 > 0 and a normal random bariable ζ0(∞) ∼ N(0, S0) such that, as N →∞, the random
variable ζ0(N) converges in law to ζ0(∞).

The case ζ~(2N~) is conceptually similar, but the extra dependence on ~ adds an extra
layer of difficulty. Here are the details.
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Denote by ζ~q the q-th chaos component of ζ~q (2N~) ∈ X̂ . According to [26, Thm.6.3.1], to

prove that ζ~(2N~) converges in law to a normal random variable ζ̄0(∞) it suffices to prove
the following.

(i) For every q ∈ N there exists S̄0
q ≥ 0 such that

lim
~→0

var
[
ζ~q
]

= S̄0
q .

(ii) Exists ~0 > 0 such that

lim
Q→∞

sup
0≤~≤~0

∑
q≥Q

var
[
ζ~q
]

= 0.

(iii) For each q ∈ N, the random variables ζ~q (2N~) converge in law to a normal random

variable, necessarily of variance S̄0
q .

We prove (i) and (ii) in Subsection 2.4; see (2.23) and respectively Lemma 2.6.
To prove (iii) we rely on the fourth-moment theorem [26, Thm. 5.2.7], [28]. The details

are identical to the ones employed in the proof of [11, Prop. 2.4]. The variance of the limiting
normal random variable ζ̄0(∞) is

var
[
ζ̄0(∞)

]
=
∑
q≥1

S̄0
q <∞.

The explicit description of the components S̄0
q will then show that S0 = S̄0.

The proof of Theorem 1.3 is, up to a suitable rescaling, identical to the proof of Theorem
1.2. We explain this in more detail in Subsection 2.6

1.5. Related results. Central limit theorems concerning crossing counts of random func-
tions go back a while, e.g. T. Malevich [20] (1969) and J. Cuzik [9] (1976).

The usage of Wiener chaos decompositions and of Breuer-Major type results in proving
such central limit theorems is more recent, late 80s early 90s. We want to mention here the
pioneering contributions of Chambers and Slud [8], Slud [30, 31], Kratz and León [17], Sodin
and Tsirelson [32].

This topic was further elaborated by Kratz and León in [18] where they also proved a
central limit theorem concerning the length of the zero set of a random function of two
variables. We refer to [6] for particularly nice discussion of these developments.

Azäıs and León [5] used the technique of Wiener chaos decomposition to give a shorter
and more conceptual proof to a central limit theorem due to Granville and Wigman [13]
concerning the number of zeros of random trigonometric polynomials of large degree. This
technique was then succesfully used by Azäıs, Dalmao and León [4] to prove a CLT concerning
the number of zeros of Gaussian even trigonometric polynomials and by Dalmao in [10] to
prove a CLT concerning the number of zeros of one-variable polynomials in the Kostlan-Shub-
Smale probabilistic ensemble. Recently, Adler and Naitzat [1] used Hermite decompositions
to prove a CLT concerning Euler integrals of random functions.

2. Proofs of the main results

2.1. Hermite decomposition of the number of critical points. For every ~ ≥ 0, v ∈ Rm
and B ∈ B(Rm) we denote by Z~(v, B) the number of solutions x of the equation

∇Y ~(x) = v, x ∈ B.
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For ε > 0 we define

δε : Rm → R, δε(v) = ε−m1
B̂ε/2(0)

(v).

Note that δε is supported on the cube of size ε centered at the origin and its total integral is
1. As ε↘ 0, the function δε converges in the sense of distributions to the Dirac δ0. We set

Z~
ε(v, B) =

∫
B

∣∣det∇2Y ~(x)
∣∣ δε(∇Y ~(x)− v

)
dx, Z~(B) := Z~(v, B)

∣∣
v=0

.

We define a box in Rm to be a set B ⊂ Rm of the form

B = [a1, b1]× · · · × [am, bm], a1 < b1, . . . , am < bm.

If B ⊂ Rm is a box [2, Thm.11.3.1], we deduce that X is a.s. a Morse function on T and in
particular, for any v ∈ Rm, the equation ∇X~(x) = v almost surely has no solutions x ∈ ∂B.

The proof of the Kac-Rice formula [2, Thm. 11.2.3] shows that Z~(v, B) ∈ L1(Ω) and

Z~
ε(v, B)→ Z~(v, B) a.s. as ε→ 0.

Proposition 2.1. There exists ~0 > 0, sufficiently small, and C0 > 0 such that, for any

~ ∈ [0, ~0) and any box B ⊂ B̂2(0) the following hold.

(i) For any v ∈ Rm, Z~(v, B) ∈ L2(Ω, F̂,P).
(ii) The function

Rm 3 v 7→ E
[
Z~(v, B)2

]
∈ R

is continuous.
(iii) For any v ∈ Rm

lim
ε→0

Z~
ε(v, B) = Z~(v, B) in L2(Ω).

(iv) The function

[0, ~0] 3 ~ 7→ Z~(B) ∈ L2(Ω, F̂,P)

is continuous.

We defer the proof of Proposition 2.1 to the Appendix A. The case ~ = 0 of this proposition
is discussed in [11, Prop.1.1]. That proof uses in an essential fashion the isotropy of the
random function Y 0. The random functions Y ~, ~ 6= 0, are not isotropic, but they are
“nearly” so for ~ small.

Since for any Borel set B ⊂ Rm, and any ε > 0 the random variables Z~
ε(v, B) belong

to the Wiener chaos X̂ defined in (1.10), we deduce from Proposition 2.1(iii) that, for any

~ ≤ ~0, and any box B ⊂ B̂1/~, the number of critical points Z~(B) belongs to the Wiener

chaos X̂ .
Fix ~0 as in Proposition 2.1. Consider the random field

Ŷ
~
(x) := ∇Y ~(x)⊕∇2Y ~(x), x ∈ Rm, ~ ∈ [h, ~0].

of dimension

D = m+ ν(m), ν(m) =
m(m+ 2)

2
Note that

E
[
Y ~
i (x)Y ~

j,k(x)
]
= −V ~

i,j,k(0) = 0,

since V ~(x) is an even function. Hence, the two components of Ŷ
~

are independent. We
can find invertible matrices Λ~

1 and Λ~
2 of dimensions m×m and respectively ν(m)× ν(m),
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that depend continuously on ~ ∈ [0, ~0] such that the probability distributions of the random
vectors

U~(x) = (Λ~
1)−1∇Y ~(x) ∈ Rm, A~(x) := (Λ~

2)−1∇2Y ~(x) ∈ Rν(m)

are the canonical Gaussian measures on the Euclidean spaces Rm and Rν(m) respectively.
More precisely, we can choose as Λ~

i , i = 1, 1, the square roots of the covariance matrices of
∇iY ~(x).

Consider the functions

f~ : Rν(m) → R, f~(A) =
∣∣det Λ~

2A
∣∣,

G~
ε : Rm × Rν(m) → R, Gε(U,A) = δε(Λ

~
1U)f~(A).

Fix a box B, independent of ~. Proposition 2.1 shows that, for ~ sufficiently small, we have

Z~(B) = lim
ε→0

∫
B
G~
ε(U(x), A(x)).

Recall that an orthogonal basis of L2
(
R,γ(dx)

)
is given by the Hermite polynomials, [16,

Ex. 3.18], [21, V.1.3],

Hn(x) := (−1)ne
x2

2
dn

dxn

(
e−

x2

2

)
= n!

bn
2
c∑

r=0

(−1)r

2rr!(n− 2r)!
xn−2r. (2.1)

In particular

Hn(0) =

{
0, n ≡ 1 mod 2,

(−1)r (2r)!2rr! , n = 2r.
(2.2)

For every multi-index α = (α1, α2, . . . ) ∈ NN
0 such that all but finitely many αk-s are nonzero,

and any

x = (x1, x2, . . . ) ∈ RN

we set

|α| :=
∑
k

αk, α! :=
∏
k

αk!, Hα(x) :=
∏
k

Hαk(xk).

Following [11, Eq.(5)] we define for every α ∈ Nm0 the quantity

dα :=
1

α!
(2π)−

m
2 Hα(0). (2.3)

The function f~ : Rν(m) → R has a L2(Rν(m),Γ)-orthogonal decomposition

f~(A) =
∑
n≥0

f~n(A),

where

f~n(A) =
∑

β∈Nν(m)
0 , |β|=n

f~βHβ(A), f~β =
1

β!

∫
Rν(m)

f~(A)Hβ(A)Γ(dA). (2.4)

Note that

f~0 = E
[
| det∇2Y ~(0)|

]
. (2.5)

The function δε(U) has a L2(Rm,Γ)-orthogonal decomposition

δε(U) =
∑
α∈Nm0

d~α,εHα(U),
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where

d~α,ε =
1

α!

∫
R
δε(Λ

~
1U)Hα(U)Γ(dU).

Note that

lim
ε→0

∫
R
δε(Λ

~
1U)Hα(U)Γ(dU) =

1

det Λ~
1

Hα(0),

so that

lim
ε→0

d~α,ε =
1

det Λ~
1

dα, (2.6)

uniformly for ~ ∈ [0, ~0]. We set

ω~ :=
1

det Λ~
1

.

Remark 2.2. The matrix Λ~
1 is the square root of the covariance matrix of the random

vector ∇Y ~(0), i.e.,

Λ~
1 =

√
−∇2V ~(0).

The function V = V ~=0 is radially symmetric and thus

∇2V (0) = −λ21m,

for some λ > 0. Hence

Λ0
1 = λ1m, ω0 = lim

~→0
ω~ = λ−m =

1√
det(−∇2V (0))

. (2.7)

ut

If we set

Im := Nm0 × Nν(m)
0

Then

Z~
ε(B) =

∞∑
q=0

∫
B
ρ~q,ε(x)dx, (2.8)

where

ρ~q,ε(x) =
∑

(α,β)∈Im,
|α|+|β|=q

d~α,εf
~
βHα(U(x))Hβ(A(x)).

If we let ε→ 0 in (2.8) and use Proposition 2.1(iii) and (2.6) we deduce

Z~(B) =
∑
q≥0

Z~
q (B), Z~

q (B) =

∫
B
ρ~q(x)dbx, (2.9a)

ρ~q(x) =
∑

(α,β)∈Im,
|α|+|β|=q

ω~dαf
~
βHα(U(x))Hβ(A(x)). (2.9b)

To proceed further we need to use some basic Gaussian estimates.
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2.2. A technical interlude. Let V be a real Euclidean space of dimension N . We denote
by A(V ) the space of symmetric positive semidefinite operators A : V → V . For A ∈ A(V )
we denote by γA the centered Gaussian measure on V with covariance form A. Thus

γ1(dv) =
1

(2π)
N
2

e−
1
2
|v|2dv,

and γA is the push forward of γ1 via the linear map
√
A,

γA = (
√
A)∗γ1. (2.10)

For any measurable f : V → R with at most polynomial growth we set

EA(f) =

∫
V
f(v)γA(dv).

Proposition 2.3. Let f : V → R be a locally Lipschitz function which is positively homoge-
neous of degree α ≥ 1. Denote by Lf the Lipschitz constant of the restriction of f to the unit
ball of V . There exists a constant C > 0 which depends only on N and α such that, for any
Λ > 0 and any A,B ∈ A(V ) such that ‖A‖, ‖B‖ ≤ Λ we have∣∣EA(f)−EB(f)

∣∣ ≤ CLfΛ
α−1
2 ‖A−B‖

1
2 . (2.11)

Proof. We present the very elegant argument we learned from George Lowther on MathOver-
flow. In the sequel we will use the same letter C to denote various constant that depend only
on α and N .

First of all let us observe that (2.10) implies that

EA(f) =

∫
V
f(
√
Av)γ1(dv).

We deduce that for any t > 0 we have

EtA(f) =

∫
V
f(
√
tAv)γ1(dv) = t

α
2

∫
V
f(
√
Av)γ1(dv) = t

α
2EA(f),

and thus it suffices to prove (2.11) in the special case Λ = 1, i.e. ‖A‖, ‖B‖ ≤ 1. We have∣∣EA(f)−EB(f)
∣∣ ≤ ∫

V

∣∣ f(
√
Av)− f(

√
Bv)

∣∣γ1(dv)

=

∫
V
|v|α

∣∣∣ f(√A 1

|v|
v
)
− f

(√
B

1

|v|
v
) ∣∣∣γ1(dv)

≤ Lf
∫
V
|v|α

∣∣∣√A 1

|v|
v −
√
B

1

|v|
v
∣∣∣γ1(dv)

≤ Lf‖
√
A−
√
B‖
∫
V
|v|αγ1(dv) ≤ CLf‖A−B‖

1
2 .

ut

http://mathoverflow.net/questions/130496/continuous-dependence-of-the-expectation-of-a-r-v-on-the-probability-measure
http://mathoverflow.net/questions/130496/continuous-dependence-of-the-expectation-of-a-r-v-on-the-probability-measure
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2.3. Proof of Theorem 1.1. Note that

E
[
Z~(B)

]
= E

[
Z~
0 (B)

]
= |B|ω~f

~
0 d(0)

(use (2.3) and (2.5) )

= (2π)−m/2|B|ω~E
[
| det∇2Y ~(0)|

]
.

Using (1.7) and Remark 2.2 we deduce that that

ω~ − ω0 = O(~∞).

From (1.7) we also deduce that

‖∇2V ~(0)−∇2V (0)‖ = O(~∞.

Invoking Proposition 2.3 we deduce that

E
[
| det∇2Y ~(0)|

]
= E

[
|det∇2Y 0(0)|

]
+O(~∞).

Hence

E
[
Z~(B)

]
= E

[
Z0(B)

]
+O(~∞),

E
[
Z0(B)

]
= (2π)−m/2ω0 |B|E

[
|det∇2Y 0(0)|

]
.

(2.12)

Using (2.7) in the above equality we obtain (1.11a).
Let N~ satisfy (†). Recall that Am denotes the affine lattice

Am =

(
1

2
+ Z

)m
. (2.13)

We have

B̂2N~ =
⋃

a∈Am, |a|∞≤N~

B̂(a), B̂(a) := B̂1(a). (2.14)

The cubes in the above union have disjoint interiors. According to [2, Thm.11.3.1], for ~ ≤ ~0
the function Y ~ is a.s. Morse. Give a box B ⊂ Rm, the function Y ~ will a.s. have no critical
points on the boundary of B Thus

Z~( B̂2N~

)
=

∑
a∈Am∩B̂2N~

Z~( B̂(a)
)
.

From (†) we deduce that B̂(a) ⊂ B̂1/~(0) so (1.8) holds on B̂(a). We deduce

Z~( B̂2N~

) (2.12)
=

∑
a∈Am∩B̂2N~

(
Z0
(
B̂(a)

)
+O(~∞)

)
From (†) we deduce that 2N~ ≤ 1

~ so that

#
(
a ∈ Am ∩ B̂2N~

)
= O(~−m).

Hence

Z~( B̂2N~

)
=

 ∑
a∈Am∩B̂2N~

Z0
(
B̂(a)

)+O(~∞) = Z~( B̂2N~

)
+O(~∞).
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2.4. Variance estimates. For ~ ∈ [0, ~0] we define

ψ~ : Rm → R, ψ~(x) =


max|α|≤4

∣∣ ∂αxV ~(x)
∣∣, |x|∞ ≤ 1

2~ ,

0, |x|∞ > 1
2~ .

(2.15)

Lemma 2.4. For any p ∈ [0,∞] we have∥∥ψ~ − ψ0
∥∥
Lp(Rm)

= O(~∞). (2.16)

Proof. We distinguish two cases.

1. p =∞. Note that that (1.8) implies

sup
|x|∞≤1/(2~)

|ψ~(x)− ψ0(x)| = O(~∞).

Since V is a Schwartz function we deduce that

sup
|x|∞>1/(2~)

|ψ~(x)− ψ0(x)| = sup
|x|∞>1/(2~)

|ψ0(x)| = O(~∞).

2. p ∈ [1,∞). We have∫
Rm
|ψ~(x)− ψ0(x)|pdx =

∫
|x|∞≤1/(2~)

|ψ~(x)− ψ0(x)|pdx+

∫
|x|∞>1/(2~)

|ψ0(x)|pdx.

The integrand in the first integral in the right-hand side is O(~∞) and the volume of the
region is integration is O(~−m) so the first integral is O(~∞). Since V is a Schwartz function
we deduce that

|ψ0(x)| = O
(
|x|−N

)
, ∀N ∈ N.

This shows that the second integral is also O(~∞). ut

Proposition 2.5. There exists S0 ∈ (0,∞) such that

lim
h↘0

var
[
ζ~(2N~)

]
= S0 = lim

h↘0
var

[
ζ0(2N~)

]
.

Proof. The [24] we proved that the limit

lim
N→∞

var
[
ζ0(2N)

]
(2.17)

exists, it is finite and nonzero. We denote by S0 this limit. It remains to prove two facts.

(F1) The limit S̄0 := limh↘0 var
[
ζ~(2N~)

]
exists and it is finite.

(F2) S
0 = S̄0.

To prove these facts, we will employ a refinement of the strategy used in the proof of [24,
Prop.3.3].

Proof of F1. Using (2.9a) we deduce

ζ~(2N~) = (2N~)−m/2
(
Z~(B̂2N~)− E

[
Z~(B̂2N~)

] )
= (2N~)−m/2

∑
q>0

Z~
q (B̂2N~).

We set

S~ = var
[
ζ~(N~)

]
= E

[
ζ~(2N~)2

]
=
∑
q>0

(2N~)−mE
[
Z~(B̂2N~)2

]︸ ︷︷ ︸
=:S~

q
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To estimate S~
q we write

Z~
q (B̂2N~) =

∫
B̂2N~

ρ~q(x)dx,

where ρ~q(x) is described in (2.9b). Then

S~
q = (2N~)−m

∫
B̂2N~×B̂2N~

E
[
ρ~q(x)ρ~q(y)

]
dxdy

(use the stationarity of Y ~(x))

= (2N~)−m
∫
B̂2N~×B̂2N~

E
[
ρ~q(0)ρq(y − x)

]
dxdy

=

∫
B̂4N~

E
[
ρ~q(0)ρ~q(u)

] m∏
k=1

(
1− |uk|

2N~

)
du.

The last equality is obtained by integrating along the fibers of the map

B̂2N~ × B̂2N~ 3 (x,y) 7→ y − x ∈ B̂4N~ .

At this point we need to invoke (2.9b) to the effect that

ρ~q(x) =
∑

(α,β)∈Im,
|α|+|β|=q

ω~dαf
~
βHα(U(x))Hβ(A(x)).

We can rewrite this in a more compact form. Set

Ξ~(x) :=
(
U(x), A(x)

)
.

For γ = (α, β) ∈ Im we set

a~(γ) := ω~dαf
~
β , Hγ(Ξ~(x)) := Hα(U(x))Hβ(A(x)).

Then
ρ~q(x) =

∑
γ∈Im, |γ|=q

a~(γ)Hγ

(
Ξ~(x)

)
, (2.18)

E
[
ρ~q(0)ρ~q(u)

]
=

∑
γ,γ′∈Im
|γ|=|γ′|=q

a~(γ)a~(γ′)E
[
Hγ( Ξ~(0) )Hγ′( Ξ~(u) )

]
.

We set ω(m) := m+ ν(m), and we denote by Ξi(x), 1 ≤ i ≤ ω(m), the components of Ξ(x)
labelled so that Ξi(x) = Ui(x), ∀1 ≤ i ≤ m. For u ∈ Rm, ~ ∈ [0, ~0] and 1 ≤ i, j ≤ ω(m) we
define the covariances

Γ~
ij(u) := E

[
Ξ~
i (0)Ξ~

j (u)
]
.

Observe that there exists a positive constant K, independent of ~ ∈ [0, ~0] such that∣∣Γ~
i,j(u)

∣∣ ≤ Kψ~(u), ∀i, j = 1, . . . , ω(m), u ∈ B̂4N~ , (2.19)

where ψ~ is the function defined in (2.15). From (‡) we deduce that,

B̂4N~ ⊂ B̂1/~ (2.20)

Using the Diagram Formula (see e.g.[19, Cor. 5.5] or [16, Thm. 7.33]) we deduce that for
any γ, γ′ ∈ Im such that |γ| = |γ′| = q, there exists a universal homogeneous polynomial of
degree q, Pγ,γ′ in the variables Γij(u) such that

E
[
Hγ( Ξ~(0) )Hγ′( Ξ~(u) )

]
= Pγ,γ′

(
Γ~
ij(u)

)
.
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Hence

S~
q = (2N~)−m

∑
γ,γ′∈Im
|γ|=|γ′|=q

a~(γ)a~(γ′)

∫
B̂4N~

Pγ,γ′
(

Γ~
ij(u)

) m∏
k=1

(
1− |uk|

2N~

)
du︸ ︷︷ ︸

=:R~(γ,γ′)

. (2.21)

From (2.19) we deduce that for any γ, γ′ ∈ Im such that |γ| = |γ′| = q there exists a constant
Cγ,γ′ > 0 such that ∣∣Pγ,γ′(Γ~

ij(u)
) ∣∣ ≤ Cγ,γ′ψ~(u)q, ∀u ∈ B̂4N~ .

We know from (∗) that N~ →∞ as ~→ 0. Arguing exactly as in the proof of Lemma 2.4 we
deduce that

lim
~→0

R~(γ,γ ′) = R0(γ, γ′) :=

∫
Rm

Pγ,γ′
(

Γ0
ij(u)

)
du, (2.22)

and thus

lim
~→0

S~
q = S̄0

q :=
∑

γ,γ′∈Im
|γ|=|γ′|=q

a0(γ)a0(γ′)R0(γ, γ′) =

∫
Rm

E
[
ρ0q(0)ρ0q(u)

]
du. (2.23)

Since S~
q ≥ 0, ∀q, ~, we have

S~
q ≥ 0, ∀q.

Lemma 2.6. For any positive integer Q we set

S~
>Q :=

∑
q>Q

S~.

Then

lim
Q→∞

(
sup
~
S>Q

)
= 0, (2.24)

the series ∑
q≥1

S̄0
q

is convergent and, if S̄0 is its sum, then

S̄0 = lim
~→0

S~ = lim
~→0

∑
q≥1

S~
q . (2.25)

Proof. For x ∈ Rm we denote by θx the shift operator associated with the stationary fields
Y ~, i.e.,

θxY
~(•) = Y ~(•+ x).

This extends to a unitary map L2(Ω)→ L2(Ω) that commutes with the chaos decomposition
of L2(Ω). Moreover, for any box B and any ~ ∈ [0, ~0] we have

Z~(B + x) = θxZ
~(B).

If we denote by L~ the set

L~ := Am ∩ B̂4N~ , (2.26)

then we deduce

ζ~(2N~) = (2N)−m/2
∑
p∈L~

θpζ
~(B), B = B̂1. (2.27)
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We denote by P>Q the projection

P>Q =
∑
q>Q

Pq,

where Pq denotes the projection on the q-th chaos component of X̂ . We have

P>Qζ
~(N~) = (2N~)−m/2

∑
p∈L~

θpP>Qζ
~(B).

Using the stationarity of Y ~ we deduce

S~
>Q, = E

[ ∣∣P>Qζ~(2N~)
∣∣2 ] = (2N~)−m

∑
p∈L~

ν(p, N~)E
[
P>Qζ

(
B) · θpP>Qζ~

(
B)
]
, (2.28)

where ν(p, N~) denotes the number of points x ∈ L~ such that x− p ∈ B̂2N~ . Clearly

ν(p, N~) ≤ (2N~)m. (2.29)

With K denoting the positive constant in (2.19) we deduce from Lemma 2.4 that we can
choose positive numbers a, ρ such that

ψ~(x) ≤ ρ < 1

K
, ∀|x|∞ > a, ∀~ ∈ [0, ~0].

We split S~
>Q into two parts,

S~
>Q = S~

>Q,0 + S~
>Q,∞,

where S~
>Q,0 is made up of the terms in (2.28) corresponding to points p ∈ L~ such that

|p|∞ < a+ 1, while S~
>Q,∞ corresponds to points p ∈ L~ such that |p|∞ ≥ a+ 1.

We deduce from (2.29) that for 2M > a+ 1 we have∣∣∣S~
>Q,0

∣∣∣ ≤ (2N~)−m(2a+ 2)m(2N~)mE
[ ∣∣P>Qζ~(B)

∣∣2 ].
Proposition 2.1(iv) implies that, as Q→∞, the right-hand side of the above inequality goes
to 0 uniformly with respect to ~.

To estimate S~
>Q,∞ observe that for p ∈ L~ such that |p|∞ > a+ 1 we have

E
[
P>Qζ

~(B) · θpP>Qζ~(B)
]

=
∑
q>Q

∫
B

∫
B
E
[
ρ~q(x)]ρ~q(y + p)

]
dxdy, (2.30)

where we recall from (2.18) that

ρ~q(x) =
∑

γ∈Im, |γ|=q

a~(γ)Hγ

(
Ξ~(x)

)
, Im := Nm0 × Nν(m)

0 , ν(m) =
m(m+ 1)

2
.

Thus

E
[
ρq(x)ρq(y + p)

]
= E

[ ( ∑
γ∈Im, |γ|=q

a~(γ)Hγ

(
Ξ~(t)

) )( ∑
γ∈Im, |γ|=q

a~(γ)Hγ

(
Ξ~(y + p)

) )]
Arcones’ inequality [3, Lemma 1] implies that

E
[
ρq(x)ρq(y + p)

]
≤ Kqψ~(p+ y − x)q

∑
γ∈Im, |γ|=q

|a~(γ)|2γ!. (2.31)
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We’re not out of the woods yet since the series
∑

γ∈Im |a
~(γ)|2γ! is divergent. On the other

hand, for γ = (α, β) ∈ Im we have

a~(γ) = ω~dαf
~
β

where, according to (2.3) we have dα = 1
α!(2π)−

m
2 Hα(0). Recalling that

H2r(0) = (−1)r
(2r)!

2rr!
, H2r+1(0) = 0.

we deduce that

(2r)!
∣∣∣ 1

(2r)!
H2r(0)

∣∣∣2 =
1

22r

(
2r

r

)
≤ 1,

and

d2αα! ≤ C =
1

(2π)m/2
.

Using (2.7) and (2.4) we conclude that∑
γ∈Im, |γ|=q

|a~(γ)|2γ! ≤ ω~(2π)−m/2qm
∑

β∈Nν(m)
0 ,|β|≤q

(f~β)2β! ≤ CqmE
[
| det∇2Y ~(0)|2

]
.

Using this in (2.30) and (2.31) we deduce

E
[
P>Qζ

~(B) · θpP>Qζ~(B)
]

≤ CE
[
| det∇Y ~(0)|2

]︸ ︷︷ ︸
=:C′

∑
q>Q

qmKq

∫
B

∫
B
ψ~(s+ u− t)qdudt

Hence ∣∣S~
>Q,∞

∣∣ ≤ C ′(∑
q>Q

qmKqρq−1
)( ∑

p∈L~; |s|∞>a+1

∫
B

∫
B
ψ~(p+ y − x)dydx

)
,

where we have used the fact that for |p|∞ ≥ a + 1, |y|, |x| ≤ 1 we have ψ~(p + y − x) < ρ.
Since ρ < 1

K , the sum ∑
q>Q

qmKqρq−1

is the tail of a convergent power series. On the other hand,∑
p∈L~,
|p|∞>a+1

∫
B

∫
B
ψ~(p+ y − x)dydx ≤

∑
p∈L~

∫
[−1,1]m

ψ~(p+ y) ≤ 2

∫
Rm

ψ~(y)dy
(2.16)

= O(1).

This proves that sup~ |S~
>Q,∞| goes to zero as Q→∞ and completes the proof of (2.24). The

claim (2.25) follows immediately from (2.24). This concludes the proof of Lemma 2.6 and of
fact F1. ut

Proof of F2. In [24] we have shown that the limit S0 in (2.17)4 is the sum of a series

S0 =
∑
q≥1

S0
q , S0

q =

∫
Rm

E
[
ρ0q(0)ρ0q(u)

]
du.

The equality (2.23) shows that S̄0 = S0 > 0. This concludes the proof of Proposition 2.5. ut
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2.5. Proof of Theorem 1.2. In [24] we have shown that, as ~ → 0, the random variables
converge in law to a random variable ∼ N(0, S0).

As explained in Subsection 1.4, to conclude the proof of Theorem 1.2 it suffices to establish
the asymptotic normality as ~→ 0 of the family

ζ~q =
1

(2N)m/2

∫
B̂2N~

ρq(x)dx, ∀q ≥ 1.

This follows from the fourth-moment theorem [26, Thm. 5.2.7], [28]. Here are the details.
Recall from [16, IV.1] that we have a surjective isometry Θq : X �q → X :q: , where X �q

is the q-th symmetric power and X :q: is the q-th chaos component of X̂ . The multiple Ito
integral Iq is then the map

Iq =
1√
q!

Θq.

We can write ζ~q as a multiple Ito integral

ζ~q = Iq
[
g~q
]
, g~q ∈X �n.

According to [26, Thm.5.2.7(v)], to prove that ζ~q converge in law to a normal variable it
suffices to show that

lim
~→0
‖g~q ⊗r g~q‖X ⊗(2q−2r) = 0, ∀r = 1, . . . , q − 1. (2.32)

In our context, using the isometry I in (1.9) we can view g~q as a function

g~q ∈ L2
(

(Rm × Rm)q
)
, g~q = g~q (z1, . . . ,zq), zj ∈ Rm × Rm,

and then

g~q ⊗r g~q ∈ L2
(

(Rm × Rm)2(q−r)
)
, g~q ⊗r g~q (zq−r+1, z

′
q−r+1, . . . ,zq, z

′
q)

=

∫
(Rm×Rm)r

g~q (z1, . . . ,zq, zq−r+1, . . . ,zq)g
~
q (z1, . . . ,zq, z

′
q−r+1, . . . ,z

′
q)dz1 · · · dzq.

To show (2.32) we invoke the arguments following the inequality (18) in the second step of
the proof of [11, Prop. 2.4] which extend to the setup in this paper.

2.6. Proof of Theorem 1.3. We set

N~ :=
⌈ r

2~

⌉
, s~ :=

r

2~N~
.

Then N~ ∈ N,

lim
~→0

N~ =∞, B̂2N~s~ = B̂~−1r ⊂ B̂1/(2~), lim
~→0

s~ = 1.

Thus, B̂~−1r is a cube, centered at 0 with vertices in the lattice (s~Z)m and s(~) ≈ 1 for ~
small.

To reach the conclusion (i) run the arguments in the the proof of Theorem 1.1 with the

following modified notations: the box B̂2N~ should be replaced with the box B̂2N~s~ = s~B̂2N~ ,

the lattice Am in (2.13) replaced by s~Am, and B̂(a) redefined as s~B̂1(a) = B̂s~(a).
To reach the conclusions (ii) and (iii) of Theorem 1.3 run the arguments in the subsections

2.4 and 2.5 with the following modified notations: the box B̂2N~ should be replaced with the

box B̂2N~s~ = s~B̂2N~ , in (2.26) the set L~ should be redefined to be

L~ := s~
(
Am ∩ B̂4N~

)
,
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and the box B in (2.27) should be redefined to be B̂s~ = s~B̂1.

Appendix A. Proof of Proposition 2.1

We will follow the strategy in the proof of [11, Prop. 1.1]. Some modifications are required
since the random functions Y ~ are not isotropic for ~ > 0.

Denote by p~x(−) and p~x,y(−,−) the probability densities of the Gaussian vectors ∇Y ~(x)

and respectively (∇Y ~(x),∇Y ~(y) ). For simplicity we denote by |S| the Lebesgue volume
of a Borel subset S ⊂ Rm.

Due to the stationarity of Y ~ it suffices to assume that the box B is centered at 0. The
Gaussian random function Y ~ is stationary. Using the Kac-Rice formula [2, Ch.11] or [6,
Ch.6] we deduce that, ∀v ∈ Rm we have

E
[
Z~(v, B)

]
= E

[
|det∇2Y ~(0) |

]
p0(v) |B|, (A.1)

E
[
Z~(v, B)

(
Z~(v, B)− 1

) ]
=

∫
2B

∣∣B ∩ (B − y)
∣∣ Ey,v[ |det∇2Y ~(0) det∇2Y ~(y)|

]
︸ ︷︷ ︸

g~(v,y)

p0,y(v,v)dy, (A.2)

where, for typographical reasons, we denoted by Ey,v the conditional expectation

Ey,v[−] = E
[
−|Cy(v)

]
, Cy(v) := {∇Y ~(0) = ∇Y ~(y) = v}.

The two sides of the equality (A.2) are simultaneously finite or infinite. Let us point out
that the integrand on the right-hand side of this equality could blow-up at y = 0 because the
Gaussian vector (∇Y ~(0),∇Y ~(0) ) is degenerate and therefore

lim
y→0

p0,y(v,v) =∞.

The most demanding part in the proof of Proposition 2.1 is showing that the right-hand
side of (A.2) is finite. This boils down to understanding the singularity at the origin of the
integrand in (A.2). In [23] we proved this fact in the case v = 0. To deal with the general
case we will use a blend of the ideas in [11] and [23].

Step 1. We will show that there exist ~1 > 0, r1 > 0 and C1 > 0 such that for any ~ ≤ h1
we have

p~0,y(0, 0) <∞, ∀y 6= 0, (A.3a)

0 < p0,y(v,v) ≤ C1|y|−m, ∀0 < |y| < r1, ∀v ∈ Rm. (A.3b)

These two facts follow from [23, Lemma 3.5] and the obvious inequality

p0,y(v,v) ≤ p0,y(0, 0).

Step 2. We will show that there exist ~2 > 0, r2 > 0 and C2 > 0 such that for any ~ ≤ h1
we have

|g~(v,y)| ≤ C2‖y‖2, ∀|y| ≤ r2, v ∈ Rm. (A.4)

We set

f~(y,v) := Ey,v

[
|det∇2Y ~(0)|2

]
.

From the Cauchy inequality and the stationarity of Y ~ we deduce

g~(v,y)2 ≤ Ey,v
[
| det∇2Y ~(0)|2

]
·Ey,v

[
|det∇2Y ~(y)|2

]
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= f~(y,v)f~(−y,v) = f~(y,v)2.

We now invoke the Hadamard’s inequality [15, Thm. 7.8.1]: if A : Rm → Rm is an m ×m
symmetric positive operator and {e1, . . . , em} is an orthonormal basis of Rm, then

detA ≤
m∏
j=1

(Aej , ej).

Applying this inequality to A = ∇2Y h(0))2 and a fixed orthonormal basis {e1, . . . , em} such
that

e1 := |y|−1y,
we deduce

|det∇2Y ~(0)|2 ≤ |y|−2‖∇2Y y(0)y‖2‖∇2Y ~(0)‖2(m−1).
Hence

|g~(v,y)| ≤ f~(v,y)Ey,v
[
|det∇2Y ~(0)|2

]2
≤ |y|−2Ey,v

[
‖∇2Y y(0)y‖4

] 1
2Ey,v

[
‖∇2Y y(0)‖4(m−1)

] 1
2

(A.5)

Now observe that

‖∇2Y y(0)y‖2 = |y|2
m∑
j=1

Y ~
1j(0)2,

where, for any smooth function F : Rm → R, we set

Fi,j,...k := ∂ei∂ej · · · ∂ekF.

Thus

|∇2Y y(0)y|4 ≤ m|y|4
m∑
j=1

Y ~
1j(0)4,

Ey,v
[
|∇2Y y(0)y|4

]
≤ m|y|4

m∑
j=1

Ey,v
[
Y ~
1j(0)4

]
,

g~(v,y) ≤
√
m

 m∑
j=1

Ey,v
[
Y ~
1j(0)4

] 1
2

Ey,v
[
‖∇2Y ~(0)‖4(m−1)

] 1
2
. (A.6)

For each j = 1, . . . ,m define the random function

Fj : [0, 1]→ R, Fj(t) = Y ~
j (ty).

Then

F ′j(t) = |y|Y ~
1,j(ty), F ′′j (t) = |y|2Y ~

1,1,j(ty)

Using the Taylor formula with integral remainder we deduce

Fj(1)− Fj(0) = F ′j(0) +

∫ 1

0
F ′′j (t)(1− t)dt,

i.e.,

Y ~
j (y)− Y ~

j (0) = Y ~
1j(0) + |y|

∫ 1

0
Y ~
11j(ty)(ty)dt.
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Hence

Y ~
1,j(0) = Y ~

j (y)− Y ~
j (0)− |y|

∫ 1

0
Y ~
1,1,j(ty)(ty)dt.

Setting vj := (v, ej) and observing that under the condition Cy(v) we have

Y ~
j (0) = Y ~

j (y) = vj , ∀j = 1, . . . ,m,

we deduce

Ey,v
[
Y ~
1,j(0)4

]
= Ey,v

[(
Y ~
j (y)− Y ~

j (0)− |y|
∫ 1

0
Y ~
1,1,j(ty)(1− t)dt

)4 ∣∣∣ Cy(v)

]

= |y|4Ey,v

[(∫ 1

0
Y ~
1,1,j(ty)(1− t)dt

)4
]
≤ |y|4Ey,v

[∫ 1

0

∣∣Y ~
1,1,j(ty)

∣∣4dt ]
= |y|4

∫ 1

0
Ey,v

[ ∣∣Y ~
1,1,j(ty)

∣∣4 ]dt.
We conclude that

g~(v,y) ≤
√
m|y|2

∫ 1

0

m∑
j=1

Ey,v
[ ∣∣Y ~

1,1,j(ty)
∣∣4 ]dt

 1
2

Ey,v
[
‖∇2Y ~(0)‖4(m−1)

] 1
2
. (A.7)

Step 2 will be completed once we prove the following result.

Lemma A.1. There exist ~2 > 0, r2 > 0 and C2 > 0 such that for any ~ ≤ h1 and any
v ∈ Rm we have

Ey,v
[
‖∇2Y ~(0)‖4(m−1)

]
≤ C2(1 + |v|)4(m−1), ∀~ < ~2, |y| < r2, (A.8a)

Ey,v
[ ∣∣Y ~

1,1,j(ty)
∣∣4 ] ≤ C2(1 + |v|)4, ∀j, ~ < ~2, |y| < r2, t ∈ [0, 1]. (A.8b)

Proof. The random matrix ∇2Y ~ conditioned by Cy(v) is Gaussian. The same is true of
Y ~
1,1,j(ty) so it suffices to show that there exist ~2 > 0, r2 > 0 and C2 > 0 such that for any

~ ≤ h1 and any v ∈ Rm we have

Ey,v
[ ∣∣Y ~

i,j(0)
∣∣2 ] ≤ C2(1 + |v|)2, ∀i, j, ∀~ < ~2, |y| < r2, (A.9a)

Ey,v
[ ∣∣Y ~

1,1,j(ty)
∣∣2 ] ≤ C2(1 + |v|)2, ∀j, ∀~ < ~2, |y| < r2, t ∈ [0, 1]. (A.9b)

As in [23] we introduce the index sets

J = {±1,±2, . . . ,m}, J± =
{
j ∈ J ; ±j > 0

}
.

We consider the Rm ⊕ Rm valued Random Gaussian vector G~(t) = G~
− ⊕ G~

+, t ∈ [0, 1],
where

G~
− :=

m∑
i=1

G~
−iei = ∇Y ~(0), G~

+ :=

m∑
j=1

G~
jej = ∇Y ~(ty).

The covariance form of this vector is the 2m× 2m symmetric matrix

S~ = S~(t) =

 S−,−~ S−,+~

S+,−
~ S+,+

~

 =

[
A~ B~
B~ A~

]
,

A~ = −∇2V ~(0), B~ = B~(t,y) = −∇2V ~(ty).



MULTIDIMENSIONAL RANDOM FOURIER SERIES 25

From (A.3b) we deduce that S~ is invertible if ~ < ~1 and |y| ≤ r1. Its inverse has the block
form [

C~(t) −D~(t)
−D~(t) C~(t)

]
=

[
C~(t) −A−1~ B~(t)C~(t)

−A−1~ B~(t)C~(t) C~(t)

]
,

where,

C~(t) = C~(t,y) :=
(
A~ −B~(t,y)A−1~ B~(t,y)

)−1
.

In [23, Lemma 3.6] we have shown that there exists ~2 ∈ (0, ~1) such that the m×m matrix

K~ := (K~
ij)1≤i,j≤m, K~

ij := V ~
1,1,i,j(0)

is invertible for ~ ∈ [0, ~2] and

lim
t→0

t2C~(t,y) = (K~)−1, uniformly in ~ ∈ [0, ~2] and |y| ≤ r1 . (A.10)

Next, observe that

C~(t,y)−D~(t,y) = A−1~
(
A~ −B~(t,y)

)
C~(t,y)

= A−1~
1

t2
(
A~ −B~(t,y)

)
t2C~(t,y),

and
1

t2
(
A~ −B~(t,y)

)
=

1

t2

(
∇2V ~(ty)−∇2V ~(0)

)
Since the function

x 7→ ∇2V ~(x)

is even and V ~ → V 0 in C∞ as ~→ 0 we deduce that the limit

lim
t→0

1

t2

(
∇2V ~(ty)−∇2V ~(0)

)
exists, it is finite and it is uniform in ~ ∈ [0, ~2] and |y| ≤ r1. Using (A.10) we conclude that
there exists a constant c1 > 0 such that

‖C~(t,y)−D~(t,y)‖ ≤ c1, ∀t ∈ [0, 1], ~ ∈ [0, ~2], |y| ≤ r1. (A.11)

We can now prove (A.9a) and (A.9b).

Proof of (A.9a). Fix i0, j0 ∈ {1, . . . ,m}. The random variable Y ~
i0,j0

(0), conditioned by

Cy(v), is a normal random variable Ȳ ~
i0,j0

, and its mean and variance are determined by the

regression formula, [6, Prop. 1.2]. To apply this formula we need to compute the correlations
between Y ~

i0,j0
(0) and G~. These are given by the expectations

Ξ~
j = Ξ~

j (y) = E
[
Y ~
i0,j0(0)Gj(1)

]
, j ∈ J .

We have

Ξ~
j (y) =

{
V ~
i0,j0,|j|(0), j ∈ J−
V ~
i0,j0,j

(y), j ∈ J+.

We regard the collection (Ξ~
j (y))j∈J as a linear map

Ξ~(y) : Rm ⊕ Rm → R, Ξ~( (zj)j∈J
)

=
∑
j∈J

Ξ~
j (y)zj .

In particular, we think of Ξ~ as a row vector so its transpose (Ξ~)> is a column vector.
Observe that since the function V ~ is even, the third order derivative V ~

ijk are odd functions.
Thus

V ~
i0,j0,j(0) = 0
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and there exists r2 ∈ (0, r1) and c2 > 0 such that

|V ~
i,j,k(y)| ≤ c2|y|, ∀i, j, k, ∀~ ∈ [0, ~2], |y| ≤ r2.

Hence
‖Ξ~(y)‖ ≤ c2|y|, ∀~ ∈ [0, ~2], |y| ≤ r2. (A.12)

Denote by v̂ ∈ Rm ⊕ Rm the vector v ⊕ v.
According to the regression formula, the mean of the conditioned random variable Ȳ ~

i0,j0
is

E
[
Ȳ ~
i0,j0

]
= −Ξ~(y)

(
S−1~ v̂

)
= Ξ~(y)

(
(C~ −D~)v ⊕ (C~ −D~)v

)
.

Using (A.11) and (A.12) we deduce that there exists c3 > 0 such that∣∣∣Ey,v[Y ~
i0,j0

]∣∣∣ ≤ c3|y||v|, ∀~ ∈ [0, ~2], |y| ≤ r2, v ∈ Rm. (A.13)

According to the regression formula, the variance of the conditioned random variable Ȳ ~
i0,j0

is

var
[
Ȳ ~
i0,j0

]
= var

[
Y ~
i0,j0

]
−Ξ~(y)S−1~ (Ξ~(y))> = V ~

i0,j0,i0,j0(0)−Ξ~(y)S−1~ (Ξ~(y))>

Using (1.8), (A.11) and (A.12) we deduce that there exists c4 > 0 such that

vary,v
[
Y ~
i0,j0

]
≤ c4|v|, ∀~ ∈ [0, ~2], |y| ≤ r2, v ∈ Rm. (A.14)

The inequality (A.9a) now follows from (A.13) and (A.14).

Proof of (A.9b). Fix j0 ∈ {1, 2, . . . ,m} The random variable Y ~
1,1,j0

(ty), conditioned by

Cy(v) is a normal random variable Ȳ ~
1,1,j0

. To describe its mean and its variance we need to
compute the correlations

Ω~
j (t,y) := E

[
Y ~
1,1,j0(ty)G~

j

]
=

{
−V ~

1,1,j0,|j|(ty), j ∈ J−
−V ~

1,1,j0,j

(
(1− t)y

)
, j ∈ J+.

.

Again, we think of the collection (Ω~
j (t,y))j∈J as defining a linear map

Ω~ : Rm ⊕ Rm → R.
The row vector Ω~ splits as a direct sum of row vectors

Ω~ = Ω~
− ⊕Ω~

+, Ω~
± =

(
Ω~
j

)
j∈J± .

The mean of the random variable Ȳ ~
1,1,j0

is

E
[
Ȳ ~
1,1,j0

]
= −Ω~( (C~ −D~)v ⊕ (C~ −D~)v

)
.

We conclude as befgore that∣∣∣E[Y ~
1,1,j0(ty)

] ∣∣∣ = O
(
|v| · |y|

)
, |y| ≤ r2, v ∈ Rm, t ∈ [0, 1], (A.15)

where the constant implied by the O-symbol is independent of ~ and t. This convention will
stay in place for the remainder of this proof.

Next, we have
var[ Ȳ ~

1,1,j0

]
= var[Y ~

1,1,j0(ty)
]
−Ω~S−1~ (Ω~)>

= V ~
1,1,j0,1,1,j0(ty)−

[
Ω~
− Ω~

+

]
·
[

C~ −D~
−D~ C~

]
·
[

(Ω~
−)>

(Ω~
+)>

]
= V ~

1,1,1,1,j0,j0(ty)−
[
Ω~
− Ω~

+

]
·
[

C~(Ω~
−)> −D~(Ω~

+)>

−D~(Ω~
−)> + C~(Ω~

+)>

]
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= V ~
1,1,1,1,j0,j0(ty)−

(
Ω~
−C~(Ω~

−)> −Ω~
−D~(Ω~

+)> −Ω~
+D~(Ω~

−)> + Ω~
+C~(Ω~

+)>
)

(D~ = C~ +O(1))

= V ~
1,1,1,1,j0,j0(ty)−

(
Ω~
−C~(Ω~

−)> −Ω~
−C~(Ω~

+)> −Ω~
+C~(Ω~

−)> + Ω~
+C~(Ω~

+)>
)

+O(1)

= V ~
1,1,1,1,j0,j0(ty)−

(
(Ω~
− −Ω~

+

)
C~(Ω~

−)> −
(
Ω~
− −Ω~

+

)
C~(Ω~

+)>
)

+O(1)

= V ~
1,1,1,1,j0,j0(ty)− (Ω~

− −Ω~
+

)
C~(Ω~

− −Ω~
+

)>
+O(1)

Now observe that Φ~ = Ω~
− −Ω~

+ is the vector in Rm with components

Φ~
j (t,y) = V ~

1,1,j0,j

(
(1− t)y

)
− V ~

1,1,j0,j

(
(ty
)
,

that satisfy ∣∣Φ~
j (t,y)

∣∣ = O(|y|), ∀j.
From (A.10) we deduce

‖C~(t,y)‖ = O
(
|y|−2

)
so that ∣∣ (Ω~

− −Ω~
+

)
C~(Ω~

− −Ω~
+

)> ∣∣ = O(1).

This completes the proof of (A.9b) and thus of Lemma A.1 and of statement (i) in Proposition
2.1. ut

Step 3. The map
v 7→ E

[
Z~(v, B)

(
Z~(v, B)− 1

) ]
is continuous. This follows by using the argument in Point 2 in the proof of [11, Prop. 1.1].
Combined with (A.1) will prove the statement (ii) in Proposition 2.1.

Step 4. Prove the statement (iii) in Proposition 2.1. This follows by using the argument in
Point 3 in the proof of [11, Prop. 1.1].

Step 5. Using the results in Step 1 and Step 2 and the dominated convergence theorem
we obtain the statement (iv). ut
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mials, Ann. Inst. H.Poincaré, to appear, arXiv: 1401.5745
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